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Statement of the problem

Suppose the N-dimensional process X(t) satisfies the stochastic
differential equation

dX = pu(X;0) dt + o(X; 8) dW
where
@ p is the drift (N-dimensional column vector)
@ o is the diffusion (an N x M matrix with M < N)
@ 0O is a vector of model parameters

@ dW is the increment of the vector Wiener process (M-dimensional
column vector).

Estimate the parameters @ from observations Xg, - -- , X1 at discrete times
to, -+, tT.
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Introduction

Maximum likelihood

Common starting point for thinking about the estimation problem is the
maximum likelihood principal. Estimate @ by minimizing the negative
log-likelihood function for the observed sample, namely

.
—log £(0) = = log fo(X¢|X¢-1: 0),
t=1

with respect to the parameters 6. In this expression

o fy(X¢|X¢—1;8) is the true transitional density of the process;
@ it is assumed that all the states are observed; and

@ the sum is the contribution to the negative log-likelihood function
from all the transitions.

Hurn (QUT) QMLE April 2010 4 /30



Introduction

Problems and Challenges

Problems

e Transitional density fy(X¢|X:—1; @) and therefore the likelihood
function seldom known in closed-form.

o Generalization to estimation in a multivariate setting is difficult.

@ Multivariate models introduce the possibility of unobserved variables
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Introduction

Problems and Challenges

Problems

e Transitional density fy(X¢|X:—1; @) and therefore the likelihood
function seldom known in closed-form.

o Generalization to estimation in a multivariate setting is difficult.

@ Multivariate models introduce the possibility of unobserved variables

Challenges

@ To develop a simple yet comprehensive framework for consistent
estimation of the parameters of multivariate SDEs.

@ Handle unobserved state variables easily and effectively.
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Some philosophy ...
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Some philosophy ...

William Seach (c. 1285 — 1349)

Frustra fit per plura quod potest fieri per pauciora.
(It is futile to do with more things that which can be done with fewer).

Leonardo da Vinci (1452 — 1519)

Simplicity is the ultimate sophistication.

Karl Menger (1902 — 1985) on parsimonious mathematicians

It is vain to do with fewer what requires more.

Sherlock Holmes, in The Sign of Four

When you have eliminated the impossible, Watson, whatever remains,
however improbable, must be the truth.
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Simplest option is to use a Gaussian ...

Consider the transition from X; to X;11 for time step A

@ DML:
fi(Xer1|Xe; 0) = ¢(Xe41: 0),

where the mean and variance of ¢(-) are
Xe + u(Xe; 0)A, o?(Xe: 0)A .
@ HPE: model the transitional density as

dZ

f(Xer1]Xe; 0) = j¢>(zt+1; 0) > ni(Z:, 1) HJ.(L)
Jj=0

dX A

© QML: use ¢(Xty1;0) but focus on getting the correct mean and
variance of true transitional distribution.

Hurn (QUT) QMLE April 2010 7 /30



Transitional Density of CIR Model

Consider the transitional density of the CIR model

dX = 0.2(0.06 — X) dt +0.05v/XdW  with DT =1.
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Transitional Density of CIR Model

A Gaussian with ‘true’ conditional mean and variance ...
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Basic ldea

Replace the true transitional density fy(X¢|X¢—1;8) in the likelihood
function by the multivariate Gaussian density

1 1 1 _
f;l(Xt‘thl; 9) = W ’21|1/2 exp |:— E(Xt — /.L]_)Tzl 1(Xt — ILL]_):| y

where 1 and X1 are respectively the conditional mean and conditional
covariance.

