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Research Motivation
Importance of Jump Dynamics & Predictability in Asset Pricing

Historical evidence of two types of risks: jump and volatility

Time varying hedging demand from investors

Fits better data over time

Time-varying excess kurtosis and skewness (higher moments)

Time-varying implied volatility smiles and smirks in option markets

Time-varying degrees of market incompleteness

⇒ Need for dynamic models separately for jump and volatility risk
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Motivating Literature
Applications: Continuous-time Finance

Asset pricing with mean return predictability: Lo and Wang (1995)

Asset pricing with stochastic volatility: Heston (1993)

Asset pricing with stochastic volatility and/or jump:
Merton (1976), Bakshi, Cao, and Chen (1997), Bates (1996), Duffie, Pan, and

Singleton (2000), Ait-Sahalia (2002, 2004), Andersen, Benzoni, and Lund

(2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker, Johannes, and

Polson (2003), Carr and Wu (2003,2004), Li, Wells, and Yu (2008)

Asset pricing with jump event:
Piazzesi (2003), Dubinsky and Johannes (2006)
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Jump Predictor Test Motivation

Identifying jump predictors

Sorting predictors in terms of impact size and precision

Separating systematic/macro jumps from idiosyncratic jumps

Extending prediction models: Regression model, ARCH,
GARCH, Stochastic Volatility, and then, what’s next?

Market timer for high frequency program trading popular in
hedge fund industry
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Outline

A new two-stage semi-parametric jump predictor test (JPT)
- Stage I: Nonparametric jump tests
- Stage II: Maximum partial likelihood predictor test

Inference theory and guideline (likelihood for continuous-time
jump process within jump diffusion model)

Monte Carlo simulation study

Empirical evidence on short-term jump predictors (macro and
firm-specific) in U.S. individual equity markets

Implications for systematic jump components over time
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Theoretical Framework for Models with Two Risk types
Overall Model

Under a probability space (Ω,F , P): market information

S(t) Asset price under P (data-generating measure in
continuous-time)

T Time horizon

n Number of observation within [0,T ]

Observe S(t) at 0 = t0 ≤ t1 ≤ .. ≤ tn = T

∆ti = ti − ti−1 = ∆t = T
n

d log S(t) = µ(t)dt + σ(t)dW (t) + Y (t)dJ(t) (1)
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Theoretical Framework for Jump Predictor Test
Sub-model for Irregular Jump Arrivals

J(t) =
∫ t
0 dJ(s) : Doubly-stochastic Poisson process

(also used in Duffie, Saita, and Wang (2007))

Λθ(t) = γ(t, X (t); θ) : Integrated stochastic jump intensity

θ Effect parameter in Euclidean space

X (t) Information: Ft-predictable process observed at discrete
times 0 = t0 ≤ t1 ≤ .. ≤ tn = T

Y (t) Jump size with any distribution with its mean µy (t) and
variance σ2

y (t)
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Assumption C & D for Drift, Diffusion, Jump Intensity

Very general assumptions

Drift µ and Diffusion σ do not ”dramatically” change over a short
period of time, can be stochastic, depend on itself

dΛθ(t) should be continuous & 3 times differentiable to apply
martingale central limit theorem, etc.
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Intuition for Stage I
Nonparametric test by Lee & Mykland (2008) and Lee & Hannig (2009)

Assess if the K th obs in moving widows of size K are jumps
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Intuition for Stage II
Maximum partial likelihood test

Come up with information predictors and functional relationship with jump
intensity
Determine the effect of information predictors on jump arrivals
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Jump Detection Tests Admissible for the Stage I

The statistic L(i), which tests at time ti whether there was a jump from ti−1 to
ti , is defined as

L(i) ≡ log S(ti )/S(ti−1)

σ̂(ti )
√

∆t
,

where σ̂(ti ) can be chosen from one of the following..

σ̂(ti )
2 ≡ 1

(K − 2)c2

i−1X
j=i−K+2

| log S(tj )/S(tj−1)|| log S(tj−1)/S(tj−2)|,

where u is a standard normal random variable, K = b∆ta with −1 < a < −1/2
for some constant b, and c = E |u| ≈ 0.7979.

