
Modelling Multivariate Interest Rates

Modelling Multivariate Interest Rates using
Time-Varying Copulas and Reducible Non-Linear

Stochastic Di¤erential Equation
by

Ruijun Bu, Ludovic Giet, Kaddour Hadri and Michel Lubrano
Workshop on Financial Econometrics,
Field Institute, Toronto University

April 22-23 April 2010



Modelling Multivariate Interest Rates

Outline

Outline

Motivations

Succint literature review

Non-linear multivariate modelling

The CEV speci�cation for the marginals

The conditional transformation

Bivariate modelling of US and UK short term interest rates

Conclusions



Modelling Multivariate Interest Rates

Motivations

Motivations

Account for non-linear features observed in short-term interest
rates and other �nancial assets

At the same obtain exact discretization and closed form
likelihood functions

We seek �exible functional form over time by allowing the
transformation to be time varying

Obtain multivariate models via copulas to account for possible
dependence across �nancial assets
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Succint Literature Review

Parametric, assume the drift and the di¤usion functions
known: Merton (1973), Brennan and Schwartz (1979),
Vasicek (1977), Cox (1975), Dothan (1978), Cox, Ingersoll,
and Ross (1980, 1985), Courtadon (1982), Constantinides and
Ingersoll (1984), Constantinides (1992), Du¢ e and Kan
(1996) and Aït-Sahalia (1996b). Majority of SDEs do not
lead to closed form expressions except: Black and Scholes
(1973), Vasicek (1977), and Cox, Ingersoll, and Ross (1985).
Considerable energy has been employed in developing
computationally and statistically e¢ cient approximation
schemes. Examples include Lo (1988), Pedersen (1995),
Brandt and Santa-Clara (2002), Shoji and Ozaki (1998),
Kessler (1997), Elerian et al (2001). Durham and Gallant
(2002) provides a survey on existing numerical techniques.
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Succint Literature Review

Non-parametric and semi-parametric, do not constrain the
drifts and di¤usion to be within a parametric class:Aït-Sahalia
(1996a,b) and Stanton (1997). Aït-Sahalia (1999, 2002,
2008) developed methods for generating closed form
approximation of likelihood functions for univariate and
multivariate di¤usions.
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

We start �rst by deriving the marginal processes employing the
reduction technique. We assume that the basic dynamic model for
an interest rate process frt , t � 0g is described by a SDE

drt = µ (rt ,φ) dt + σ (rt ,φ) dWt , (1)

The functions µ (rt ,φ) and σ2 (rt ,φ), typically non-linear in rt ,
are respectively the drift and the di¤usion functions of the process,
and φ � RK is a vector of unknown parameters. The only
assumption we impose at this stage of the analysis is that (1)
belongs to the class of the so called reducible SDEs as de�ned in
Kloeden and Platen (1992)
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

The class of SDEs that have closed form transition probability
density functions can be represented by

dxt = (a1xt + a2) dt + bxα
t dWt . (2)

Special cases of interest that arise in the �nance literature include:
(i) the Ornstein-Uhlenbeck (OU) process (α = 0) which has both
the transition probability density and the marginal density normally
distributed; (ii) the Cox, Ingersoll and Ross (1985) (CIR) process
(α = 1/2) which has a non-central χ2 transition density with
fractional degrees of freedom and its marginal density follows a
Gamma distribution; and (iii) the Geometric Brownian motion
(α = 1) and (a2 = 0) which leads to a log-normal transition
density function.
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

If there exists an appropriate transformation function U (�,φ) such
that the process fxt = U (rt ,φ) , t � 0g follows a SDE that is
solvable analytically, then the process frt , t � 0g governed by (1)
is said to be reducible. A process that is reducible to OU is called
"OU-reducible" and a process that can be reduced to CIR is
called "CIR-reducible"1. It can be shown that under minor
conditions such processes would possess an explicit analytic
likelihood function via a trivial transformation of the distribution.
If ∂U (rt ,φ)

�
∂rt 6= 0, the Inverse Function Theorem ensures the

existence of a local inverse rt = U�1 (xt ,φ).
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

The Transformation Function
For ease of exposition, we re-write (1), with no loss of generality,
in the following way:

drt = µ (rt ,φ) dt + σ0σ (rt , θ) dWt , (3)

where φ = (θ, σ0)
0 and σ0 is a normalizing scalar.