Crucial question

Is it possible to obtain estimates of the ‘true’ conditional moments, ;o and
Yo, without needing to know fo(X:|X:—1;8). If so we can get consistent
estimates and standard errors of the parameters of the model.
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Infinitesimal operator

Given a suitably differentiable function of state, ¢, the infinitesimal
operator A, is defined by

dy , g(x0) d*y

AW) = n(xi0) 5 + EXDEL

has property that it expresses the time derivative of an expected value as
an expected value taken in state space

dE [¢]
dt:/SA(¢)f(X,t)dX

The infinitesimal operator may now be used to generate appropriate
equations for the evolution of the first and second moments of fy(x, t) by
taking ¥ = x and ¥ = x? respectively.
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Evolution of Moments

Evolution of Moments

One dimensional

[ x = [ n0otite ) .
S

dt Js

d /szfo(x, t)dx =2 /S xp(x)fo(x, t) dx + / g(x)fo(x, t) dx.

dt s
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Evolution of Moments

Evolution of Moments

One dimensional

xp(x)fo(x, t) dx + / g

(x)fo(x, t) dx.
s

d x fo(x, t) dx = / w(x)f(x, t) dx, ,
dt s

q Xzf(X t)dx—2/

dt s o\X, - S

Multi-dimensional

—/xfoxt =

d—/xx fo(x,t)dx =
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CIR Model

Consider the Cox, Ingersol and Ross square-root diffusion

dX = A3 — X) ds + oV X dW

Moment equations

a xfo(x,t)dx = )\ﬁ—)\/ x fo(x, t) dx,
dt o ;

i/ X2 fy(x,t)dx = (02—1—2)\6)/ x fo(x, t) dx
dt Jo 0

72)\/ x2 fy(x, t) dx.
0

Hurn (QUT) QMLE April 2010

13 /30



Evolution of Moments

CIR Model

The solution of the mean equation is

po(t) = B+ (Xe — B)e™,
which in turn allows the second equation to be integrated to obtain

02(1 — e_)‘s)

Yo(t) = 3\

[B(1— ) +2Xee ] .

Thus the conditional mean and conditional variance of the square-root
process evolving from observation X; at time t are known exactly without
requiring a detailed specification of the form of the true transitional
probability density function.
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CKLS Model

The CKLS model is
dX = aff — X) dt + o XP12dw .

Because the CKLS model has affine drift specification, the evolution of the
first moment is unaffected by the introduction of the levels effect. The
second moment equation becomes

d o

— Xhy(x, t)dx = —2a/ x2fo(x,t)dx+2a9/ xfo(x, t) dx
dt Jo 0 0

—|—02/ xPhy(x, t) dx.
0

The difficulty now stems from the last integral in this equation. Thus in
the case of non-affine models, certain moments may be determined in
closed form while others must be computed numerically.
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Approximating integrals

The presence of the integral

02/ xPfy(x, t) dx
0

in the variance equation means that this equation no longer has a
closed-form solution and the form of the approximation f;(x, t) will matter
to the determination of the moments.

There are now two sources of error:
@ error due to misspecification of the transitional density;
@ error due to numerical approximation of this integral.

It turns out that this integral may approximated with negligible error for all
practical purposes so that the only the first source of error remains.
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Evolution of Moments

Optimal quadratures

When fy(x, t) is replaced by the Gaussian density function the resulting
integral becomes

1 > (x — p)?
g _
271'0/0 X exp{ 52 ]dx.

Following the usual procedure of changing the variable of integration from
X to z where x = u + oz, then

1 > 2
- B ,—z°/2

+o0z)’ e dz.

V2T /_M/U('u o)

In the context of integrals with integrands of generic form e_z2/2f(z), the
Gauss-Hermite quadrature can be used and this quadrature has maximum
precision.
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General Comments on Evolution of Moments

A few concluding comments may be made at this point regarding the
computation of the moments of fy(x, t).

o If the drift and the diffusion functions are affine functions of state
then the moments of the true transitional density may be computed
exactly without the need to know fy(x, t).

@ If the drift and diffusion functions are non-affine functions of state,
then the moments cannot be computed exactly.

@ In many cases of interest, the drift is affine but the diffusion is not. In
these instances the problematic integrals in the solution of the second
moment equation can be approximated to high-accuracy, leaving only
the misspecification of the shape of fy(x, t) as the source of error.

