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About this talk

How to select sparsely optimal portfolio?

How to use high-frequency data to shorten time horizon?

How large the universe of assets can be handled?

How does the estimation of vast covariance matrix impact on the

allocation vector and portfolio risk?
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Outline

1 Introduction

2 Portfolio selection with time-varying covariance.
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Introduction
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Markowitz’s Mean-variance analysis

Portfolio allocation: minwT 1=1,wTμ=r0
wT Σw

Solution: w = c1 Σ−1μ+ c2 Σ−11

� Cornerstone of modern finance.

� Too sensitive on input vectors and their estimation errors.

� More severe for large portfolios: 2000 stocks involves 2 m parameters!

Error accumulation can be huge.

� Impact of dimensionality is large:

Risk: wT Σ̂w. Allocation: ĉ1Σ̂
−11+ ĉ2Σ̂

−1μ̂.
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Exposure-constrained portfolio selection

Portfolio allocation: (Fan, et al, 08; DeMiguel et al, 08; Bordie et al, 08)

min
wT 1=1, Aw=a

wT Σw, ‖w‖1 ≤ c.

Constraints:

� expected return or sector exposures via A.

� short positions: w− ≤ (c−1)/2,

since w+ +w− ≤ c, w+−w− = 1.

c = 1 =⇒ no short-sale; c =  =⇒ Markowitz problem.

Portfolio selection: solution is usually sparse.

Applicability: Any coherent risk measures (Artzner et al, 1999)

Jianqing Fan (Princeton University) Vast high-frequency volatility matrix Fields Institute 6 / 42



Exposure-constrained portfolio selection

Portfolio allocation: (Fan, et al, 08; DeMiguel et al, 08; Bordie et al, 08)

min
wT 1=1, Aw=a

wT Σw, ‖w‖1 ≤ c.

Constraints:

� expected return or sector exposures via A.

� short positions: w− ≤ (c−1)/2,

since w+ +w− ≤ c, w+−w− = 1.

c = 1 =⇒ no short-sale; c =  =⇒ Markowitz problem.

Portfolio selection: solution is usually sparse.

Applicability: Any coherent risk measures (Artzner et al, 1999)

Jianqing Fan (Princeton University) Vast high-frequency volatility matrix Fields Institute 6 / 42



Exposure-constrained portfolio selection

Portfolio allocation: (Fan, et al, 08; DeMiguel et al, 08; Bordie et al, 08)

min
wT 1=1, Aw=a

wT Σw, ‖w‖1 ≤ c.

Constraints:

� expected return or sector exposures via A.

� short positions: w− ≤ (c−1)/2,

since w+ +w− ≤ c, w+−w− = 1.

c = 1 =⇒ no short-sale; c =  =⇒ Markowitz problem.

Portfolio selection: solution is usually sparse.

Applicability: Any coherent risk measures (Artzner et al, 1999)

Jianqing Fan (Princeton University) Vast high-frequency volatility matrix Fields Institute 6 / 42



Utility Approximations

Utility Approx.: Let M(μ,Σ) = wTμ−wT Σw be expected utility.

|M(μ̂,Σ̂)−M(μ,Σ)| ≤ ‖μ̂−μ‖‖w‖1 +|Σ̂−Σ|‖w‖2
1

≤ ‖μ̂−μ‖c +|Σ̂−Σ|c2,

�No noise accumulation effect for moderate c ≤ 3, say.

�applicable to any number of assets p

Risk Approx.: Letting R(w,Σ) = wT Σw,

|R(w,Σ̂)−R(w,Σ)| ≤ |Σ̂−Σ|c2,
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Risk Approximation Theory

Actual and Empirical risks: R(w) = wT Σw, Rn(w) = wT Σ̂w.

�Theoretical and empirical allocation vector:

wopt = argmin||w||1≤cR(w), ŵopt = argmin||w||1≤cRn(w)

�Risks:
√

R(wopt) —oracle,
√

Rn(ŵopt) —empirical;√
R(ŵopt) —actual risk of a selected portfolio.

Theorem 1: Let an = |Σ̂−Σ|. Then, we have

|R(ŵopt)−R(wopt)| ≤ 2anc2

|R(ŵopt)−Rn(ŵopt)| ≤ anc
2

|R(wopt)−Rn(ŵopt)| ≤ anc
2.
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|R(wopt)−Rn(ŵopt)| ≤ anc
2.

