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ECONOMETRIC AGENTS AS ECONOMETRICIANS

Explore the role of learning dynamics when

◮ learning is challenging

◮ economic agents are skeptical about model - expressed as
ambiguity aversion or a concern about robustness

We aim to explore when learning on the part of economic agentsis
challenging even in the presence of substantial data histories and how
these challenges contribute to dynamic evolution of economic
variables. Hansen (Ely, AER, 2007), Sargent (Presidentialaddress,
AER, 2008).
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PREVIOUS WORK
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Previous applications: Limited to use of quasi-analytical filtering
methods such as Kalman filtering or Wonham filtering.

This paper: We explore ways to improve particle filtering methods to
use in models that entail agent-based learning.

Recall: Particle filtering methods are numerical, monte carlo-based
techniques used to approximate Bayesian solutions to filtering and
estimation problems given signal histories.
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WHY PARTICLE FILTERING?

Quasi-analytical recursive algorithms such as Kalman filtering (linear
state and measurement equations) and Wonham filtering (discrete
states) have limited applicability.

◮ Often underlying parameters are unknown.

◮ Alternative to discrete-state approximation.

Particle filtering methods become attractive alternativesto
applications of quasi-analytical filtering methods.
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WHAT IMPROVEMENTS?

◮ Use “sufficient statistics” when learning includes invariant
parameters.

◮ “Sufficient statistics” have recursive representations.
◮ “Sufficient statistics” can depend on hidden states and evena

subset of parameters.

◮ The decision problem directs the attention of the numerical
approximation.

◮ Investors care about some “tails” of distributions becauseof risk
aversion.

◮ Investors care where misspecification has the most pronounced
consequences in terms of utility or continuation values when they
are concerned about robustness.
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BASIC SETUP

We letXt denote the underlying Markov state at datet andYt a vector
of current period signals.

Xt =

[

Dt

Zt

]

whereDt is observable to the decision maker andZt is not.

◮ Hidden state evolution:

Γ(dz∗|y∗, x, θ) = γ(z∗|y∗, x, θ)λ(dz∗)

which conditions on the current period signal.
◮ Invariant parameter:θ is an unknown parameter with “prior”
π(dθ).

◮ Signal evolution:

ν(y∗|x, θ)η(dy∗).
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RECURSIVE FORM OFBAYES RULE

◮ Hidden state evolution:

Γ(dz∗|y∗, x, θ) = γ(z∗|y∗, x, θ)λ(dz∗)

◮ Signal evolution:

ν(y∗|x, θ)η(dy∗).

Compute thefiltering distributionof interest with next period density
(relative toλ(dx)π(dθ)):

qt+1(z
∗, θ) ∝

∫

γ(z∗|Yt+1, θ)ν(Yt+1|Dt, z, θ)qt(z, θ)λ(dz)

Then the next-period signal density given the signal history is:

ℓt(y
∗) =

∫ ∫

ν(y∗|Dt, z, θ)qt(z, θ)λ(dz)π(dθ).

Replace hidden state/parameter(Zt, θ) by densityqt.
Distribution associated withqt+1 is the target of the numerical
method.
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SUFFICIENT STATISTICSI

Consider a state vectorSt that is constructed recursively given an
initial conditionS0 via:

St+1 = Φ(θ,Yt+1,Zt+1,Xt,St).

This construction will be valuable in simulation provided that:

ASSUMPTION

The distribution ofθ conditioned on St, Zt, and the signal historyYt

satisfies

ρt(dθ|St,Zt,Yt) = ψ(dθ|St).

for some prespecifiedψ.
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SUFFICIENT STATISTICSII
Special case i:

St = θ

Special case ii: There exists a vectorSt such that

ρt(dθ|St,Zt,Yt) = ψ(dθ|St)

where the statisticShas a recursive representation:

St+1 = Φ(Yt+1,Zt+1,Xt,St)

for t = 0,1, ... for some choice ofS0.