De�ne an analytic transformation function U (�,φ), where typically
U (�,φ) only depends on a subset of φ, and let xt = U (rt ,φ).
Then according to Itô�s lemma, we obtain the following dynamics
for fxt , t � 0g:

dxt =

�
µ (rt ,φ)

∂U (rt ,φ)
∂rt

+
σ20σ

2 (rt , θ)
2

∂2U (rt ,φ)
∂r2t

�
dt(4)

+ σ0σ (rt , θ)
∂U (rt ,φ)

∂rt
dWt .
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

It follows that the non-linear SDEs in (3) that are reducible to (2)
via transformation function xt = U (rt ,φ) must satisfy the
following two equations:

σ0σ (rt , θ)
∂U (rt ,φ)

∂rt
= bUα (rt ,φ) (5)

µ (rt ,φ)
∂U (rt ,φ)

∂rt
+
1
2

σ20σ
2 (rt , θ)

∂2U (rt ,φ)
∂r2t

= a1U (rt ,φ) + a2.(6)

It should be noted that the three unknown functional forms
µ (rt ,φ), σ (rt , θ) and U (rt ,φ) cannot be uniquely identi�ed from
only two equations (5) and (6) unless an additional assumption is
imposed on them.
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

There are three approaches for dealing with this identi�cation
problem. The �rst approach is to start with a desired drift function
µ (rt ,φ). This is the most di¢ cult route as it involves solving a
higher-order di¤erential equation for either σ (rt , θ) or U (rt ,φ).
An analytic solution is hardly obtained except in very rare cases.
The most general approach is to make assumptions directly on
U (rt ,φ). Then the speci�cation of (3) or equivalently (1) can be
uniquely determined under minor identi�cation conditions.
However, it is not always straightforward to formulate such a
speci�cation without prior knowledge on the desired features that
the resulting SDEs should possess. A slightly less ambitious but
substantially simpli�ed approach is to start with a desired
speci�cation of the volatility function σ (rt , θ). Then, �nding
U (rt ,φ) will only involve solving the �rst-order di¤erential
equation in (5). The drift function µ (rt ,φ) can then be trivially
inferred from equation (6). Given the signi�cance of the volatility
properties in �nancial applications, this approach appears to be
fairly reasonable.
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

For a chosen standardized volatility function σ (rt , θ) and letting
b = σ0, the transformation function U (�,φ) can be found by
solving the following ordinary di¤erential equation:

∂U (rt ,φ)
∂rt

= Uα (rt ,φ)
1

σ (rt , θ)
,

which yields for α 6= 1

U (rt ,φ) = U (rt , θ) =
�
(1� α)

�Z 1
σ (rt , θ)

drt + c
�� 1

1�α

,

where c is the constant of integration. Note here that the
transformation function only depends on θ. When α = 0, the
original process is reducible to the OU process and the required
transformation is given by

U (rt , θ) =
Z 1

σ (rt , θ)
drt + c . (7)
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

When α = 1/2, the original process is reducible to CIR and the
corresponding transformation is

U (rt , θ) =
�
1
2

�Z 1
σ (rt , θ)

drt + c
��2

. (8)

Replacing the transformation function and its �rst and second
derivatives reveals the non-linear drift function µ (rt ,φ). The
complete speci�cation of the process can then be written as

drt =
1

∂U (rt ,θ)
∂rt

�
a1U (rt , θ) + a2 �

1
2
b2σ2 (rt , θ)

∂2U (rt , θ)
∂r2t

�
dt+bσ (rt , θ) dWt ,

(9)
where U (rt , θ) is given by either (7) or (8). Note that the
unknown parameter vector φ is in fact identi�ed as
φ =

�
θ0,a1, a2, b

�0.
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

.Using reducible SDEs as a modelling tool has the following
advantages. Firstly, since the non-linear di¤usion process in (9) is a
transformed process of a basic process, either OU or CIR, via a
transformation function (7) or (8), many useful mathematical and
statistical properties of the basic processes are preserved after the
transformation. For instance, since both OU and CIR processes
have exact discretization, the process in (9) also has exact
discretization as a result of straight forward mapping by function
rt = U�1 (xt ,φ).
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

For OU-reducible and CIR-reducible processes, the Jacobians of the
transformations are given by

