On Estimation of Risk Premia in Linear Factor Models

Kewei Hou Robert Kimmel

Fisher College of Business The Ohio State University

> Fields Institute 24 April 2010

Linear Factor Models

- Linear factor models have a long tradition in financial economics
 - Well grounded in financial theory (mean-variance analysis)

$$\mathsf{E}\left[R_{i}\right] = R_{f} + \beta_{i,1}\gamma_{1} + \ldots + \beta_{i,N}\gamma_{N}$$

- One of the quantities of interest is the *risk premium* γ_j associated with a factor
- There is a bewildering variety of econometric techniques for the estimation of the risk premia and testing of the model
 - One- and two-pass regression methodologies (OLS, GLS, etc.)

$$\mathsf{E}\left[R_{i}\right]-R_{f}=\hat{\gamma}_{0}+\beta_{i,1}\hat{\gamma}_{1}+\ldots+\beta_{i,N}\hat{\gamma}_{N}+\hat{\eta}_{i}$$

GMM (which moments to match?)

Results

Estimated risk premia (standard errors in parentheses):

	Cross-s		
	Regre	Sample	
Factor	OLS GLS		Average
$\hat{\gamma}_{0}$	1.95%	1.45%	
	(0.32%)	(0.25%)	_
$\hat{\gamma}_{\it RMRF}$	-1.23%	-0.76%	0.63%
	(0.31%)	(0.24%)	(0.18%)
â	0.20%	0.32%	0.30%
$\hat{\gamma}$ SMB	(0.05%)	(0.02%)	(0.11%)
$\hat{\gamma}$ HML	0.44%	0.40%	0.44%
	(0.07%)	(0.02%)	(0.12%)

• Different methods roughly agree on $\hat{\gamma}_{SMB}$ and $\hat{\gamma}_{HML}$, but huge differences for $\hat{\gamma}_{RMRF}$

Unspanned Factors

- The Fama-French factors RMRF, SMB, and HML are all traded, but in typical procedures, are treated as untraded
- To measure the size of unspanned components, regress

$$F_j = \alpha_j + \beta_{j,1}R_1 + \ldots + \beta_{j,25}R_{25} + \eta_j$$

The R-squared statistics in these regressions are

Factor	RMRF	SMB	HML
R ² (constant)	0.9922	0.9764	0.9613
R^2 (no constant)	0.9923	0.9766	0.9616

- Also, the (in-sample) monthly Sharpe ratio available with the 25 assets is 0.3216; with the three factors added, the Sharpe ratio increases by less than 4% to 0.3338
- The unspanned components are small—do they matter?

Redo the Regressions

 Rerun the regressions, but include the factor portfolios as right-hand variables also

	Original		Augmented		
	Regression		Regression		Sample
Factor	OLS	GLS	OLS	GLS	Average
2	1.95%	1.45%	0.22%	0.01%	
$\hat{\gamma}_0$	(0.32%)	(0.25%)	(0.13%)	(0.01%)	_
â	-1.23%	-0.76%	0.44%	0.62%	0.63%
$\hat{\gamma}_{\it RMRF}$	(0.31%)	(0.24%)	(0.13%)	(0.01%)	(0.18%)
â,	0.20%	0.32%	0.16%	0.29%	0.30%
$\hat{\gamma}_{SMB}$	(0.05%)	(0.02%)	(0.07%)	(0.01%)	(0.11%)
â	0.44%	0.40%	0.40%	0.42%	0.44%
$\hat{\gamma}$ HML	(0.07%)	(0.02%)	(0.09%)	(0.01%)	(0.12%)

• Small effects on $\hat{\gamma}_{\it HML}$ and $\hat{\gamma}_{\it SMB}$, huge effects on $\hat{\gamma}_{\it RMRF}$ and $\hat{\gamma}_0$

Model Selection Example

 Same test assets, but consider two different two-factor models (standard errors in parentheses):

	First Model		Second Model	
Factor	OLS	GLS	OLS	GLS
$\hat{\gamma}_0$	0.00%	0.00%	0.00%	0.00%
	(0.00%)	(0.00%)	(0.00%)	(0.00%)
$\hat{\gamma}_{F_1}$	2.60%	2.60%	1.53%	1.53%
	(0.00%)	(0.00%)	(0.00%)	(0.00%)
$\hat{\gamma}_{F_2}$	0.93%	0.93%	0.00%	0.00%
	(0.00%)	(0.00%)	(0.00%)	(0.00%)

- Both models explain all expected returns perfectly
 - In first model, both factors have a significant risk premium
 - In the second model, only the first factor does

Drop the Second Factor

• What happens when the second factor is dropped?

	First Model		Second Model	
Factor	OLS	GLS	OLS	GLS
	0.00%	0.00%	- 0.18%	- 0.15%
$\hat{\gamma}_0$	(0.00%)	(0.00%)	(0.09%)	(0.20%)
â. –	2.60%	2.60%	1.23%	1.63%
$\hat{\gamma}_{F_1}$	(0.00%)	(0.00%)	(0.10%)	(0.28%)

- First model—second factor had a positive risk premium
 - But, dropping the second factor had no effect on the model's ability to fit returns
- Second model—second factor has zero risk premium
 - But the second factor helps to fit expected returns!