Sufficient statistics depend on hidden states. Storvik, Fearnhead, and
Johannes-Polson. Kalman filtering with unknown parameters.

Intermediate case: “Sufficient statistics” for a subset of parameter
values given the remaining subset. Dynamic factor models.
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ALTERNATIVE MARKOV LAW

Under a new Markov law, the state vector evolves as follows:

θ̃t+1 ∼ ψ(·|S̃t)

Ỹt+1 ∼ ν
(

·|X̃t, θ̃t+1

)

Z̃t+1 ∼ Γ(·|Ỹt+1, X̃t, θ̃t+1)

S̃t+1 = Φ
(

θ̃t+1, Ỹt+1, Z̃t+1, X̃t, S̃t

)

.

Parameter vectorθ evolves over time as a device to replenish particles.
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ALGORITHM

At datet there areN particles where a particle is specified as
(Z̃[i]

t , S̃
[i]
t ).

1. Draw θ̃[i]
t+1 from ψ

(

θ|S̃[i]
t

)

2. Construct weights

w[i]
t+1 =

ν
(

Yt+1|Dt, Z̃
[i]
t , θ̃

[i]
t+1

)

∑N
i ν

(

Yt+1|Dt, Z̃
[i]
t , θ̃

[i]
t+1

) ,

and draw(Z̃[i]
t , S̃

[i]
t , θ̃

[i]
t+1) from a multinomial distribution with

probabilityw[i]
t+1.

3. Draw Z̃[i]
t+1 using densityγ

(

z∗|Yt+1,Dt,Z
[i]
t , θ̃

[i]
t+1

)

.

4. Construct̃St+1 = Φ
(

S̃[i]
t+1,Yt+1,Z

[i]
t+1,Dt, X̃

[i]
t , θ̃

[i]
t+1

)

.

5. Replace particle(Z̃[i]
t , S̃

[i]
t ) with (Z̃[i]

t+1, S̃
[i]
t+1).
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PARTIAL SMOOTHING

When feasible, it is advantageous to at least partially smooth our
estimates of the states prior to simulation.
Construct a new state vector

X̂t
.
=

[

Yt

Xt−1

]

.

The unobservable component for the new state vector isZt−1 whereas
it previously wasZt. The signal vector remains the same.

Build the distribution of the signal conditioned on the newly
constructed state:

η̂(y∗|X̂t, θ) =

∫

η(y∗|Dt, z, θ)γ(z|Yt,Xt−1, θ)λ(dz).

The new state evolution conditioned on the signalYt+1 is

γ̂(z|Yt+1, X̂t, θ) =
η(Yt+1|Dt, z, θ)γ(z|Yt,Xt−1, θ)

∫

η(Yt+1|Dt, z̃, θ)γ(̃z|Yt,Xt−1, θ)λ(d̃z)
.

13 / 24



SIMPLE VERSION OFBROCK-M IRMAN

STOCHASTIC GROWTH MODEL

Restricted Kalman filtering model obtained as a solution to a
stochastic growth model with logarithmic preferences. Key
parameters: 0< α < 1 governs Cobb-Douglas production function,
0< β < 1 is the subjective discount factor and 0< ρ < 1 is the AR
parameter for the technology shock.
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STOCHASTIC GROWTH MODEL CONTINUED

Learning dynamics for the parameters
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FIGURE: Posterior distribution dynamics, median, .05 and .95 quantiles.
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LEARNING, ROBUSTNESS AND VOLATILITY

The consumption growth rate: logCt+1 − logCt is one the signals,
and the composite system of signals and states evolve as:

Yt+1 = F + UXt,1 + Zt,2GWt+1

Xt+1,1 = A1Xt,1 + Zt,2B1Wt+1

Zt+1,2 = (1− A2)µ2 + A2Zt,2 + B2Wt+1

where theWt+1 is a composite shock vector for the entire system and
is distributed as a multivariate standard normal and

Xt,1
.
=

[

Dt

Zt,1

]

.