Jianqing Fan (Princeton University) Vast high-frequency volatility matrix Fields Institute 8 / 42



Impact of dimensionality

Actual vs Empirical risks Actual vs Empirical
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Theorem 2: If maxi,j P{
√

n|ij − ̂ij | > x} < exp(−Cx1/a) for large x ,

|Σ− Σ̂| = OP

(
(logp)a

√
n

)
.

�Impact of dimensionality is limited. �on inverse of tail.
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Portfolio Selection

with dynamic covariance
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Time-dependent volatility matrix

Return and Risk with holding period :

Return = wT Rt, = wT
∫ t+

t
dXs, risk = wT Σt,w,

where Σt, = Et
∫ t+
t Sudu, allowing stochastic volatility and

Su =
(
(i)

u (j)
u (i,j)

u

)
is instantaneous cov matrix.

Portfolio allocation and selection:

min
wT 1=1, Aw=a

wT Σt,w, ‖w‖1 ≤ c.
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Prediction of Covariance Matrix

Covariance matrix is predicted based on following approximations:

short-horizon  : 1
Σt, ≈ 1

h

∫ t
t−h Sudu (use of continuity)

long-horizon  : 1
Σt, ≈ 1

hE
∫ t
t−h Sudu (use of ergoticity)

� Even with observed Su in the past, Σt, is at best approximated.

� Important to reduce the sensitivity of w on the prediction of Σt,.

� Gross-exposure constraint is an effective method.
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High- and low-frequency data

Low frequency Data: Daily data w/ h = 252 or h = 512 days.

Estimated is the expected covariance matrix from [t −h, t].

Can be very different from Σt, next day or week.

Not applicable to short holding period.

Applicable to long holding period only when stationary.

Use of high-frequency data:

� More data available for estimating covariance matrix

� Shorten the time interval, reducing approximation errors

� Adapts better local correlation.

� Applicable to both long- and short-term holding periods
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Covariance Estimation

Using High-Frequency Data

Jianqing Fan (Princeton University) Vast high-frequency volatility matrix Fields Institute 14 / 42



Style features

Microstructure noise (Aït-Sahalia, Mykland, Zhang, RFS, 05);

Nonsynchronized trading (Barndorff-Nielsen, Hansen, Lunde and Shephard, EconJ,08);

Jumps in the data (Fan and Wang, 07; BNS, 04, 06, JFEC);

Data cleaning (BNHLS, EconJ, 09)
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Integrated volatility: Diagonal elements

Model: Yti = Xti + ti , Xti —latent log-price, 2 = var()

Two-scale and Multi-scaled realized volatility. (AMZ, 05; Zhang, 07)

Realized kernel method (BNHLS, JFEC 09, JEcon, 09)

Wavelets (Fan and Wang, 07) and Bipower (BNS, 04, 06, JFEC)

Quasi-MLE (Xiu, 09)

Pre-averaging (smoothing) (Jacod, Li, Mykland, Podolskij, Vetter, 09).
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Sub-sampling

Subsampling: Use once every K points

RVK ,i =
ns


j=1

(Yti+j K −Yti+(j−1)K
)2, ns = n/K , Θ =

∫ t

t−h
2

udu.

= Θ+ 2ns2 +

[
4nsE4 +

2

ns

∫
4

t dt

]1/2

·N(0,1),

Averaging : [Y ](K) =
1

K

K−1


i=0

RK ,i =
1

K

n−K


i=1

(Yti+K −Yti )
2

≈ Θ+ 2ns2 +

[
4ns

K
E4 +

4

3ns

∫
4

t dt

]1/2

·N(0,1)
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Two-scale Realized Volatility

TSRV: [Y ](K) − [Y ](1)/K · n−K+1
n

Asymptotic normality (AMZ, 05): with optimal choice K = cn2/3,

n1/6(TSRV −Θ) →
[

8c−24 + c
4

3

∫
4

t dt

]1/2

·N(0,1).

