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L Motivations

Motivations

m Account for non-linear features observed in short-term interest
rates and other financial assets

m At the same obtain exact discretization and closed form
likelihood functions

m We seek flexible functional form over time by allowing the
transformation to be time varying

m Obtain multivariate models via copulas to account for possible
dependence across financial assets



Modelling Multivariate Interest Rates
L_Succint Literature Review

m Parametric, assume the drift and the diffusion functions
known: Merton (1973), Brennan and Schwartz (1979),
Vasicek (1977), Cox (1975), Dothan (1978), Cox, Ingersoll,
and Ross (1980, 1985), Courtadon (1982), Constantinides and
Ingersoll (1984), Constantinides (1992), Duffie and Kan
(1996) and Ait-Sahalia (1996b). Majority of SDEs do not
lead to closed form expressions except: Black and Scholes
(1973), Vasicek (1977), and Cox, Ingersoll, and Ross (1985).
Considerable energy has been employed in developing
computationally and statistically efficient approximation
schemes. Examples include Lo (1988), Pedersen (1995),
Brandt and Santa-Clara (2002), Shoji and Ozaki (1998),
Kessler (1997), Elerian et al (2001). Durham and Gallant
(2002) provides a survey on existing numerical techniques.
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L_Succint Literature Review

m Non-parametric and semi-parametric, do not constrain the
drifts and diffusion to be within a parametric class:Ait-Sahalia
(1996a,b) and Stanton (1997). Ait-Sahalia (1999, 2002,
2008) developed methods for generating closed form
approximation of likelihood functions for univariate and
multivariate diffusions.
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

We start first by deriving the marginal processes employing the
reduction technique. We assume that the basic dynamic model for
an interest rate process {r;, t > 0} is described by a SDE

drt:‘u(rt,gb) dt+a<rt,¢) th, (1)

The functions p (r, ¢) and 02 (r;, @), typically non-linear in ry,
are respectively the drift and the diffusion functions of the process,
and ¢ C R¥X is a vector of unknown parameters. The only
assumption we impose at this stage of the analysis is that (1)
belongs to the class of the so called reducible SDEs as defined in
Kloeden and Platen (1992)
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

The class of SDEs that have closed form transition probability
density functions can be represented by

dXiL = (31Xt + 32) dt + nglth (2)

Special cases of interest that arise in the finance literature include:
(i) the Ornstein-Uhlenbeck (OU) process (a« = 0) which has both
the transition probability density and the marginal density normally
distributed; (ii) the Cox, Ingersoll and Ross (1985) (CIR) process
(a = 1/2) which has a non-central x? transition density with
fractional degrees of freedom and its marginal density follows a
Gamma distribution; and (iii) the Geometric Brownian motion

(o« =1) and (a2 = 0) which leads to a log-normal transition
density function.
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

If there exists an appropriate transformation function U (-, ¢) such
that the process {x; = U (rt,¢),t > 0} follows a SDE that is
solvable analytically, then the process {r:, t > 0} governed by (1)
is said to be reducible. A process that is reducible to OU is called
"OU-reducible" and a process that can be reduced to CIR is
called "CIR-reducible"!. It can be shown that under minor
conditions such processes would possess an explicit analytic
likelihood function via a trivial transformation of the distribution.
If QU (re, @) /9re # 0, the Inverse Function Theorem ensures the
existence of a local inverse r; = U™! (x;, ¢).
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

The Transformation Function
For ease of exposition, we re-write (1), with no loss of generality,
in the following way:

drt:]/l(rt-,¢) dt—i—O'OO'(rt,B) th, (3)

where ¢ = (0, 09)" and 0g is a normalizing scalar.

