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ECONOMETRIC AGENTS AS ECONOMETRICIANS

Explore the role of learning dynamics when

» learning is challenging

» economic agents are skeptical about model - expressed as
ambiguity aversion or a concern about robustness

We aim to explore when learning on the part of economic agents
challenging even in the presence of substantial data f@stand how
these challenges contribute to dynamic evolution of ecaénom
variables. Hansen (Ely, AER, 2007), Sargent (Presideatidtess,
AER, 2008).
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Previous applicationd.imited to use of quasi-analytical filtering
methods such as Kalman filtering or Wonham filtering.

This paper We explore ways to improve particle filtering methods to
use in models that entail agent-based learning.

Recall: Particle filtering methods are numerical, montéoehased
techniques used to approximate Bayesian solutions tarfidfemd
estimation problems given signal histories.
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WHY PARTICLE FILTERING?

Quasi-analytical recursive algorithms such as Kalmarrifiige(linear
state and measurement equations) and Wonham filteringdtisc
states) have limited applicability.

» Often underlying parameters are unknown.

» Alternative to discrete-state approximation.

Patrticle filtering methods become attractive alternattees
applications of quasi-analytical filtering methods.

5/24



WHAT IMPROVEMENTS?

» Use “sufficient statistics” when learning includes invatia
parameters.
» “Sufficient statistics” have recursive representations.

» “Sufficient statistics” can depend on hidden states and aven
subset of parameters.

» The decision problem directs the attention of the numerical
approximation.

» Investors care about some “tails” of distributions becafgesk
aversion.

» Investors care where misspecification has the most proralinc
consequences in terms of utility or continuation valuesmihey
are concerned about robustness.
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BASIC SETUP

We letX; denote the underlying Markov state at datand; a vector
of current period signals.

whereD; is observable to the decision maker ahds not.

» Hidden state evolution:
D(dZ[y*,x,0) = 4(Z'ly", % 0)A(dZ")

which conditions on the current period signal.

» Invariant parameter is an unknown parameter with “prior”
m(dh).
» Signal evolution:

v(y*[x 8)n(dy").
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RECURSIVE FORM OFBAYES RULE
» Hidden state evolution:

T(dZ]y",x,6) = 7(Zy",x, 0)A(dZ)
» Signal evolution:

v(y*[x 0)n(dy").

Compute thdiltering distributionof interest with next period density
(relative toA(dx)m(d@)):

Gea(Z,6) / (2 e 1, 0)0(Yes1|De, 2, 0) (2, 0)A(d2)

Then the next-period signal density given the signal hysigir

wy) = [ [y 1Duz 0w or @),

Replace hidden state/parametgy, ) by densityg;.
Distribution associated witty . ; is the target of the numerical
method.
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SUFFICIENT STATISTICSI

Consider a state vect& that is constructed recursively given an
initial condition § via:

S+1 =200, Yi+1, Zt+1, %, S).

This construction will be valuable in simulation providéddht

ASSUMPTION
The distribution of) conditioned on § Z;, and the signal history
satisfies

for some prespecified.
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SUFFICIENT STATISTICSII
Special case i

S=96

Special caseiiiThere exists a vectd such that
p(d0]S, Zt, Jh) = (d0|S)

where the statisti€ has a recursive representation:
Si1=2Mu1,Zt41, %, §)

fort =0, 1, ... for some choice 0%&.

Sufficient statistics depend on hidden states. Storvikrifed, and
Johannes-Polson. Kalman filtering with unknown parameters

Intermediate caséSufficient statistics” for a subset of parameter
values given the remaining subset. Dynamic factor models.
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ALTERNATIVE MARKOV LAW

Under a new Markov law, the state vector evolves as follows:
b1~ ¥(-|S)
?t+1 ~Vv <"5(ta 6~7t+1)
Zii1 ~ D(- Y1, X, Oy 1)
Si1=® (ét+17\?t+1,2t+17>~(t, ét) .

Parameter vectdt evolves over time as a device to replenish particles.
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ALGORITHM

At datet there areN particles where a particle is specified as

i’§i])'

2
1.
2.

Draw !, from ¢ <9|§”)
Construct weights
Wm B v (Yt+l| Dt’ ztma ét[lll)
t+1 =
SN v (VeralDe 27 611)

and drawmz!", §" 4"

t+1
probability w L}Ll

) from a multinomial distribution with

. DraWZtJrl using densityy (zk\YtH, Ds, ZF,HEL)

. ConstructS;; = @ < ll,YtH,Zt['J]rl, Dt,XtH,HHl)
. Replace particléz!", §") with (Z1 ., §",).

+10 41
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PARTIAL SMOOTHING

When feasible, it is advantageous to at least partially $moor
estimates of the states prior to simulation.
Construct a new state vector

o . [ Y
ol

The unobservable component for the new state vectr iswhereas
it previously wa<Z;. The signal vector remains the same.