Theorem 3 (Concentration inequality): For large x that satisfies |x | ≤ cn1/6,

P{n1/6|TSRV −Θ|> x} ≤ 3exp{−Cx2}

�By Thm 2, diagonals be estimated uniformly with rate O( (logp)1/2

n
1/6
min

).
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Data Synchronization

Refresh time: Barndorff-Nielsen, Hansen, Lunde and Shephard (2008)
Asset 1

Asset 2

Asset 3
Time

�

�

�

�

�

� �

�
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�

�

�

�

�

��

�

�
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�

�

�

�

�

τ 1 τ 2 τ 3 τ 4 τ 5 τ 6 τ 7

Previous ticks and its generalization: {i − i−1} are i.i.d. OP(n−1),

and at least 1 data for each asset in (i−1,i ].

Asset A

Asset B

Deleted Point

Deleted Point

Asset A

Asse

Deleted Point

Deleted Point
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Estimation of integrated covariance

1 Two-Scale Realized Covariance (Zhang, 09):

TSCV = [Y1,Y2]
(K) − [Y1,Y2]

(1)/K · ñ−K + 1

ñ
,

where ñ is no of synchronized data, and

[Y1,Y2]
(K) = 1

K ñ
i=K (Y1,ti −Y1,ti−K )(Y2,ti −Y2,ti−K ), subsam cov

2 Realized Covariance(BNHLS, 08): log-return yt

K (X) =
H


h=−H

k

(
h

H + 1

)
Γh, Γ(h) =

n


j=|h|+1

yjy
′
j−|h|

3 QMLE (Aït-Sahalia, Fan and Xiu, 2010)

̂〈Y1,Y2〉 =
1

4
{ ̂〈Y1 +Y2,Y1 +Y2〉QMLE − ̂〈Y1 −Y2,Y1 −Y2〉QMLE}
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A concentration inequality for TSCV

Theorem 4. For large x that satisfies |x | ≤ cñ1/6,

P{ñ1/6|TSCV−
∫ 1

0
Y1

t Y2
t (Y1,Y2)

t dt| > x} ≤ 3exp{−Cx2}.

Conditions:

1 Log-price: dX
(i)
t = (i)

t dB
(i)
t with cor(B

(i)
t ,B

(j)
t ) = (i,j)

t .

2 Volatility: |(i)
t | < C.

3 Refresh time: supj |j − j−1| ≤ CΔ/n1

4 Noise: {Yi
tj } are independent, also independent of X (i).
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Applications to Portfolio Allocation
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Portfolio Optimization

Portfolio allocation: minwT 1=1, |w‖1≤c wT Σ̂w. The actual risk is no larger

than 2|Σ̂−Σ|c2 away from the oracle.

Estimation of Covariance

1 Pairwise refresh: Componentwise estimation, far more data, but Σ̂ is

not semi-positive:

|Σ̂−Σ| = O

(√
logp

n̄1/6

)
, n̄ = min

i,j
ni,j .

2 All refresh: Far less data, but Σ̂ is semi-positive:

|Σ̂−Σ| = O

(√
logp

n
1/6
∗

)
.
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|Σ̂−Σ| = O

(√
logp

n
1/6
∗

)
.
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Projection of symmetric matrices

Need of projection: Programming algorithms require Σ̂ ≥ 0.

Projection 1: A+
1 = ΓT diag(+

1 , · · · ,+
n )Γ, for a symmetric matrix with SVD

A = ΓT diag(1, · · · ,n)Γ.

Projection 2: A+
2 = (A−−minIp)/(1−−min), where −min is the negative part of

the minimum eigenvalue.

� Both projections do not alter eigenvectors;

� Applied to the correlation rather than volatility matrix

� The projection has an adverse effect on the performance.
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Remarks

1 It appears projections distort more “pairwise refresh” method than “all

refresh”. Thus, the smaller componentwise estimation errors might not be

materialized in implementation.

2 Risk approximation is an upper bound, not necessarily tight.

3 We experimented 2×2 simulation studies with the first element of Σ̂

replaced by its true value. The performance is not always better (about

65%).

4 Because of distortion, pairwise refresh performs not necessarily better.
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An Empirical Study
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An empirical testing

30 stocks from DJ Industrial components from 1/2/08–9/30/08

(Total trade: 2,307,004. Average trading: 76,900. Size: 13G)

Holding period:  = 1 or 5 days and rebalanced

testing period: 5/27/08 – 9/30/08 (90 days)

Risk profile: Use 15 minutes returns (total 26∗90 = 2340 returns),

excluding overnight holding risks.