JOU =
��∂U (rt )� ∂rt

�� = 1/ σ (rt , θ) ,

and

JCIR =
��∂U (rt )� ∂rt

�� = [1/ 2σ (rt , θ)]

����Z 1/ σ (rt , θ) drt

���� ,
respectively. The transition density for the proposed model can be
easily obtained by the standard transformation method of the
distribution. Monotonicity in U (rt , θ) ensures that the
transformation is unique. The corresponding marginal density
function can be obtained by taking the step length ∆ to the limit
providing that the process is stationary and therefore the limit
exists.
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Non-linear multivariate modelling

Modelling marginal processes using reducible SDEs

Focusing on the bivariate case, we denote FX (x) and FY (y) as
the continuous marginal distribution functions of X and Y , and
FXY (x , y) the joint distribution function. Also let fx (x) and fy (y)
be the marginal density functions, and fxy (x , y) the joint
probability density function. The Sklar�s Theorem states:

FXY (x , y) = C (FX (x) ,FY (y))

fxy (x , y) = fx (x) � fy (y) � c (FX (x) ,FY (y)) ,

where C : [0, 1]2 ! [0, 1] is the copula function for the bivariate
random vector (X ,Y ), and c is the corresponding copula density.
The procedure employed to construct the joint distribution is a
two-step method of estimation. In the �rst stage we estimate the
two marginal distribution models separately, and in the second
stage we estimate the copula model. The estimates obtained in
two-steps are consistent and asymptotically normal ( see Patton
(2006b) for more details).
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The CEV speci�cation for the marginals

The constant elasticity volatility model was introduced by Chan et
al. (1992). It was further studied by Aït-Sahalia (1996b) who
promoted the use of a non-linear drift function to provide a better
mean-reversion e¤ect. The CEV speci�cation of the di¤usion is
given by σ (rt ,γ) = r

γ
t , where γ 2 (0, 1) [ (1,∞). It follows from

(7) that for a non-linear CEV process that is reducible to OU,
henceforth denoted as OU-CEV, the transformation is given by

xt = U (rt ,γ) = r
1�γ
t

�
(1� γ) . (10)

Aït-Sahalia (1999) suggests to de�ne

xt = U (rt ,γ) = r
1�γ
t

�
(γ� 1) , (11)

for γ > 1.
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The CEV speci�cation for the marginals

It is easily veri�ed that ∂U (rt ,γ)
�

∂rt = r
�γ
t . Since rt 2 R+, the

above transformation is always strictly monotonic, which ensures
identi�cation of all parameters. It follows from (9) that the
dynamics of OU-CEV process is governed by the following di¤usion.

drt =
�
1
2
b2γr2γ�1

t � a2rγ
t sgn (γ� 1) +

a1
1� γ

rt

�
dt + brγ

t dWt ,

(12)
where sgn(�) is the sign function.
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The CEV speci�cation for the marginals

For a non-linear CEV model that is reducible to CIR, henceforth
denoted by CIR-CEV, we have

xt = U (rt ) = (1/4 )
h
r1�γ
t

�
(1� γ)

i2
. (13)

It is easily veri�ed that ∂U (rt )
�

∂rt = r
1�2γ
t

�
(2� 2γ) . For

rt 2 R+, the above transformation is also strictly monotonic. The
dynamics of the CIR-CEV process is therefore given by

drt =
��
2a2 (1� γ) +

1
2
b2 (2γ� 1)

�
r2γ�1
t +

a1rt
(2� 2γ)

�
dt+brγ

t dW .

(14)
The SDEs de�ned in (12) and (14) encompasses a number of
interest rate processes that are known to have closed form
likelihood functions. These models can be obtained from (12) and
(14) by simply placing the appropriate restrictions on the four
parameters, a1, a2, b, and γ. Table 1 provides the speci�cations of
nested models and the corresponding restrictions.
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The CEV speci�cation for the marginals
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The CEV speci�cation for the marginals

Analysis of the Distributions
CIR-CEV
We apply the methodology of Aït-Sahalia (1996b) concerning the
constraints on the drift and the di¤usion to the CIR-CEV model in
(14) to derive the su¢ cient conditions for stationarity and
unattainability of 0 and ∞ in �nite expected time. The results are
given in the following proposition.