Define an analytic transformation function U (-, ¢), where typically
U (-, ¢) only depends on a subset of ¢, and let x; = U (r:, ¢p).
Then according to 1t6's lemma, we obtain the following dynamics
for {x;, t > 0}:

U (re, 0) 92U
dx = U (I’t, ¢) é’;’t 4)) + UOU é ) a(rt2 ¢) dt(4)
aU (rt, @) AW,

+0’0(7(rt,9) or
t
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

It follows that the non-linear SDEs in (3) that are reducible to (2)
via transformation function x; = U (r¢, ¢) must satisfy the
following two equations:

aU (rt, @)

o0 (re, 0) o bU* (r:, ¢) (5)
2
y(rt,¢)zwgrrtt'¢)+;(7%(rz(rt,0)aua(r:;'¢) = aU(r, ¢)+60)

It should be noted that the three unknown functional forms

u(re, @), o(re,0) and U (re, ) cannot be uniquely identified from
only two equations (5) and (6) unless an additional assumption is
imposed on them.
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

There are three approaches for dealing with this identification
problem. The first approach is to start with a desired drift function
u (re, @). This is the most difficult route as it involves solving a
higher-order differential equation for either o (r,0) or U (r:, ).
An analytic solution is hardly obtained except in very rare cases.
The most general approach is to make assumptions directly on

U (re, ¢). Then the specification of (3) or equivalently (1) can be
uniquely determined under minor identification conditions.
However, it is not always straightforward to formulate such a
specification without prior knowledge on the desired features that
the resulting SDEs should possess. A slightly less ambitious but
substantially simplified approach is to start with a desired
specification of the volatility function o (r¢, 8). Then, finding

U (rt, ¢) will only involve solving the first-order differential
equation in (5). The drift function y (r;, ¢) can then be trivially
inferred from equation (6). Given the significance of the volatility
properties in financial applications, this approach appears to be
fairlv reaconahble
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

For a chosen standardized volatility function o (r¢, 8) and letting
b = 0, the transformation function U (-, ¢) can be found by
solving the following ordinary differential equation:

which yields for o # 1

1

U 9) = U0 = { (1= | [ g ve| }

where c is the constant of integration. Note here that the
transformation function only depends on 8. When o = 0, the
original process is reducible to the OU process and the required
transformation is given by

U(r,0) :/ad'e)drt—kc. (7)
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

When « = 1/2, the original process is reducible to CIR and the
corresponding transformation is

oo (e )

Replacing the transformation function and its first and second
derivatives reveals the non-linear drift function y (r¢, ¢). The
complete specification of the process can then be written as

82U(rt, 6)

1
drt = 78(](”’9) art2

1
[alU (re,0) + ax — §b202 (r:,0)
arf

:| dt—i—bO'(rt,E

(9)
where U (rt, 0) is given by either (7) or (8). Note that the
unknown parameter vector ¢ is in fact identified as

(P = (6/,31, an, b)/.
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

.Using reducible SDEs as a modelling tool has the following
advantages. Firstly, since the non-linear diffusion process in (9) is a
transformed process of a basic process, either OU or CIR, via a
transformation function (7) or (8), many useful mathematical and
statistical properties of the basic processes are preserved after the
transformation. For instance, since both OU and CIR processes
have exact discretization, the process in (9) also has exact
discretization as a result of straight forward mapping by function

rn=U"1(x¢).
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

For OU-reducible and CIR-reducible processes, the Jacobians of the
transformations are given by

Jou = ’aU(rt)/art} =1/0(r0),

and

JC[R—‘aU I’t /art‘— 1/2(7 rt, ‘/ ]./(7 re, )drt

respectively. The transition density for the proposed model can be
easily obtained by the standard transformation method of the
distribution. Monotonicity in U (r¢, 0) ensures that the
transformation is unique. The corresponding marginal density
function can be obtained by taking the step length A to the limit
providing that the process is stationary and therefore the limit
exists.
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L Non-linear multivariate modelling

LModelling marginal processes using reducible SDEs

Focusing on the bivariate case, we denote Fx (x) and Fy (y) as
the continuous marginal distribution functions of X and Y, and
Fxy (x,y) the joint distribution function. Also let f, (x) and f, (y)
be the marginal density functions, and £, (x, y) the joint
probability density function. The Sklar's Theorem states:

Fxy (x,y) = C(Fx(x),Fy (y))
fy (xy) = &(x)-f(y) c(Fx (x),Fy (¥)),

where C : [0,1]*> — [0, 1] is the copula function for the bivariate
random vector (X, Y), and c is the corresponding copula density.
The procedure employed to construct the joint distribution is a
two-step method of estimation. In the first stage we estimate the
two marginal distribution models separately, and in the second
stage we estimate the copula model. The estimates obtained in
two-steps are consistent and asymptotically normal ( see Patton
(2006b) for more details).
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LThe CEV specification for the marginals
P g

