Studying the Leverage Effect Based on High-Frequency Data

Yingying Li

Hong Kong University of Science and Technology

Joint work w/ Yacine Ait-Sahalia and Jianqing Fan

Leverage Effect

- Leverage Effect
- Innovations to stock price and volatilities tend to be negatively correlated;

Leverage Effect

- Leverage Effect
- Innovations to stock price and volatilities tend to be negatively correlated;
- Black (1976), Christie (1982), Nelson (1991), Engle and Ng (1993), Harvey \& Shephard (1996), Bouchaud, Matacz \& Potters (2001), Tauchen (2004, 2005), Yu (2005), Bollerslev, Litvinova \& Tauchen (2006), Ait-Sahalia \& Kimmel (2007), Bandi \& Roberto (2009), Veraart \& Veraart (2009). .

Heston Model

- The Heston Model:

$$
d X_{t}=\left(\mu-\nu_{t} / 2\right) d t+\sigma_{t} d B_{t}
$$

and

$$
d \nu_{t}=\kappa\left(\alpha-\nu_{t}\right) d t+\gamma \nu_{t}^{1 / 2} d W_{t}
$$

where $\nu_{t}=\sigma_{t}^{2}$ and $\operatorname{Corr}(B, W)=\rho$.

Heston Model

- The Heston Model:

$$
d X_{t}=\left(\mu-\nu_{t} / 2\right) d t+\sigma_{t} d B_{t}
$$

and

$$
d \nu_{t}=\kappa\left(\alpha-\nu_{t}\right) d t+\gamma \nu_{t}^{1 / 2} d W_{t}
$$

where $\nu_{t}=\sigma_{t}^{2}$ and $\operatorname{Corr}(B, W)=\rho$.

- Leverage: ρ.

Heston Model

- The Heston Model:

$$
d X_{t}=\left(\mu-\nu_{t} / 2\right) d t+\sigma_{t} d B_{t}
$$

and

$$
d \nu_{t}=\kappa\left(\alpha-\nu_{t}\right) d t+\gamma \nu_{t}^{1 / 2} d W_{t}
$$

where $\nu_{t}=\sigma_{t}^{2}$ and $\operatorname{Corr}(B, W)=\rho$.

- Leverage: ρ.
- Studies about ρ :
- Chernov \& Ghysels (2000), [S\&P500 1985-1993, -0.018]
- Pan (2002), [S\&P500, 1989-1996, -0.57]
- Jones (2003), [S\&P100 1988-2000-0.68]
- Ait-Sahalia, Kimmel (2007),[S\&P500 1990-2003, -0.767/-0.754]
- ...

High Frequency Data

High Frequency Data

- Volatility Estimation

High Frequency Data

- Volatility Estimation
- Realized Volatiltiy (Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Mykland and Zhang (2006))

High Frequency Data

- Volatility Estimation
- Realized Volatiltiy (Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Mykland and Zhang (2006))
- TSRV(Zhang, Mykland and Ait-Sahalia (2006)), MLE(\{ Ait-Sahalia, Mykland and Zhang (2005),\}) MSRV (Zhang(2006)), Realized Kernels (Barndorff-Nielsen, Hansen, Lunde \& Shephard (2008)), Pre-averaging Estimator (Jacod, Li, Mykland, Podolskij \& Vetter (2009)), QMLE (Xiu (2009)) . .

High-Frequency Data, RV and TSRV

- Consider estimation of daily (integrated) volatility, based on observed process from time 0 to time 1(day).
- no market microstructure noise:
- Observe $X_{t}, \quad, i=0, \cdots, n$;
- $R V=\sum_{i=1}^{n}\left(X_{t_{i}}-X_{t_{i-1}}\right)^{2}$;
- $n^{1 / 2}\left(R V(X)-\int_{0}^{1} \sigma_{t}^{2} d t\right) \rightarrow_{\text {stably- } \mathcal{L}} \sqrt{2} \int_{0}^{1} \sigma_{t}^{2} d Z_{t}$, where Z_{t} is a BM independent with B_{t}.
- with market microstructure noise:
- Observe $Y_{t_{i}}=X_{t_{i}}+\epsilon_{t_{i}}, \quad, i=0, \cdots, n$ $\epsilon_{t_{i}} \Perp X_{t_{i}}, E\left(\epsilon_{t_{i}}\right)=0$ and $\operatorname{var}\left(\epsilon_{t_{i}}\right)=\eta^{2}$.
- $n^{1 / 6}\left(\operatorname{TSRV}(Y)-\int_{0}^{1} \sigma_{t}^{2} d t\right) \rightarrow s-\mathcal{L} \sqrt{\frac{4}{3}} \int_{0}^{1} \sigma_{t}^{2} d Z_{t}+N\left(0,8 \eta^{4}\right)$, where Z_{t} is a BM independent with B_{t}.