Proposition 1 Let frt , t � 0g be a CIR-CEV process de�ned in
(14). The necessary and su¢ cient conditions for stationarity and
unattainability of 0 and ∞ in �nite expected time are: (i) a1 < 0
and 4a2/b2 > (2γ� 1) / (γ� 1) if γ > 1; (ii) a1 < 0 and
4a2/b2 > 1/ (1� γ) if γ < 1.

Proof. See Appendix
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The CEV speci�cation for the marginals

For the CIR-CEV process, according to the transformation in (13)
the transition density of the process is given by

f (rt jrt�∆) =
1
2
r1�2γ
t

j1� γjce
�u�v

�v
u

�q/2
Iq
h
2 (uv)1/2

i
,

where

c = 2a1
.h
b2
�
ea1∆ � 1

�i
, u =

�
cea1∆ /4

� h
r1�γ
t�∆

�
(1� γ)

i2
v = (c /4 )

h
r1�γ
t

�
(1� γ)

i2
, q = 2a2

�
b2 � 1.

and Iq (�) is the modi�ed Bessel function of the �rst kind of order
q.
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The CEV speci�cation for the marginals

The CIR-CEV process also permits a closed form expression for its
conditional distribution function which can be written as

F (rt jrt�∆) =

�
D (2cxt ; 2q + 2, 2u) for γ < 1

1�D (2cxt ; 2q + 2, 2u) for γ > 1
,

where xt is de�ned by (13) and D (�; 2q + 2, 2u) is the non-central
χ2 distribution function with 2q + 2 degrees of freedom and
non-centrality parameter 2u.
Straightforward calculation yields the mth conditional moments for
rt following the CIR-CEV process:
E (rmt jrt�∆)

= [2 j1� γj]
m
1�γ c�

m
2(1�γ) e�u

Γ
�
q+ m

2(1�γ)
+1
�

Γ(1+q)

1F1
�
q + m

2(1�γ)
+ 1, 1+ q, u

�
where 1F1 (�, �, �) is the con�uent hypergeometric function and Γ(�)
is the gamma function.
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The CEV speci�cation for the marginals

Since the CIR-CEV process displays mean reversion, then as
∆ ! ∞, its distribution is well de�ned. It can be shown that the
steady-state density function is given by

π (rt ) =
1
2
r1�2γ
t

j1� γj

�
� 2a1

b2
� 2a2
b2

Γ
� 2a2
b2
� x

2a2
b2
�1

t exp
�
2a1
b2
xt

�
,

and the mth unconditional moments are

E [rmt ] = [2 j1� γj]
m
1�γ

�
�2a1
b2

�� m
2(1�γ) Γ

�
2a2
b2 +

m
2(1�γ)

�
Γ
� 2a2
b2
� .
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The CEV speci�cation for the marginals

OU-CEV
The analysis of the OU-CEV process is less straightforward than
that of the CIR-CEV process. For the OU-CEV process, according
to the transformations de�ned in (10) and (11) the probability
density of the interest rate rt conditional on rt�∆, where ∆ is the
step length, is given by the following

f (rt jrt�∆) = r
�γ
t

1p
2πσ2ou

exp

"
�1
2

�
xt � µou

σou

�2#
,

where

µou = ea1∆xt�∆ �
a2
a1

�
1� ea1∆

�
and (15)

σ2ou =
b2
�
e2a1∆ � 1

�
2a1

. (16)
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The CEV speci�cation for the marginals

Since the OU-CEV process is a continuous and monotonic
transformation of the OU process, it has a closed form expression
for its conditional distribution function which is given by

F (rt jrt�∆) =

�
Φ (xt ; µou , σou)�Φ (0; µou , σou) for γ < 1

1�Φ (xt ; µou , σou) for γ > 1
,

where Φ (�; µou , σou) is the distribution function for a normally
distributed random variable with mean µou and standard deviation
σou . Here xt is de�ned by (10) for γ < 1 and (11) for γ > 1,
respectively.
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The CEV speci�cation for the marginals

Straightforward calculation also yields the mth conditional
moments for rt following the OU-CEV process

E (rmt jrt�∆) =

hp
2σou j1� γj

iv
p

π

1
2
e�w

2
�

Γ
�
v + 1
2

�
�1 F1

�
v + 1
2

,
1
2
,w2

�
+ wvΓ

�v
2

�
1F1

�
1+

v
2
,
3
2
,w2

��
,

where
v =

m
1� γ

, w =
µoup
2σou

.