The constant elasticity volatility model was introduced by Chan et
al. (1992). It was further studied by Ait-Sahalia (1996b) who
promoted the use of a non-linear drift function to provide a better
mean-reversion effect. The CEV specification of the diffusion is
given by o (r;,7y) = r, where v € (0,1) U (1, 00). It follows from
(7) that for a non-linear CEV process that is reducible to OU,
henceforth denoted as OU-CEV, the transformation is given by

xx=U(r7)=r "/(1-1). (10)
Ait-Sahalia (1999) suggests to define
xk=U(ry)=r"/(y-1), (11)

for ¥y > 1.
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LThe CEV specification for the marginals
P g

It is easily verified that OU (ry,7y) /0ry = r; . Since r; € R™, the
above transformation is always strictly monotonic, which ensures
identification of all parameters. It follows from (9) that the
dynamics of OU-CEV process is governed by the following diffusion.

1 -
dr, = <2b2’yrtz’Y 1_ arlsgn(y—1) + 1 a_llyrt> dt + br) dW;,
(12)
where sgn(-) is the sign function.



Modelling Multivariate Interest Rates
LThe CEV specification for the marginals
P g

For a non-linear CEV model that is reducible to CIR, henceforth
denoted by CIR-CEV, we have

x = U(r) = 1/4[ 7/ r (13)

It is easily verified that 0U (r;) /art = rt 2AY/ . For
r. € RT, the above transformation is also strictly monotonlc. The
dynamics of the CIR-CEV process is therefore given by

— _ 12000 2y-1 _ dift Y
dry = { [232 (1—7)+ 2b (2 1)} e+ 2-27) } dt + br, dW.
(14)

The SDEs defined in (12) and (14) encompasses a number of
interest rate processes that are known to have closed form
likelihood functions. These models can be obtained from (12) and
(14) by simply placing the appropriate restrictions on the four
parameters, aj, a», b, and . Table 1 provides the specifications of
nested models and the corresponding restrictions.
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L The CEV specification for the marginals

Table 1: Models Nested in OU-CEV and CIR-CEV Specifications
Models Nested in OU-CEV

Model Specification Restriction(s)
1. Merton dry = asdt + bdlV, v=10,a, =0
2, OU (Vasicek) dry = (a;rs + ag) dt + bd W, =10
Models Nested in CIR-CEV
Model Specification Restriction(s)
3. CIR (SR) dry = (ay7: + ag) di 4+ by/Ted W, v=1/2
4. CIR (VR) dry = bri/2dv, v =3/2,a, =0, ay = b?
5. CEV dry = aridt + bry dW; ag =V (27— 1)/4(y=1)
6. AC dr = [(0? — az) r? — ayr] dt + bri?dW 5 = 3/2
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LThe CEV specification for the marginals
P g

Analysis of the Distributions

CIR-CEV

We apply the methodology of Ait-Sahalia (1996b) concerning the
constraints on the drift and the diffusion to the CIR-CEV model in
(14) to derive the sufficient conditions for stationarity and
unattainability of 0 and oo in finite expected time. The results are
given in the following proposition.

Proposition 1 Let {r;, t > 0} be a CIR-CEV process defined in
(14). The necessary and sufficient conditions for stationarity and
unattainability of 0 and oo in finite expected time are: (i) a; <0
and 4ay/b* > (2y —1) / (y — 1) ify > 1; (ii) a1 < 0 and
bay/b?> > 1/ (1—7) ify <1

Proof. See Appendix W
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LThe CEV specification for the marginals
P g

For the CIR-CEV process, according to the transformation in (13)
the transition density of the process is given by

1-27

f(re|lr—a) = Ll e (K)qm Iy {2 (uv)l/z} ,

21— u

¢ = 2a J[8 (e20-1)] u= (0 4) [ J - )|
v = (c/4)[rtlfy/(l—'y)]z,q:2ag/b2—1.

and /g (+) is the modified Bessel function of the first kind of order
q.
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LThe CEV specification for the marginals
P g

The CIR-CEV process also permits a closed form expression for its
conditional distribution function which can be written as

F(rilres) = D (2¢x¢;2q9 +2,2u) for v <1
H=A) 71 1— D (2ex:;2q +2,2u) for y > 1

where x; is defined by (13) and D (-;2q + 2, 2u) is the non-central
x? distribution function with 2q + 2 degrees of freedom and
non-centrality parameter 2u.