High frequency h = 10 days; low frequency h = 100 days
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Summary of Trading Frequencies
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An empirical result ( = 1)
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An empirical result ( = 5)
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A Simulation Study
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Stochastic models

Log-prices of p-stocks follow the one-factor model (X
(i)
0 = 1):

dX
(i)
t = μ(i)dt +(i)(i)

t dB
(i)
t +

√
1− ((i))2(i)

t dWt +(i)dZ
(i)
t ,

the synchronized data highest freq (second) —latent (oracle) price.

Stochastic volatility: (i)
t = log(i)

t follows Vasicek model (OU):

d(i)
t = (i)((i)

0 −(i)
t )dt +(1)

1 dB
(i)
t .

Choice of parameter: (i) = −0.7, (i) = exp((i)
0 ),

(μ(i),(i)
0 ,(i)

1 ,(i)) = (0.03,−1, .75,1/40)⊗U(i),

where U(i) ∼i.i.d . Unif(0.7,1.3)⊗4.
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Stochastic model (II)

Trading frequency: Poisson process with i = 0.02i ×23400

—no. of seconds / day.

Size of investment universe: p = 50.
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Microstructural noise: Y
(i)
tij = X

(i)
tij +N(0,0.00052).
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Examples of realized volatilities and prices
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Demonstration of Time Variation of Stock Price S(i)

�Varying volatility, but relatively calm.
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Risk approximation: In-sample evaluation

Specific portfolios: w1 —equal weight, w2 = (1,0, · · · ,0)T ,

w3 = (1+ 2/p,−1,1/p, · · · ,1/p)T , w3 = (2,−1,0, · · · ,0)T

Evaluation: Regard risk estimated by Latent price as the true risk.

Median and Robust Standard Deviation (RSD) of Risk

Latent All-refresh TSRV All-refresh RK Pairwise TSRV

Portfolio Median(RSD) Median(RSD) Median(RSD) Median(RSD)

w1 0.440(0.0032) 0.387 (0.107) 0.434 (0.024) 0.419 (0.069)

w2 0.591(0.0060) 0.522 (0.125) 0.623 (0.025) 0.593 (0.128)

w3 0.539(0.0044) 0.469 (0.090) 0.583 (0.025) 0.520 (0.073)

w4 0.844(0.0077) 0.753 (0.174) 0.922 (0.041) 0.839 (0.178)
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Risk approximation error

Median and RSD of Absolute Risk Difference from the Oracle (Latent)

All-refresh TSRV All-refresh RK Pairwise TSRV

Portfolio Median(RSD) Median(RSD) Median(RSD)

w1 0.0889 (0.0769) 0.0183 (0.0153) 0.0547 (0.0439)

w2 0.1054 (0.0700) 0.0344 (0.0272) 0.0804 (0.0813)

w3 0.0936 (0.0665) 0.0437 (0.0300) 0.0599 (0.0593)

w4 0.1470 (0.1022) 0.0794 (0.0393) 0.1089 (0.0941)

Median and RSD of L1 Norm of Absolute Covariance Difference (ap)

All-refresh TSRV All-refresh RK Pairwise TSRV

Portfolio Median(RSD) Median(RSD) Median(RSD)

0.2476 (0.1460) 0.0603 (0.0270) 0.1730 (0.0746)
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Evaluation of portfolio allocation: In-sample risk ( = 1)
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Out-sample evaluation

Data: Simulate 100 days high frequency data.

�Low-freq: past 100 days data; �High-freq: past 10-day data

Holding period: holding period  = 1 or 5-days, rebalanced.

Risk evaluation: 15 minutes returns over 100 days (2600 returns).
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Out of sample performance (= 1)
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Out of sample performance (= 5)
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Conclusion

� Advocate portfolio selection with gross-exposure constraint.

� It is less sensitive to error of covariance estimation, and has little noise

accumulation.

� Propose ”all-fresh” and ”pair-fresh” to estimates integrated covariance,

derive the concentration inequalities, and demonstrate limited impact of

portfolio size.

� Use of HF-data increases n, shortens time window, adapts to local

covariation.

� Demonstrate the utility via empirical studies and simulations.
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The End

Thank You
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