Zt,1 hidden growth state andZt,2 is a hidden volatility state where
|Zt,2| is a measure of volatility.
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ROBUSTNESS AND ESTIMATION

Observations:

◮ Models with long-run macroeconomic risk models like those of
Bansal and Yaron (JF) introduce hard to detect growth
components in the macroeconomic dynamics.Question: Where
does the investor confidence come from?

◮ We study environments in which investors struggle in making
inferences about the underlying growth the in economy. Apply
robust decision theory in which investors treat models as
approximations and engage in robust estimation.

◮ Made tractable through the application of exponential tilting of
distributions that are important to the decision-maker.

◮ Previous research used the Wonham filter (Hansen, AER) or the
Kalman filter augmented to accommodate discrete model
selection (Hansen-Sargent, Fragile beliefs). No stochastic
volatility as in the model that I just presented.
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HOW DO WE IMPLEMENT ROBUSTNESS?

Use a recursive formulation given in Hansen-Sargent (JET).

◮ Compute continuation values conditioned on hidden states and
parameters. The continuation values are quadratic in our
example economy and computed by solving a Riccati equation.

◮ Use continuation values to determine directions of
misspecification that cause the most concern for the investors.

◮ Implement this through the use of “relative entropy penalization”
that results in exponential tilting of distributions basedon the
continuation values.

◮ The distorted distributions have implications for equilibrium
asset prices.
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MODIFY FILTERING METHODS BASED ON

CONTINUATION VALUES

◮ Approximate the exponentially tilted distributions.

◮ Similar to:

◮ ‘Risk sensitive particle filtering’ of Thurn-Langford-Verma. Use
the risk function from statistical decision theory to redirect the
particle approximation.

◮ Donsker-Veradhan theory of Large Deviations applied to Markov
processes. Characterize large deviation behavior characterized via
a distorted distribution that emerges from an optimization
problem.

◮ Rare event simulation methods discussed by Bucklew.

Use investors decision problem to determine where to focus the
numerical accuracy of the particle filter.
Distort state and signal evolution and hence the filtered distributions
using methods in Hansen and Scheinkman- Econometrica.
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HIDDEN STATE DENSITIES FOR MACRO GROWTH

PROCESS
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FIGURE: Original and (modestly) distorted densities
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HIDDEN STATE DENSITIES FOR MACRO GROWTH

PROCESS
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FIGURE: Original and (substantially) distorted densities
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A CONVENIENT DISTORTION

Follow Hansen-Schienkman (Econometrica) by using a positive
eigenfunction to build a change in probability measure thatpreserves
the Markov structure.
Solve

exp(δ)ĥ(x, θ) = E

[

ĥ(Xt+1, θ) exp

[

−
1
ξ
(logCt+1 − logCt)

]

|Xt = x, θ

]

whereυ̂(x, θ) + logc is the value function and

ĥ(x, θ) = exp

[

−
1
ξ
υ̂(x, θ)

]

.

The positive random variable

exp(−δ)
ĥ(Xt+1, θ)

ĥ(Xt, θ)
exp

[

−
1
ξ
(logCt+1 − logCt)

]

.

is the Randon-Nikodym derivative for the changing the transition law
for the Markov process.
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FILTER DISTORTION

PROPOSITION

If the joint distorted prior for Z0, θ is proportional to
ĥ(D0, z, θ)q0(z, θ)λ(dz)π(dθ), then

exp(δt)q̂t(z, θ) ∝ ĥ(Dt, z, θ)qt(z, θ)

for all t ≥ 0 whereδ depends onθ and the constant of proportionality
depends only on the signal history.

q̂t andqt are central ingredients in characterizing equilibrium
outcomes.
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CONCLUSIONS

We explore modifications of particle filtering that are needed to study
learning dynamics in economic models outside the realm of
quasi-analytical filtering methods.

◮ Use “sufficient statistics” can depend on unknown states and
parameters.

◮ Use the decision problem of investors to direct the numerical
approximation.
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