Straightforward calculation yields the mth conditional moments for
r; following the CIR-CEV process:

E(r"|re-a)

= 21—yl s )

1F1<q—i—2( )—I—]. 1+ q, u)

where 1 F (-, -, -) is the confluent hypergeometric function and T'(+)
is the gamma function.
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LThe CEV specification for the marginals
P g

Since the CIR-CEV process displays mean reversion, then as
A — o0, its distribution is well defined. It can be shown that the
steady-state density function is given by
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LThe CEV specification for the marginals
P g

OU-CEV

The analysis of the OU-CEV process is less straightforward than
that of the CIR-CEV process. For the OU-CEV process, according
to the transformations defined in (10) and (11) the probability
density of the interest rate r; conditional on r;_a, where A is the
step length, is given by the following

_ 1 1 /x — 2
R [‘2 (J’) ] ,
ou ou

where
Hy, = ealet_A—zi(l—ealA> and (15)
1
p2 (218 _
2, = 2 ) (16)
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LThe CEV specification for the marginals
P g

Since the OU-CEV process is a continuous and monotonic
transformation of the OU process, it has a closed form expression
for its conditional distribution function which is given by

| O (Xt Tou) — P (05 u,, Tou) for vy <1
F(rlr-s) = { 1 — @ (X¢; pyy Oou) fory>1

where ® (-; u, ., 0oy) is the distribution function for a normally
distributed random variable with mean y_, and standard deviation
Oou. Here x; is defined by (10) for v < 1 and (11) for ¢y > 1,
respectively.
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LThe CEV specification for the marginals
P g

Straightforward calculation also yields the mth conditional
moments for r; following the OU-CEV process

. [\@Touﬂ—ﬂ] 1 e[ v+l v+1
E(I’t |rt7A) = \/E 56 T 5 X1 F 5

+ wT (g) F <1+ gg w2)] ,

m Hou

, W= —.
11— V20,4

Since the unconditional distribution of the OU process is also
normal, the marginal density 7 (r;) and the unconditional
moments E (r/") have similar expressions to their conditional
counterparts. The only difference is that we will have to replace
the conditional mean and variance in (15) and (16) by their
corresponding limits as A — oo.

where
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L_The conditional transformation

For both OU-CEV and CIR-CEV processes, the transformation
functions depend on a single parameter . A natural extension is
to specify an equation describing the evolution over time of the
parameter 7y,. We propose the following:

To reflect the 7y < 1 case in the time-homogenous transformation
design, we can define

P q

Ye=A <w + 2 KjYe—j+ Z .B,'th> (17)
i=1 j=1

where A (x) = (1+ e )" is the logistic transformation, used to

keep 7, in (0,1) all the time. Similarly, we can let

~ p q
Ye = A (w + KjYe—j+ 2 ﬁixf—j> (18)
i=1 j=1
where A (x) = (1 + e ) is the reciprocal of the the logistic
transformation, used to keep 7, inside the range (1, 00) all the

time. In practice, the choice of p and g can be decided by some
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L Bivariate modelling of US and UK short term interest rates

Data

We measure the US and UK short term interest rates by 1-Month
Eurodollar Rate (EDR) and 1-Month London Interbank Offered
Rate (LIBOR) in British Sterling. Two different frequencies,
monthly and weekly, of the two rates are employed in this study.
The EDR data are collected from the H.15 release of the Federal
Reserve website and the data of LIBOR are obtained from BBA
(British Banking Association) database. For each of the two rates,
we use the longest sample period for which data are available.
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L Bivariate modelling of US and UK short term interest rates