@ The leading driver of the error in the approximation arises from the
first unsatisfied moment condition.
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Problem of Unobserved State Variables

Three ways to deal with this problem in the contest of MLE
@ Find a proxy for the unobserved state variable.
@ Enlarge the dimension of the observations.
© Integrate the unobservables out of the likelihood function.

Note
@ For the stochastic volatility model, methods (1) and (2) above are
associated with the HPE estimation method. QML is equally
applicable in these situations.
@ Based on QML as described here, integrating out the unobservables is
straightforward and it is this process that will now be described.
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Unobserved State Variables

Bivariate Normal

The procedure is best demonstrated with reference to the bivariate normal
probability density function:

=] L )
y Ky POxCy gy
then the transitional probability density function is given by

1 1 z
fi X, = ex -,
1065) (2m) oxoy /(1 — p?) P { 2(1 - Pz)}
where Y o B e
y o o)™ 20— )y —py) (v = 1y)
o2 oxOy o2
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Now suppose y is unobserved ...

If y is an unobserved variable then the marginal probability density for x
must be used in the construction of the likelihood function. This marginal
density is obtained by integrating y out of the joint density function.

For the bivariate normal the marginal density for x obtained in this way is

m 1 1 (X_IUJX)2
fl )(X):iﬂ;eXP T o2

that is, a Gaussian distribution with mean u, and variance o2

<.
This result generalizes to the multivariate Gaussian probability density
function with K observable variables. The added complexity is that the
relevant covariance matrix of the Gaussian marginal distribution is now the
K x K principal minor of the original covariance matrix .
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Conditional density
The conditional density of y given that x = xg is

. f(xo,y

In the case of the bivariate Gaussian density,

FOy, | x = x0) =

1 1 {_(y py — 22 (XO_,UX))Z]
Vro i 202(1— 1) '

Consequently f( (y | x = xp) is the Gaussian probability density function
with respective mean and variance

po
py + (0 = ) and oy(1 - p?).

X
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CIR and CKLS Models

The performance of the QML methodology for estimating the parameters
of univariate diffusions is now examined by way of a simple simulation
experiment. The CIR model

dX = X3 — X)ds + oV X dW
and the CKLS model
dX = XB—X)ds+ o X2 dW ,

are used to generate 2000 samples of size 500 and 2000 respectively with
true parameters A = 0.20, 5 = 0.08, ¢ = 0.10 and, where necessary,

~v = 0.75. The synthetic samples are generated with At = 1/12 (so that
the data may be interpreted as monthly data) using Milstein’'s scheme with
1000 steps between observations to ensure accurate realizations of the
process.
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Bias and RMSE - Univariate Models

T = 500 T = 2000
At=1/12 | A(0.20) (3(0.08)  (0.10) ¥(0.75) | «(0.20) ~(0.08) ‘o (0.10)  ~(0.75)
CIR 0.1016.  0.0014  0.0001 0.0229  0.0005  0.0001
(0:1318)  (0:0222)  (0.0032) (0:0552)  (0.0113)  (0:0016)
CIRQML | 0.1006.  0.0018  0.0001 0.0230.  0.0005  0.0001
(0:1322)  (0:0226)  (0.0032) (0:0562)  (0.0113)  (0:0016)
CKLS (05) | 0.0995  0.0010  0.0058  —0.0001 0.0231 0.0002  0.0004  —0.0026
(0'1337)  (0.0368) (0.0368)  (0.1316) | (0.0560) (0.0125) (0.0146)  (0.0560)
CKLS (O7) | 0.0995  0.0009  0.0058  —0.0001 0.0231 0.0002  0.0004  —0.0026
(0:1337)  (0.0125) (0.0368)  (0.1316) | (0.0569) (0.0061)  (0.0146)  (0.0560)

Bias and RMSE (in parentheses) of parameter estimates of the CIR model obtained by
exact maximum likelihood and quasi-maximum likelihood. Also shown are the bias and
RMSE of the CKLS model estimated by quasi-maximum likelihood and using
Gauss-Hermite quadratures of order 5 and 7 respectively. Estimates are based on 2000

simulations for samples of size 500 and 2000 monthly observations.
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Bivariate Feller Model