For any g > 0 and 0 < eω < 1/2,

σ̂(ti )
2 ≡ ∆t−1

K

i−1X
j=i−K

�
log S(tj )/S(tj−1)

�2
I{|log S(tj )/S(tj−1)|≤g∆t eω},

where K = b∆ta with −1 < a < 0, for some constant b.
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Properties of Admissible Tests
Proposition 1

L(i) be as in Definition 1 and Assumption C is satisfied. Then, the following
statements hold, as ∆t → 0.

A. If there is no jump in (ti−1, ti ], i.e. dJ(ti ) = J(ti )− J(ti−1) = 0, then,

L(i)
D−→ N (0, 1),

where N (0, 1) denotes a standard normal random variable.

B. If there is a jump at τ within (ti−1, ti ], i.e. dJ(ti ) = J(ti )− J(ti−1) = 1,
then, L(i) →∞.

C. Let the rejection region for a chosen test be Rn(αn). Then,

dĴ(ti ) = Ĵ(ti )− Ĵ(ti−1) = I (L(i) ∈ Rn(αn))
P−→ dJ(ti ) = 1,

for any (ti−1, ti ] with jump and

dĴ(ti ) = Ĵ(ti )− Ĵ(ti−1) = I (L(i) ∈ Rn(αn))
P−→ dJ(ti ) = 0,

for any (ti−1, ti ] without jump.
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Three Likelihoods
J(t) Doubly stochastic Poisson process with Λθ(t) = γ(t, X (t); θ)

A. True Likelihood of Continuous-time Jump Model

˜L(θ|FT ) =
∏̃

s∈[0,T ]
dΛθ(s)

dJ(s)
∏̃

s∈[0,T ]
(1− dΛθ(s))

1−dJ(s)

B. Full Likelihood of Pure Jump Models without Diffusion

Ln(θ|FT ) =
∏

1≤i≤n

dΛθ(ti )
dJ(ti )

∏

1≤i≤n

(1− dΛθ(ti ))
1−dJ(ti )

C. Partial Likelihood of Sub-Jump Models in Jump-Diffusion

PLn(θ|FT ) =
∏

1≤i≤n

d Λ̂θ(ti )
dĴ(ti )

∏

1≤i≤n

(1− d Λ̂θ(ti ))
1−dĴ(ti ),

where d Λ̂θ(ti ) = E [I{L(i)∈Rn(αn)}] and dĴ(ti ) = I{L(i)∈Rn(αn)}, with
L(i), Rn(αn), and αn as in Proposition 1.
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Asymptotic Equivalence of Partial to Full Likelihood
Proposition 2

Suppose that Assumptions C and D hold.

Let Ln(θ|FT ) and PLn(θ|FT ) be as in Definition 3.B and 3.C with
FT being the information filtration up to time T . The test used in
Stage I satisfies the properties of admissible tests.

Then, as ∆t → 0 and αn → 0,

PLn(θ|FT )

Ln(θ|FT )
P−→ 1,

when there are the finite number of jumps during the time horizon
[0,T ].
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Partial Likelihood is Sufficient!
Proposition 3

Suppose Assumptions C and D hold.

Let ˜L(θ|FT ) and PLn(θ|FT ) be as in Definition 3.A and 3.C with
FT being the information filtration up to time T . The test used in
Stage I satisfies the properties of admissible tests in Proposition 1.

Then, as ∆t → 0 and αn → 0,

PLn(θ|FT )

˜L(θ|FT )

P−→ 1,

when there are the finite number of jumps during the time horizon
[0,T ].
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Jump Predictor Test (JPT)
Theorem 1

Suppose that Assumptions C and D hold.

X (t) = [X1(t),X2(t), .., Xp(t)] : jump predictor that affect Λθ(t)

θ̂ = [θ̂1, ..., θ̂p] : MLE for θ based on PLn(θ|FT ) function as in

Definition 3.C. As ∆t → 0, θ̂
D−→ N (0, Var(θ)) under the null.