S\&P 500, 2004-2008

Corr $=-0.118$

MSFT, 05Q1-07Q2

Corr $=0.123$

Different Estimators

Data: MSFT 05Q1-07Q2

- TSRV, (Zhang, Mykland and Ait-Sahalia (2006))
- Pre-Avg, (Jacod, Li, Mykland, Podolskij \& Vetter (2009))
- MLE (Ait-Sahalia, Mykland and Zhang (2005))

- S\& P 500 Return \& VIX:
- S\& P 500 Return \& VIX:

S\&P 500, 2004-2008

- Corr $=-0.882$

Recall

The Heston Model:

$$
d X_{t}=\left(\mu-\nu_{t} / 2\right) d t+\sigma_{t} d B_{t}
$$

and

$$
d \nu_{t}=\kappa\left(\alpha-\nu_{t}\right) d t+\gamma \nu_{t}^{1 / 2} d W_{t}
$$

where $\nu_{t}=\sigma_{t}^{2}$ and $\operatorname{Corr}(B, W)=\rho$.

$$
\cdot \rho=\lim _{\Delta \rightarrow 0} \operatorname{Corr}\left(X_{t+\Delta}-X_{t}, \sigma_{t+\Delta}^{2}-\sigma_{t}^{2}\right)
$$

Recall

The Heston Model:

$$
d X_{t}=\left(\mu-\nu_{t} / 2\right) d t+\sigma_{t} d B_{t}
$$

and

$$
d \nu_{t}=\kappa\left(\alpha-\nu_{t}\right) d t+\gamma \nu_{t}^{1 / 2} d W_{t}
$$

where $\nu_{t}=\sigma_{t}^{2}$ and $\operatorname{Corr}(B, W)=\rho$.

- $\rho=\lim _{\Delta \rightarrow 0} \operatorname{Corr}\left(X_{t+\Delta}-X_{t}, \sigma_{t+\Delta}^{2}-\sigma_{t}^{2}\right)$.
- RV or TSRV, \cdots, estimators of $\int_{s}^{s+1} \sigma_{t}^{2} d t$ (daily volatility of day s).

Theorem 1

$$
\operatorname{Corr}\left(\nu_{h+t}-\nu_{t}, X_{h+t}-X_{t}\right)=f_{1}(h, \kappa, \gamma, \alpha, \rho),
$$

which has the following shape as a function of h.

(ρ is taken to be $-0.9, \kappa=5 / 252, \gamma=0.05 / 252, \alpha=0.04 / 252$; based on the exact corr function vs $h . h=1,2, \cdots, 250$.)

Theorem 2

Let $V_{t}=\int_{t-1}^{t} \nu_{s} d s=\int_{t-1}^{t} \sigma_{s}^{2} d s$, we have,

$$
\operatorname{Corr}\left(V_{h+t}-V_{t}, X_{h+t}-X_{t}\right)=f_{2}(h, \kappa, \gamma, \alpha, \rho),
$$

f_{2} has the following shape when parameters are assigned to take these values: $\rho=-0.9, \kappa=5 / 252, \gamma=0.05 / 252, \alpha=0.04 / 252$, $h=1,2, \cdots, 250$.

Theorem 3. When \hat{V} is estimated by $R V$ based on the latent X_{t} process,

$$
\operatorname{Corr}\left(\hat{V}_{h+t}-\hat{V}_{t}, X_{h+t}-X_{t}\right)=f_{3}(n, h, \kappa, \gamma, \alpha, \rho)+O\left(\frac{1}{n^{2}}\right)
$$

the relationship between f_{3} and h is as the following (picture plotted assuming $n=390$, equivalent to data observed every 1 minute).

Theorem 4. When \hat{V} is estimated by $T S R V$ based on the noisy Y_{t} process,

$$
\operatorname{Corr}\left(\hat{V}_{h+t}-\hat{V}_{t}, X_{h+t}-X_{t}\right)=f_{4}(n, h, \kappa, \gamma, \alpha, \rho)+O\left(\frac{1}{n^{2 / 3}}\right)
$$

the relationship between f_{4} and h is as the following (picture plotted assuming $n=390$, equivalent to data observed every 1 minute).

Simulation

$$
d X_{t}=\left(\mu-\nu_{t} / 2\right) d t+\sigma_{t} d B_{t}
$$

and

$$
d \nu_{t}=\kappa\left(\alpha-\nu_{t}\right) d t+\gamma \nu_{t}^{1 / 2} d W_{t}
$$

- parameter values used: $\mu=0.05 / 252, \kappa=5 / 252, \alpha=$ $0.04 / 252, \gamma=0.05 / 252, \rho=-0.9$.
- Market microstructure error $\epsilon_{i}^{n} \sim$ i.i.d. $\mathcal{N}\left(0,0.0005^{2}\right)$.
- Simulated the process from $t=0$ to $T=252 * 5$ (5 years' data).

$$
h=1 \text { : }
$$

Cor: -0.893, -0.531, -0.087, -0.035

h	$T S R V_{Y}$	$R V_{X}$	$V_{\text {int }}$
1	-0.02649127	-0.0853894	-0.548445
5	-0.04109787	-0.2620538	-0.8247507
21	-0.08755033	-0.4442211	-0.8189264
63	-0.08929981	-0.4870836	-0.7201282
250	-0.06757756	-0.3359186	-0.4712475

Empirical Study

S\&P 500

h	TSRV	VIX
1	-0.1177373	-0.8816223
5	-0.4253013	-0.839663
21	-0.4350447	-0.8759314
63	-0.4186851	-0.6899913
126	-0.2623622	-0.3930312
252	-0.1685861	-0.1794003

h	TSRV	VIX
1	-0.1177373	-0.8816223
5	-0.4253013	-0.839663
21	-0.4350447	-0.8759314
63	-0.4186851	-0.6899913
126	-0.2623622	-0.3930312
252	-0.1685861	-0.1794003

MSFT 05-07Q2, TSRV

MSFT 05-07Q2, Pre-Averaging

MSFT 05-07Q2

h	TSRV	Pre-Avg
1	0.0701774	-0.050773005
5	0.0003040	-0.1023419
21	-0.1408872	-0.2551622
63	-0.3207878	-0.4333282
126	-0.3904839	-0.5118337
252	-0.2522863	-0.3996102

Summary

- Leverage Puzzle
- Resolution
- Naive ways are biased
- Two sources of bias
- Adding one dimension can be very helpful

Thank You!

