Studying the Leverage Effect Based on High-Frequency Data

Yingying Li

Hong Kong University of Science and Technology

Joint work w/ Yacine Ait-Sahalia and Jianging Fan

Leverage Effect

- Leverage Effect
 - Innovations to stock price and volatilities tend to be negatively correlated;

Leverage Effect

- Leverage Effect
 - Innovations to stock price and volatilities tend to be negatively correlated;
 - Black (1976), Christie (1982), Nelson (1991), Engle and Ng (1993), Harvey & Shephard (1996), Bouchaud, Matacz & Potters (2001), Tauchen (2004, 2005), Yu (2005), Bollerslev, Litvinova & Tauchen (2006), Ait-Sahalia & Kimmel (2007), Bandi & Roberto (2009), Veraart & Veraart (2009).

Heston Model

The Heston Model:

$$dX_t = (\mu - \nu_t/2)dt + \sigma_t dB_t,$$

and

$$d\nu_t = \kappa(\alpha - \nu_t)dt + \gamma \nu_t^{1/2}dW_t,$$

where
$$\nu_t = \sigma_t^2$$
 and $Corr(B, W) = \rho$.

Heston Model

The Heston Model:

$$dX_t = (\mu - \nu_t/2)dt + \sigma_t dB_t,$$

and

$$d\nu_t = \kappa(\alpha - \nu_t)dt + \gamma \nu_t^{1/2}dW_t,$$

where
$$\nu_t = \sigma_t^2$$
 and $Corr(B, W) = \rho$.

Leverage: ρ.

Heston Model

The Heston Model:

$$dX_t = (\mu - \nu_t/2)dt + \sigma_t dB_t,$$

and

$$d\nu_t = \kappa(\alpha - \nu_t)dt + \gamma \nu_t^{1/2}dW_t,$$

where
$$\nu_t = \sigma_t^2$$
 and $Corr(B, W) = \rho$.

- Leverage: ρ.
- Studies about ρ:
 - Chernov & Ghysels (2000), [S&P500 1985 1993, -0.018]
 - Pan (2002), [S&P500, 1989 1996, -0.57]
 - Jones (2003), [S&P100 1988 2000 -0.68]
 - Ait-Sahalia, Kimmel (2007),[S&P500 1990-2003, -0.767/-0.754]
 - ...

Volatility Estimation

- Volatility Estimation
- Realized Volatiltiy (Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Mykland and Zhang (2006))

- Volatility Estimation
- Realized Volatiltiy (Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Mykland and Zhang (2006))
- TSRV(Zhang, Mykland and Ait-Sahalia (2006)), MLE({
 Ait-Sahalia, Mykland and Zhang (2005),}) MSRV
 (Zhang(2006)), Realized Kernels (Barndorff-Nielsen,
 Hansen, Lunde & Shephard (2008)), Pre-averaging
 Estimator (Jacod, Li, Mykland, Podolskij & Vetter (2009)),
 QMLE(Xiu (2009)) · · · ·

High-Frequency Data, RV and TSRV

- Consider estimation of daily (integrated) volatility, based on observed process from time 0 to time 1(day).
- no market microstructure noise:
 - Observe X_{t_i} , $i = 0, \dots, n$;
 - $RV = \sum_{i=1}^{n} (X_{t_i} X_{t_{i-1}})^2$;
 - $n^{1/2}(RV(X) \int_0^1 \sigma_t^2 dt) \rightarrow_{\text{stably-}\mathcal{L}} \sqrt{2} \int_0^1 \sigma_t^2 dZ_t$, where Z_t is a BM independent with B_t .
- with market microstructure noise:
 - Observe $Y_{t_i} = X_{t_i} + \epsilon_{t_i}$, $i = 0, \dots, n$ $\epsilon_{t_i} \perp X_{t_i}$, $E(\epsilon_{t_i}) = 0$ and $var(\epsilon_{t_i}) = \eta^2$.
 - $n^{1/6}(TSRV(Y) \int_0^1 \sigma_t^2 dt) \rightarrow_{S-\mathcal{L}} \sqrt{\frac{4}{3}} \int_0^1 \sigma_t^2 dZ_t + N(0, 8\eta^4)$, where Z_t is a BM independent with B_t .

S&P 500, 2004-2008

$$Corr = -0.118$$

MSFT, 05Q1-07Q2 0 diff_tsrv 0e+00 -2e-04 -0.10 -0.05 0.00 0.05 Return_I_c

Corr = 0.123

Different Estimators

Data: MSFT 05Q1 - 07Q2

- TSRV, (Zhang, Mykland and Ait-Sahalia (2006))
- Pre-Avg, (Jacod, Li, Mykland, Podolskij & Vetter (2009))
- MLE (Ait-Sahalia, Mykland and Zhang (2005))

• S& P 500 Return & VIX:

S& P 500 Return & VIX:

S&P 500, 2004-2008

•

•
$$Corr = -0.882$$

Recall

The Heston Model:

$$dX_t = (\mu - \nu_t/2)dt + \sigma_t dB_t,$$

and

$$d\nu_t = \kappa(\alpha - \nu_t)dt + \gamma \nu_t^{1/2}dW_t,$$

where $\nu_t = \sigma_t^2$ and $Corr(B, W) = \rho$.