Let X = (X1(t), X2(t)) be a bivariate stochastic processes with sample
space S and satisfying the stochastic differential equations (SDEs)

dX1 H1 ] { o11 012 ] [ dW ]
= dt + 1
{ dXo ] [ H2 021 022 dW, ()
where dW; and dW, are independent increments in the Wiener processes
Wiy and Wh, the vector i and matrix o are respectively

_ | o1t kuXi + kiaXo o — vXi 0
a + ko1 X1 + koo Xo |’ 0 VX |

The parameters ki1, k12, ko1, koo , a1 and ap are to be estimated. Values
used in the simulation are (—0.7,0.3,0.4, —0.8,0.56, 0.64).

(2)
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Feller Model Results - Bias and MSE

Parm True 500 Transitions 2000 Transitions
Value Unconditioned Conditioned Unconditioned Conditioned
ki1 (—0.70) —0.1103 —0.3713 —0.0249 —0.1326
(0 0627) (0.6796) (0.0113) ( 1233)
k12 ( 0.30) 168 0.2874 0.005
(0 0366) (0.9012) (0.0075) (0 4336)
ko1 ( 0.40) 0.0235 0.3047 0.0062 0.3942
(0.0475) (1.6029) (0.0094) (1.5380)
koo (—0.80) —0.1175 —0.7324 —0.0275 —0.6366
(0.0699) (2.7428) (0.0124) (2 5190)
ag ( 0.56) 0.1010 0.1327 0.0214 0.0335
(0.0977) (0.1804) (0.0146) (0 0717)
ap ( 0.64) 0.1181 0.3403 0.0227 0.2715
(0.1075) (1.2712) (0.0171) (1.0438)
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Heston model

In the Heston model the logarithm of the asset price s and the volatility h
follow the risk-neutral dynamics

) o [ )

dh 0 ovhe | | dWs

where « (fixed at 0.03) is the difference between the instantaneous
risk-free rate of interest and the dividend and 8 = A(1 — p?) — % . This
specification embodies the assumption that the market price of risk

specification in the model is A = [A/(1 — p?)h, 0]'.

The parameters to be estimated are x, v, o, p and A.
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Results - Point Estimates and RMSEs

Parm True 500 Transitions 2000 Transitions
Value Unconditioned Conditioned Unconditioned Conditioned
K ( 3.00) 3.8710 4.1870 3.1860 3.0766
(0 0474) (0 2080) (0.0190) (0.0531)
¥ ( 0.10) 0.0999 0.0991
(0 0006) (O 000 ) (O 0003) (0 0004)
o ( 0.25)
(0 0002) (0 0190) (0 0001) (0 0076)
P (—0.80) —0.8010 —0.7418 —0.8000 —0.7529
(0.0004) (0.0094) (0.0002) (0.0067)
A ( 4.00) 5.3270 5.6880 4.3105 4.1878
(0.1680) (0.2260) (0.0939) (0.0891)
Hurn (QUT) QMLE April 2010
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Comments on Heston Model Results

@ The results for the estimation of the unconditional model are almost
identical to those reported by Ait-Sahalia and Kimmel using their
closed-form likelihood approximation.

@ The conditioned model uses precisely half of the information of the
unconditioned model and a deterioration in performance is therefore
inevitable. The point estimates of the model, however, hold up
remarkably well.

@ The loss of information is evident in the size of the standard errors
which are significantly larger than the unconditional case (apart from
the parameter 7).
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Concluding Comments

Concluding Comments

This is work in progress but the results are promising.

@ QML yields consistent estimates of the parameters of models where
the drift and diffusion are affine functions of state.

@ Consistency not able to be proved for non-affine models but method
works very well in practice. Good performance in the non-affine
models we have considered thus far stems from the fact that the
problematic integrals are well approximated by known quadratures.

@ Method works well for the bivariate models considered thus far and is
capable of handling unobservable state variables easily.
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