Risk Premia

 The risk premia in a correctly specified model are unique (subject to technical restrictions, no multicollinearity, etc.):

$$\gamma = \Sigma_{FF} \left(\Sigma_{FZ} \Sigma_{ZZ}^{-1} \Sigma_{ZF} \right)^{-1} \Sigma_{FZ} \Sigma_{ZZ}^{-1} \mu_Z$$

- Basic Results on Spanned Factors in Correct Models:
 - The risk premium of a spanned factor is the (excess) return of the factor mimicking portfolio
 - The risk premium does not depend on the other factors in the model
 - The risk premium does not depend on which test assets are used (as long as they span the factor)

Misattribution

Assume spanned factors. From the time-series regressions:

$$\bar{\mathbf{Z}} = \hat{\alpha} + \hat{\beta}^T \bar{\mathbf{F}}$$

• In a cross-sectional regression, the "X" variables are the β coefficients from the time-series regression

$$\begin{split} \hat{\gamma} &= \left(\hat{\beta}\Omega^{-1}\hat{\beta}^T\right)^{-1}\hat{\beta}\Omega^{-1}\bar{Z} \\ &= \underbrace{\bar{F}}_{\text{Risk premia of factor portfolios}} + \underbrace{\left(\hat{\beta}\Omega^{-1}\hat{\beta}^T\right)^{-1}\hat{\beta}\Omega^{-1}\hat{\alpha}}_{\text{Misattribution component}} \end{split}$$

- $\hat{\alpha}$ is due to sampling variation and/or misspecification
- The cross-sectional regression produces $\hat{\gamma}$ different from \bar{F} if the sampling variation and/or model misspecification is cross-sectionally correlated with the β coefficients
 - Overfitting by construction

Decomposition of Unspanned Factors

Expected returns predicted by a model are:

$$\mu_{Z} = \beta_{F}^{T} \gamma_{F}$$

 Write a set of unspanned factors in terms of spanned and unspanned components

$$F = P + \eta$$

 Consider a model with the spanned components in place of the unspanned factors

$$\mu_{Z} = \beta_{P}^{T} \gamma_{P}$$

Note that:

$$\Sigma_{\textit{FF}} = \Sigma_{\textit{PP}} + \Sigma_{\eta\eta} \qquad \Sigma_{\textit{ZF}} = \Sigma_{\textit{ZP}}$$

 How are the two models to make the same predictions? (Good idea?)

Extrapolation

 Set expected returns of the two models equal to each other:

$$\begin{split} \beta_F^T \gamma_F &= \beta_P^T \gamma_P \\ \Sigma_{ZF} \Sigma_{FF}^{-1} \gamma_F &= \Sigma_{ZP} \Sigma_{PP}^{-1} \gamma_P \\ \Sigma_{FF}^{-1} \gamma_F &= \Sigma_{PP}^{-1} \gamma_P \\ \gamma_F &= \Sigma_{FF} \Sigma_{PP}^{-1} \gamma_P \\ \gamma_F &= \gamma_P + \underbrace{\Sigma_{\eta\eta} \Sigma_{PP}^{-1}}_{\text{Extrapolation Matrix}} \gamma_P \end{split}$$

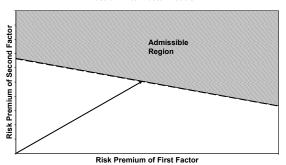
- The risk premia of unspanned factors are the risk premia of their factor mimicking portfolios, plus an extrapolation component that depends on the "noise"
 - The extrapolation component can be extreme

How Bad Can It Be?

- Consider a model with spanned factors
 - The risk premia are the excess returns of the factor mimicking portfolios
- Is it possible, by adding noise to the factors, to change the risk premia to any desired values?
 - No, there isn't that much flexibility
 - But there is a lot of flexibility
 - By adding noise, the risk premia can occupy any point within a half space
- If a model has unspanned factors and is slightly misspecified, what happens when the model is completed?
 - Suppose we find the missing factor and include it in the model
 - The missing factor is not unique—there are many choices that complete the model
 - Depending on the choice, the risk premia of the unspanned factors already in the model can take any value at all

Two Factor Example

Admissible Region of Risk Premia Vectors for Equivalence
Class of Linear Factor Models



Example—Fama-French Factors

 Regress each factor on the others (standard errors in parentheses):

Regression	on			
of	α	RMRF	SMB	HML
RMRF	0.3472		0.5202	0.2923
	(0.1629)		(0.0485)	(0.0449)
SMB	0.1545	0.2102		0.0277
	(0.1037)	(0.0196)		(0.0292)
HML	0.3336	0.1480	0.0347	
IIIVIL	(0.1157)	(0.0228)	(0.0366)	

 It is SMB, not RMRF, for which there is no evidence of an independent risk premium (at 95% confidence level)

Conclusions

- The risk premium of a spanned factor is just the excess return of the factor mimicking portfolio
 - A procedure that produces something different than this result is likely engaging in overfitting
- The risk premium of an unspanned factor is not a well-defined concept
 - Result of extrapolation of spanned components to unspanned components
 - Risk premium of spanned component is invariant to changes in other factors, test assets, etc.
 - Useful to report risk premium of spanned component, instead of/in addition to risk premium of factor itself
- Model selection
 - Significance of risk premium and importance of a factor are two different concepts
 - Check significance of α in regression of a factor on the other factors