A. Xk(t) is a good jump predictor if Prob(z > θ̂k

SE(θ̂k )
) < β, with β

significance level and z is a standard normal random variable.

B. The prediction error for jump intensity, d Λ̂θ(t)− dΛθ(t)

d Λ̂θ(t)− dΛθ(t)
D−→ N (

0, OdΛ′θZ−1(θ)OdΛθ

)
,

where OdΛθ is the partial derivatives of dΛθ(t) with respect to θ.

Presented by Suzanne S. Lee



Simulation Analysis
d log S(t) = µ(t)dt + σ(t)dW (t) + Y (t)dJ(t)

σ(t) = σ = 30%, Jump size standard deviation σy (t)

X (t) Monthly information release

data sampled every 15 minute over 1 year horizon

dΛθ(t) = 1
1+exp(−θ0−θ1X (t))

with θ0 = −4 and θ1 = 6

Stage I by Definition 1.A Stage I by Definition 1.B

σy θ̂0 SE(θ̂0) zθ0
p-value θ̂0 SE(θ̂0) zθ0

p-value
3σ -4.04 0.04 -81.94 0.00 -4.01 0.04 -82.64 0.00
2σ -4.05 0.04 -81.77 0.00 -4.02 0.04 -82.45 0.00
1σ -4.07 0.05 -81.36 0.00 -4.04 0.04 -82.15 0.00

σy θ̂1 SE(θ̂1) zθ1
p-value θ̂1 SE(θ̂1) zθ1

p-value
3σ 5.69 0.82 6.91 2.35e-010 5.83 0.86 6.72 3.88e-010
2σ 5.67 0.81 6.93 2.25e-010 5.80 0.85 6.77 3.47e-010
1σ 5.58 0.79 7.04 1.82e-010 5.74 0.83 6.84 2.83e-010
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Empirical Analysis
Data for Stage I

Data Source: Trade and Quote(TAQ) database, transaction prices

Time span: 16 years from January 4, 1993 to December 31, 2008

U.S. large equities: DJIA component stocks

Most actively traded in NYSE (active trade filter: 50 trades /day)

Observation frequency: 15 minutes during NYSE trading hours

Total 4,017 trading days

5% significance level for Stage I

Outcome: jump arrival date and time (jump size and signs)

Presented by Suzanne S. Lee



Empirical Analysis
Data for Stage II

Stock jump predictors derived using about 40 different
real-time macroeconomic and firm-specific information
MARKET : detected jumps in S&P 500 index

FOMC : Fed’s announcement : every 6 weeks

NONFARM : report on # of jobs at business and government : monthly

JOBLESS : report on # of people filed for unemployment benefits : weekly

EARNINGS : earnings release and revisions : quarterly

ANALYST : all types of recommendation changes by all analysts

CLUSTER : own jumps in the past

DIVIDEND : ex-dividend date
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Empirical Analysis
Table 4: Data for Stage II

Total: number of observations (e.q.
∫ T

0
FOMC(s) = 134)

For firm specific variables, cross-sectional averages of total number
of observations and standard errors

Macroeconomic Total Times Data Source
MARKET 446 Irregular Trade and Quote (TAQ)
FOMC 134 14:15♦ Federal Reserve Board & Bloomberg
NONFARM 192 8:30 Bureau of Labor Statistics & Bloomberg
JOBLESS 834 8:30 Employment and Training Administration & Bloomberg

Firm-specific Total§ Times Data Source
EARNINGS 70 (10.14) Irregular First Call Historical Database
ANALYST 519 (129.85) Irregular First Call Historical Database
CLUSTER 348 (45.30) Irregular Trade and Quote (TAQ)
DIVIDEND 190 (23.79)§§ Irregular Center for Research in Security Prices (CRSP)
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Empirical Analysis
Other Data used for Stage II