Since the unconditional distribution of the OU process is also
normal, the marginal density π (rt ) and the unconditional
moments E (rmt ) have similar expressions to their conditional
counterparts. The only di¤erence is that we will have to replace
the conditional mean and variance in (15) and (16) by their
corresponding limits as ∆ ! ∞.
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The conditional transformation

For both OU-CEV and CIR-CEV processes, the transformation
functions depend on a single parameter γ. A natural extension is
to specify an equation describing the evolution over time of the
parameter γt . We propose the following:
To re�ect the γ < 1 case in the time-homogenous transformation
design, we can de�ne

γt = Λ

 
ω+

p

∑
i=1

αjγt�i +
q

∑
j=1

βixt�j

!
(17)

where Λ (x) � (1+ e�x )�1 is the logistic transformation, used to
keep γt in (0, 1) all the time. Similarly, we can let

γt = eΛ ω+
p

∑
i=1

αjγt�i +
q

∑
j=1

βixt�j

!
(18)

where eΛ (x) � (1+ e�x ) is the reciprocal of the the logistic
transformation, used to keep γt inside the range (1,∞) all the
time. In practice, the choice of p and q can be decided by some
model selection procedure. Obviously, signi�cance in either αj or
βi or both is an indication of the time-varying e¤ect in the
transformation.
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Bivariate modelling of US and UK short term interest rates

Data
We measure the US and UK short term interest rates by 1-Month
Eurodollar Rate (EDR) and 1-Month London Interbank O¤ered
Rate (LIBOR) in British Sterling. Two di¤erent frequencies,
monthly and weekly, of the two rates are employed in this study.
The EDR data are collected from the H.15 release of the Federal
Reserve website and the data of LIBOR are obtained from BBA
(British Banking Association) database. For each of the two rates,
we use the longest sample period for which data are available.
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Bivariate modelling of US and UK short term interest rates
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Bivariate modelling of US and UK short term interest rates
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Bivariate modelling of US and UK short term interest rates

Modelling Univariate Interest Rates
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Bivariate modelling of US and UK short term interest rates

Modelling Univariate Interest Rates
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Bivariate modelling of US and UK short term interest rates

Bivariate Modelling through Copulas

Empirical analysis based on the time-varying SJC copula.
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Bivariate modelling of US and UK short term interest rates

Bivariate Modelling through Copulas
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Bivariate modelling of US and UK short term interest rates

Bivariate Modelling through Copulas
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Conclusion

We develop a copula-based non-linear multivariate interest rates
models that account simultaneously for observed non-linearities
and correlation across short-term interest rates. The dynamics of
the marginal processes are governed by a special type of SDEs,
called reducible SDEs. The use of reducible SDEs for modelling
�nancial variables, such as the short term interest rates, has a
number of advantages: exact discretization, closed form transition
density functions and use of copula based multivariate modelling.
The su¢ cient conditions for the stationarity of the CIR-CEV
process are provided and the same issue for the OU-CEV process is
discussed. We focused our attention on the OU-CEV and CIR-CEV
models. These simple speci�cations encompass most existing
parametric models that have closed form likelihood functions: OU,
CIR and the Ahn and Gao (1999) model. The transition density,
the conditional distribution function, the steady-state density
function are derived in closed form as well as the conditional and
unconditional moments for both processes.
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Conclusion

In our empirical studies of monthly and weekly US and UK short
term interest rates, we found that simple parametric models like
OU and CIR are strongly rejected by the data under their more
general CEV frameworks. The AG model is also rejected by all but
the monthly LIBOR data. Hence, our new models outperform, in
most cases, existing parametric models endowed with closed form
likelihood functions. To generate more �exible dynamics, we
extended our theory to allow for conditioning variables in the
transformation functions. We found that in all four cases the
time-varying e¤ects of the transformation parameter are signi�cant.
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Conclusion

The dependence of the US and UK short rates were studied via a
conditional copula. We found that the time-varying e¤ect in the
conditional SJC copula is signi�cant. Also signi�cant is the
asymmetry in the tail dependence implied by the copula. From the
�tted tail dependence coe¢ cients, we found that the evolution of
the conditional tail dependencies appear to coincide with that of
interest rates themselves. That is, the tail dependencies tend to be
higher when the interest rates are relatively high, and lower in the
opposite situation. Similar relationship is also found in the
conditional linear correlation coe¢ cients implied by the conditional
copula.
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