Build the distribution of the signal conditioned on the ngwl
constructed state:

i 1%.0) = [ 01002 011 (@Y X1, 00M(d)
The new state evolution conditioned on the sigrial is

. o 1(Yi+1|Dt, Z,0)y (21, Xi—1,0)
Y1 % 0) = .
W 00 = R I 2 077 (2 X1, O)M ()
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SIMPLE VERSION OFBROCK-MIRMAN

STOCHASTIC GROWTH MODEL

Restricted Kalman filtering model obtained as a solution to a
stochastic growth model with logarithmic preferences. Key
parameters: & « < 1 governs Cobb-Douglas production function,
0 < B < 1is the subjective discount factor andQp < 1 is the AR
parameter for the technology shock.
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STOCHASTIC GROWTH MODEL CONTINUED
Learning dynamics for the parameters
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LEARNING, ROBUSTNESS AND VOLATILITY

The consumption growth rate: 1&g, 1 — log C; is one the signals,
and the composite system of signals and states evolve as:

Y1 = F + UXi1 + Z2GWa
Xir1,1 = AaXer + Zi2BiWea
Zip12 = (1= Ag)pa + AoZi 2 + BoWeyg

where théW,, 1 is a composite shock vector for the entire system and
is distributed as a multivariate standard normal and

- Dy
= [Zt,l} '

Z; 1 hidden growth state ardj » is a hidden volatility state where
|Z: 2| is a measure of volatility.
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ROBUSTNESS AND ESTIMATION
Observations:

» Models with long-run macroeconomic risk models like thoke o
Bansal and Yaron (JF) introduce hard to detect growth
components in the macroeconomic dynamigsestion: Where
does the investor confidence come from?

» We study environments in which investors struggle in making
inferences about the underlying growth the in economy. }ppl
robust decision theory in which investors treat models as
approximations and engage in robust estimation.

» Made tractable through the application of exponentidhtjlof
distributions that are important to the decision-maker.

» Previous research used the Wonham filter (Hansen, AER) or the
Kalman filter augmented to accommodate discrete model
selection (Hansen-Sargent, Fragile beliefs). No sto@hast
volatility as in the model that | just presented.
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How DO WE IMPLEMENT ROBUSTNESS

Use a recursive formulation given in Hansen-Sargent (JET).

» Compute continuation values conditioned on hidden staids a
parameters. The continuation values are quadratic in our
example economy and computed by solving a Riccati equation.

» Use continuation values to determine directions of
misspecification that cause the most concern for the inkesto

» Implement this through the use of “relative entropy persdicn”
that results in exponential tilting of distributions basetdthe
continuation values.

» The distorted distributions have implications for equiliton
asset prices.
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MODIFY FILTERING METHODS BASED ON
CONTINUATION VALUES

» Approximate the exponentially tilted distributions.
» Similar to:

» ‘Risk sensitive particle filtering’ of Thurn-Langford-Viera. Use
the risk function from statistical decision theory to redirthe
particle approximation.

» Donsker-Veradhan theory of Large Deviations applied tokdar
processes. Characterize large deviation behavior clesized via
a distorted distribution that emerges from an optimization
problem.

» Rare event simulation methods discussed by Bucklew.

Use investors decision problem to determine where to fdoels t
numerical accuracy of the patrticle filter.

Distort state and signal evolution and hence the filteretlibiigions
using methods in Hansen and Scheinkman- Econometrica.
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HIDDEN STATE DENSITIES FOR MACRO GROWTH
PROCESS

FIGURE: Original and (modestly) distorted densities
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HIDDEN STATE DENSITIES FOR MACRO GROWTH
PROCESS

FIGURE: Original and (substantially) distorted densities
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A CONVENIENT DISTORTION

Follow Hansen-Schienkman (Econometrica) by using a pesiti
eigenfunction to build a change in probability measure gpinaserves
the Markov structure.

Solve

. . 1
exp(3)h(.) = E [ 0%11,0) exp | ~F(10g G —log )| e = x.]
whered(x, 0) + logc is the value function and
h(x,0) = exp [—%@(x, 6)} .

The positive random variable

( t+1, ) |: 1
ex —————exp|—=(lo —lo .
(=) A%, 0) p 5( 9Cii1 —logCy)
is the Randon-Nikodym derivative for the changing the titéors law
for the Markov process.
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FILTER DISTORTION

PROPOSITION
If the joint distorted prior for 4, 6 is proportional to

h(Do, z,0)qo(z, 0)\(d2)7(dh), then

exp(dt)(z 6) oc h(Dr, z 0)ck (2 )

for allt > 0 wheredé depends o and the constant of proportionality
depends only on the signal history.

G: andq; are central ingredients in characterizing equilibrium
outcomes.
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CONCLUSIONS

We explore modifications of particle filtering that are netiestudy
learning dynamics in economic models outside the realm of
guasi-analytical filtering methods.

» Use “sufficient statistics” can depend on unknown states and
parameters.

» Use the decision problem of investors to direct the numkrica
approximation.
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