Table 2: Descriptive Statistics of EDR and LIBOR Data

Eurodollar Rate LIBOR
Sample period 1971.01-2007.12 1986.01-2007.12
Frequency Monthly ~ Weekly Monthly Weekly
Sample size 444 1930 264 1148
Mean 6.778 6.781 7.434 7.413
Std. Dev. 3541 3 550 3237 3214
Skewness 1.081 1.099 1.013 1.003
Kurtosis 4719 4.809 2,875 2.872
Jarque-Bera Statistic 141.149% 651.979% 45.330%  193.280*
N 0.978 0.996 0.987 0.997
03 0.944 0.990 0.971 0.995
Pz 0.916 0.983 0.955 0.992
N 0.891 0975 0.940 0.989
[ 0869 0967 0927 0986
P 0.851 0.959 0.909 0.982

An asterisk (*) indicates a rejection of the null hypothesis at the 0.01 level.
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L Bivariate modelling of US and UK short term interest rates

Figure 1: Time Series of Monthly and Weekly Eurodellar Rate and LIBOR
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L Bivariate modelling of US and UK short term interest rates

LModelling Univariate Interest Rates

Table 3: Maximum Likelihood Estimates of Different Interest Rate Models

Monthly Weekly
ouU CIR Ad OU-CEV CIR-CEV ouU CIR AC OU-CEV CIR-CEV
EDR a; -0.269 -0.148 -0.105 -0.090 -0.100 -0.197 -0.120 -0.080 -0.070 -0.079
(0.120)  (0.090) (0.076) (0.070) (0.074) (0.104)  (0.030) (0.067) (0.062) (0.066)
[ 1.745 0.992 0.023 0.353 0.389 1.301 0.782 0.018 0226 0.206
(0.916)  (0.509) (0.013) (0.308) (0.382) (0.796)  (0.452) (0.012) (0.200) (0.172)
b 2.535 0.782 0117 0.193 0.193 2245 0.104 0.164 0.163
(0.087)  (0.026) (0.004) (0.017) (0.017) (0.036) (0.002) (0.007) (0.007)
¥ (y=0) (y=05) (y=15) 1184 1.186 (y=0) (y=15) 1.218 1.219
(0.047) (0.047) (0.024) (0.024)
AIC 98382 71899 599.88 534.35 554.13 971.7¢  -131.20 -69336  -841.98 -842.18
BIC 99611 731.28 612.17 570.73 570.51 98847  -11451 -676.67  -819.72 -819.92
LIBOR a; -0.142 -0.174 -0.008 -0.124 -0.096 -0.113 -0.147 -0.090 -0.113 -0.096
(0.087) (0.001) (0.081) (0.083) (0.082) (0.083) (0.087) (0.080) (0.081) (0.080)
az 0.740 0.981 0.020 0.086 0.012 0.590 0.829 0.018 0.198 0.075
(0.707)  (0.623) (0.012) (0.066) (0.014) (0.674)  (0.596) (0.012) (0.143) (0.067)
b 1.315 0.442 0.058 0.051 0.051 1.257 0.423 0.057 0.079 0.079
(0.058)  (0.019) (0.003) (0.013) (0.013) (0.026)  (0.009) (0.001) (0.009) (0.009)
5 (y=10) (y=035) (y=15) 1565%  1565* (y=05) (y=15 133 1.330
(0.132) (0.133) (0.060) (0.060)
AIC 23990  170.95 109.54 111.08 111.31 -T48.0T -1047.538  -1234.46 -1240.535  -1240.39
BIC 25063  181.67 120.27 125.38 125.61 -732.04 -1032.44  -1219.33  -1220.37 -1220.21

*Only cases where the hypothesis v = 1.5 cannot be rejected. In all other cases,

all rejected.

v=0,0.5, or 1.5 are
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L Bivariate modelling of US and UK short term interest rates

LModelling Univariate Interest Rates

Table 4: ML Estimates of Time-varying Transformation Models

Menthly Weekly
TV-OU-CEV TV-CIR-CEV TV-OU-CEV TV-CIR-CEV

EDR p=1 (p=1) p=1) =1
ay -0.100 -0.114 -0.091 -0.107
(0.074) (0.079) (0.070) (0.076)

ay -0.308 0.441 -0.282 0.258
(0.205) (0.300) (0.218) (0.178)

b 0.187 0.186 0.159 0.159
(0.006) (0.006) (0.003) (0.003)

w -2.105 -2.087 3522 3.520
(0.607) (0.603) (0.468) (0.465)

a 3.184 3.158 -1.667 -1.666
(0.502) (0.587) (0.383) (0.380)