•
$$\rho = \lim_{\Delta \to 0} Corr(X_{t+\Delta} - X_t, \sigma_{t+\Delta}^2 - \sigma_t^2).$$

Recall

The Heston Model:

$$dX_t = (\mu - \nu_t/2)dt + \sigma_t dB_t,$$

and

$$d\nu_t = \kappa(\alpha - \nu_t)dt + \gamma \nu_t^{1/2} dW_t,$$

where $\nu_t = \sigma_t^2$ and $Corr(B, W) = \rho$.

- $\rho = \lim_{\Delta \to 0} Corr(X_{t+\Delta} X_t, \sigma_{t+\Delta}^2 \sigma_t^2).$
- RV or TSRV, \cdots , estimators of $\int_s^{s+1} \sigma_t^2 dt$ (daily volatility of day s).

Theorem 1

$$Corr(\nu_{h+t} - \nu_t, X_{h+t} - X_t) = f_1(h, \kappa, \gamma, \alpha, \rho),$$

which has the following shape as a function of h.

(ρ is taken to be -0.9, $\kappa = 5/252$, $\gamma = 0.05/252$, $\alpha = 0.04/252$; based on the exact corr function ν s h. $h = 1, 2, \cdots, 250$.)

Theorem 2

Let
$$V_t = \int_{t-1}^t \nu_s ds = \int_{t-1}^t \sigma_s^2 ds$$
, we have,
 $Corr(V_{h+t} - V_t, X_{h+t} - X_t) = f_2(h, \kappa, \gamma, \alpha, \rho),$

 f_2 has the following shape when parameters are assigned to take these values: $\rho=-0.9,\,\kappa=5/252,\,\gamma=0.05/252,\,\alpha=0.04/252,\,h=1,2,\cdots,250.$

Theorem 3. When \hat{V} is estimated by RV based on the latent X_t process,

$$Corr(\hat{V}_{h+t} - \hat{V}_t, X_{h+t} - X_t) = f_3(n, h, \kappa, \gamma, \alpha, \rho) + O(\frac{1}{n^2})$$

the relationship between f_3 and h is as the following (picture plotted assuming n = 390, equivalent to data observed every 1 minute).

Theorem 4. When \hat{V} is estimated by TSRV based on the noisy Y_t process,

$$Corr(\hat{V}_{h+t} - \hat{V}_t, X_{h+t} - X_t) = f_4(n, h, \kappa, \gamma, \alpha, \rho) + O(\frac{1}{n^{2/3}})$$

the relationship between f_4 and h is as the following (picture plotted assuming n = 390, equivalent to data observed every 1 minute).

Simulation

$$dX_t = (\mu - \nu_t/2)dt + \sigma_t dB_t,$$

and

$$d\nu_t = \kappa(\alpha - \nu_t)dt + \gamma \nu_t^{1/2}dW_t,$$

- parameter values used: $\mu = 0.05/252, \kappa = 5/252, \alpha = 0.04/252, \gamma = 0.05/252, \rho = -0.9.$
- Market microstructure error $\epsilon_i^n \sim i.i.d. \ \mathcal{N}(0, 0.0005^2).$
- Simulated the process from t = 0 to T = 252 * 5 (5 years' data).

h = 1:

Cor: -0.893, -0.531, -0.087, -0.035

h	TSRV _Y	RV_X	V_{int}
1	-0.02649127	-0.0853894	-0.548445
5	-0.04109787	-0.2620538	-0.8247507
21	-0.08755033	-0.4442211	-0.8189264
63	-0.08929981	-0.4870836	-0.7201282
250	-0.06757756	-0.3359186	-0.4712475

Empirical Study

S&P 500

h	TSRV	VIX
1	-0.1177373	-0.8816223
5	-0.4253013	-0.839663
21	-0.4350447	-0.8759314
63	-0.4186851	-0.6899913
126	-0.2623622	-0.3930312
252	-0.1685861	-0.1794003

h	TSRV	VIX
1	-0.1177373	-0.8816223
5	-0.4253013	-0.839663
21	-0.4350447	-0.8759314
63	-0.4186851	-0.6899913
126	-0.2623622	-0.3930312
252	-0.1685861	-0.1794003

MSFT 05-07Q2, TSRV

MSFT 05-07Q2, Pre-Averaging

MSFT 05-07Q2

h	TSRV	Pre-Avg
1	0.0701774	-0.050773005
5	0.0003040	-0.1023419
21	-0.1408872	-0.2551622
63	-0.3207878	-0.4333282
126	-0.3904839	-0.5118337
252	-0.2522863	-0.3996102

Summary

- Leverage Puzzle
- Resolution
 - Naive ways are biased
 - Two sources of bias
 - Adding one dimension can be very helpful

Thank You!