Macroeconomic information: GDP advance, GDP preliminary,
GDP final, retail sales, industrial production, capacity utilization,
personal income, consumer credit (15:00), personal consumption
expenditures, new home sales, durable goods orders, construction
spending, factory orders, business inventory, government budget
deficit (14:00), trade balance, producer price index, consumer price
index, consumer confidence, housing starts, NAPM Index, leading
indicator

Firm-specific information: earnings estimates issued by brokers
contributing to First Call Historical Database, dividend
announcement, date of record, and payout dates and stock split
related dates from CRSP database

Some cases were significant but not broad enough
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Empirical Analysis
A Parsimonious jump intensity model for a company c

dΛθ(t) = 1
1+exp(−θ0−

P10
j=1 θjXj (t))

X1(t) = I (9 : 30 ≤ h(t) < 10 : 00)

X2(t) = I (10 : 00 ≤ h(t) < 11 : 00)

X3(t) = I (
R t
t−30min MARKET(s) > 0)

X4(t) = I (
R t
t−30min FOMC(s) > 0)

X5(t) = I (
R t
t−30min NONFARM(s) > 0)

X6(t) = I (
R t
t−30min JOBLESS(s) > 0)

X7(t) = I (
R t+1day
t EARNINGSc(s) > 0)

X8(t) = I (
R t
t−30min ANALYSTc (s) > 0)

X9(t) = I (
R t
t−3hour CLUSTERc(s) > 0)

X10(t) = I (DIVIDENDc (t)× (X1(t) + X2(t)) > 0)
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Jump Predictor Test Results
Table 5:dΛθ(t) = 1

1+exp(−θ0−
P10

j=1 θjXj (t))

Ticker MARKE FOMC NONFA JOBLE EARNI ANALY CLUST DIVID
AA 1.532*** 3.650*** 1.233*** 0.988*** 1.403*** 1.298*** 0.953*** -0.529
AXP 1.956*** 3.166*** 1.487*** 0.765*** 1.493*** 1.122*** 0.928*** 1.199***
BA 1.108*** 2.191*** 1.061*** 0.541*** 2.227*** 1.146*** 0.785*** 0.199
CAT 1.687*** 3.820*** 1.234*** 0.971*** 2.069*** 1.296*** 0.664*** 0.492*
CVX 1.876*** 2.984*** 0.516 1.063*** 1.019*** 1.002*** 1.032*** 2.042***
DD 1.249*** 3.925*** 1.624*** 1.049*** 2.364*** 1.190*** 0.352 1.210***
DIS 1.369*** 1.690*** 0.982*** 1.444 1.304*** 1.436*** 1.473*** 0.691
GE 0.819** 3.690*** 0.739** -0.494 1.654*** 0.849*** 1.086*** 1.200***
HD 1.420*** 4.012*** 1.372*** 0.944*** 2.321*** 0.849*** 0.288 1.094***
HPQ 1.125*** 3.382*** 0.823*** 0.769*** 1.429*** 1.197*** 0.641*** -0.381
IBM 0.794*** 3.314*** 1.139*** 0.588*** 1.785*** 1.460*** 0.069 0.218
JNJ 1.568*** 3.326*** 1.126*** 1.119*** 2.183*** 0.921*** 0.555** 1.008***
JPM 1.679*** 3.802*** 1.238*** 0.948*** 1.943*** 0.937*** 0.292 1.237***
KO 1.654*** 1.938*** 1.385*** 0.654*** 2.285*** 1.494*** 0.137 0.991**
MCD 1.520*** 2.634*** 1.006*** 0.549*** 1.554*** 1.021*** 1.142*** 0.851*
MMM 1.763*** 2.391*** 1.610*** 0.448** 2.399*** 1.464*** 0.176 0.681
MRK 1.817*** 2.426*** 1.278*** 1.148*** 1.824*** 0.955*** 0.587*** 0.902**
PFE 1.314*** 2.553*** 1.455*** 0.919*** 1.723*** 0.804*** 1.033*** 1.467***
PG 1.637*** 2.798*** 0.622 0.686*** 2.307*** 0.983*** 0.762*** 0.492
T 2.110*** 2.085*** 0.988*** 0.800*** 1.798*** 0.949*** 0.944*** 1.848***
UTX 1.753*** 2.735*** 1.442*** 0.814*** 2.225*** 1.340*** 0.487** 0.561
WMT 1.625*** 3.581*** 1.456*** 1.299*** 2.570*** 1.153*** -0.464 0.062
XOM 1.934*** 3.840*** 0.939*** 0.512** 1.937*** 0.653** 0.156 1.575***
Average 1.535 3.041 1.114 0.764 1.905 1.109 0.568 0.744
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What does it mean?
Interpretation of Table 5