8 0.004 0.004 0.003 0.003
{0.001) (0.001) (0.000) {0.000)
AIC 526.90 526.67* -030.19 -930.49*
BIC 561.48 551.25% -896.80 -897.10*
LIBOR (p=135) (p=15) (p=8) (p=8)
ay -0.228 -0.223 -0.208 -0.198
{0.141) (0.146) (0122) (0.123)

ay -0.124 0.017 -0.336 0.131
{0.072) (0.009) {0.074)

b 0.046 0.046 0.077
(0.002) (0.002) (0.002)

w -1.768 -1.766 1.903
{0.310) (0.311) (1.715)

o 1.288 1.286 -0.645
{0.201) (0.202) (1.264)

8 0.025 0.026 0.006
(0.006) (0.006) (0.003)
AIC 95.06 95.00% -1264.95

BIC 116.51 116.46* -1234.71% -1234.67
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L Bivariate Modelling through Copulas

Empirical analysis based on the time-varying SJC copula.

Table 5: ML Estimates of Time-varying SJC Copula
Time-varying SJC copula model (p = ¢ = 8)

Unrestricted model Restricted model
Wy 3.646 4.464
(1.554) (0.540)
ay 0.628
(1.303)
Bu -35.565 -40.197
(9.030) (7.208)
Wy, 3.126 1.845
(1.282) (1.261)
ar -2.512
(1.838)
8L -31.991 -26.447
(8.723) (8.511)
AIC -123.96 -126.44

BIC -93.70 -106.26
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L Bivariate modelling of US and UK short term interest rates

L Bivariate Modelling through Copulas

Figure 2: Conditional Upper and Lower Tail Dependences in the SJC Copula
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L Bivariate modelling of US and UK short term interest rates

L Bivariate Modelling through Copulas

Figure 3: Overlapping Series and Conditional Linear Correlations in the
Time-varving 3JC Copula
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Modelling Multivariate Interest Rates
L Conclusion

We develop a copula-based non-linear multivariate interest rates
models that account simultaneously for observed non-linearities
and correlation across short-term interest rates. The dynamics of
the marginal processes are governed by a special type of SDEs,
called reducible SDEs. The use of reducible SDEs for modelling
financial variables, such as the short term interest rates, has a
number of advantages: exact discretization, closed form transition
density functions and use of copula based multivariate modelling.
The sufficient conditions for the stationarity of the CIR-CEV
process are provided and the same issue for the OU-CEV process is
discussed. We focused our attention on the OU-CEV and CIR-CEV
models. These simple specifications encompass most existing
parametric models that have closed form likelihood functions: OU,
CIR and the Ahn and Gao (1999) model. The transition density,
the conditional distribution function, the steady-state density
function are derived in closed form as well as the conditional and
unconditional moments for both processes.
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In our empirical studies of monthly and weekly US and UK short
term interest rates, we found that simple parametric models like
OU and CIR are strongly rejected by the data under their more
general CEV frameworks. The AG model is also rejected by all but
the monthly LIBOR data. Hence, our new models outperform, in
most cases, existing parametric models endowed with closed form
likelihood functions. To generate more flexible dynamics, we
extended our theory to allow for conditioning variables in the
transformation functions. We found that in all four cases the
time-varying effects of the transformation parameter are significant.
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The dependence of the US and UK short rates were studied via a
conditional copula. We found that the time-varying effect in the
conditional SJC copula is significant. Also significant is the
asymmetry in the tail dependence implied by the copula. From the
fitted tail dependence coefficients, we found that the evolution of
the conditional tail dependencies appear to coincide with that of
interest rates themselves. That is, the tail dependencies tend to be
higher when the interest rates are relatively high, and lower in the
opposite situation. Similar relationship is also found in the
conditional linear correlation coefficients implied by the conditional
copula.
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