Likely to have jump arrival within first 30 trading minutes after
Fed’s announcements, overall market jump, employment report and
unemployment claim

Macroeconomic 
information

30 minutesrelease time 

Stock
jump times!
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Distinguishing Systematic/Macro Jumps
Systematic Jump Extraction

Important implication of having jump predictor test: understanding
systematic jump dynamics

Extracting systematic jump component from estimated model

Λ̂systematic
θ (T ) =

∫ T

0

dΛθ(s)|θi=θ̂i for all i

−
∫ T

0

dΛθ(s)|θi=0 for i=3,4,5,6, and θi=θ̂i for i=1,2,7,8,9,10

where the instantaneous jump intensity is set up as

dΛθ(t) =
1

1 + exp(−θ0 −
∑10

j=1 θjXj(t))

.
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Distinguishing Systematic/Macro Jumps
Table 7 using DJIA stock transaction prices from 1993 to 2008

Sample Period 1993-2008 1993-2000 2001-2008
Ticker Systematic Idiosyncratic Systematic Idiosyncratic Systematic Idiosyncratic
AA 0.1719 0.8281 0.1659 0.8341 0.1777 0.8223
AXP 0.1788 0.8212 0.1648 0.8352 0.1920 0.8080
BA 0.0898 0.9102 0.0873 0.9127 0.0921 0.9079
CAT 0.1763 0.8237 0.1662 0.8338 0.1861 0.8139
CVX 0.1695 0.8305 0.1636 0.8364 0.1753 0.8247
DD 0.1738 0.8262 0.1641 0.8359 0.1832 0.8168
DIS 0.0794 0.9206 0.0704 0.9296 0.0885 0.9115
GE 0.0274 0.9726 0.0170 0.9830 0.0369 0.9631
HD 0.1609 0.8391 0.1542 0.8458 0.1673 0.8327
HPQ 0.1155 0.8845 0.1067 0.8933 0.1241 0.8759
IBM 0.0932 0.9068 0.0872 0.9128 0.0989 0.9011
JNJ 0.1693 0.8307 0.1589 0.8411 0.1794 0.8206
JPM 0.1729 0.8271 0.1561 0.8439 0.1889 0.8111
KO 0.1382 0.8618 0.1288 0.8712 0.1476 0.8524

MCD 0.1082 0.8918 0.1036 0.8964 0.1127 0.8873
MMM 0.1294 0.8706 0.1258 0.8742 0.1329 0.8671
MRK 0.1822 0.8178 0.1785 0.8215 0.1860 0.8140
PFE 0.1465 0.8535 0.1402 0.8598 0.1527 0.8473
PG 0.1206 0.8794 0.1188 0.8812 0.1224 0.8776
T 0.1700 0.8300 0.1604 0.8396 0.1789 0.8211

UTX 0.1539 0.8461 0.1470 0.8530 0.1606 0.8394
WMT 0.2028 0.7972 0.1882 0.8118 0.2167 0.7833
XOM 0.1424 0.8576 0.1290 0.8710 0.1551 0.8449

Average 0.1423 0.8577 0.1340 0.8660 0.1503 0.8497
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Summary

New jump predictor test and its inference theory

Unique empirical evidence uncovered by the powerful test

Macroeconomic predictors are found to be in general more
effective in equity markets.

Best equity jump predictors related to macroeconomic and
firm specific information

We need to take into account increased systematic jumps in
recent years.
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