Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection

Jianqing Fan

Princeton University

With Yingying Li and Ke Yu

http://www.princeton.edu/~jqfan

April 23, 2010

- How to select sparsely optimal portfolio?
- How to use high-frequency data to shorten time horizon?
- How large the universe of assets can be handled?
- How does the estimation of vast covariance matrix impact on the allocation vector and portfolio risk?

- How to select sparsely optimal portfolio?
- How to use high-frequency data to shorten time horizon?
- How large the universe of assets can be handled?
- How does the estimation of vast covariance matrix impact on the allocation vector and portfolio risk?

- How to select sparsely optimal portfolio?
- How to use high-frequency data to shorten time horizon?
- How large the universe of assets can be handled?
- How does the estimation of vast covariance matrix impact on the allocation vector and portfolio risk?

- How to select sparsely optimal portfolio?
- How to use high-frequency data to shorten time horizon?
- How large the universe of assets can be handled?
- How does the estimation of vast covariance matrix impact on the allocation vector and portfolio risk?

Outline

- Introduction
- Portfolio selection with time-varying covariance.
- Ovariance estimation based high-frequency data
- An empirical study
- A simulation study

Introduction

<u>Portfolio allocation</u>: $\min_{\mathbf{W}^T \mathbf{1} = 1, \mathbf{W}^T \mu = r_0} \mathbf{w}^T \Sigma \mathbf{w}$

Solution: **w** =
$$c_1 \Sigma^{-1} \mu + c_2 \Sigma^{-1} \mathbf{1}$$

- ★ Cornerstone of modern finance.
- ★ Too sensitive on input vectors and their estimation errors.
- ★ More severe for large portfolios: 2000 stocks involves 2 m parameters! Error accumulation can be huge.
- Impact of dimensionality is large:

Risk:
$$\mathbf{w}^T \hat{\Sigma} \mathbf{w}$$
. Allocation: $\hat{c}_1 \hat{\Sigma}^{-1} \mathbf{1} + \hat{c}_2 \hat{\Sigma}^{-1} \hat{\mu}$.

<u>Portfolio allocation</u>: $\min_{\mathbf{W}^T \mathbf{1} = 1, \mathbf{W}^T \mu = r_0} \mathbf{w}^T \Sigma \mathbf{w}$

Solution: **w** =
$$c_1 \Sigma^{-1} \mu + c_2 \Sigma^{-1} \mathbf{1}$$

- ★ Cornerstone of modern finance.
- ★ Too sensitive on input vectors and their estimation errors.
- ★ More severe for large portfolios: 2000 stocks involves 2 m parameters! Error accumulation can be huge.
- Impact of dimensionality is large:

Risk:
$$\mathbf{w}^T \hat{\Sigma} \mathbf{w}$$
. Allocation: $\hat{c}_1 \hat{\Sigma}^{-1} \mathbf{1} + \hat{c}_2 \hat{\Sigma}^{-1} \hat{\mu}$.

Portfolio allocation:
$$\min_{\mathbf{W}^T \mathbf{1} = 1, \mathbf{W}^T \mu = r_0} \mathbf{w}^T \Sigma \mathbf{w}$$

Solution: **w** =
$$c_1 \Sigma^{-1} \mu + c_2 \Sigma^{-1} \mathbf{1}$$

- ★ Cornerstone of modern finance.
- ★ Too sensitive on input vectors and their estimation errors.
- ★ More severe for large portfolios: 2000 stocks involves 2 m parameters! Error accumulation can be huge.
- Impact of dimensionality is large:

Risk:
$$\mathbf{w}^T \hat{\Sigma} \mathbf{w}$$
. Allocation: $\hat{c}_1 \hat{\Sigma}^{-1} \mathbf{1} + \hat{c}_2 \hat{\Sigma}^{-1} \hat{\mu}$.

Portfolio allocation:
$$\min_{\mathbf{W}^T \mathbf{1} = 1, \mathbf{W}^T \mu = r_0} \mathbf{w}^T \Sigma \mathbf{w}$$

Solution: **w** =
$$c_1 \Sigma^{-1} \mu + c_2 \Sigma^{-1} \mathbf{1}$$

- ★ Cornerstone of modern finance.
- ★ Too sensitive on input vectors and their estimation errors.
- ★ More severe for large portfolios: 2000 stocks involves 2 m parameters! Error accumulation can be huge.
- Impact of dimensionality is large:

Risk: $\mathbf{w}^T \hat{\Sigma} \mathbf{w}$. Allocation: $\hat{c}_1 \hat{\Sigma}^{-1} \mathbf{1} + \hat{c}_2 \hat{\Sigma}^{-1} \hat{\mu}$.

Exposure-constrained portfolio selection

Portfolio allocation: (Fan, et al, 08; DeMiguel et al, 08; Bordie et al, 08)

$$\min_{\boldsymbol{w}^\mathsf{\scriptscriptstyle T}\boldsymbol{1}=1,\ \boldsymbol{A}\boldsymbol{w}=\boldsymbol{a}}\ \boldsymbol{w}^\mathsf{\scriptscriptstyle T}\boldsymbol{\Sigma}\boldsymbol{w},\qquad \|\boldsymbol{w}\|_{\boldsymbol{1}}\leq \boldsymbol{c}.$$

Constraints:

- expected return or sector exposures via A.
- short positions: $\mathbf{w}^- \le (c-1)/2$, since $w^+ + w^- \le c$, $w^+ - w^- = 1$. $c = 1 \Longrightarrow$ no short-sale; $c = \infty \Longrightarrow$ Markowitz problem

Portfolio selection: solution is usually sparse.

Applicability: Any coherent risk measures (Artzner et al, 1999)

Exposure-constrained portfolio selection

Portfolio allocation: (Fan, et al, 08; DeMiguel et al, 08; Bordie et al, 08)

$$\min_{\boldsymbol{w}^\mathsf{\scriptscriptstyle T}\boldsymbol{1}=1,\ \boldsymbol{A}\boldsymbol{w}=\boldsymbol{a}}\ \boldsymbol{w}^\mathsf{\scriptscriptstyle T}\boldsymbol{\Sigma}\boldsymbol{w},\qquad \|\boldsymbol{w}\|_{\boldsymbol{1}}\leq \boldsymbol{c}.$$

Constraints:

- expected return or sector exposures via A.
- short positions: $\mathbf{w}^- \le (c-1)/2$, since $\mathbf{w}^+ + \mathbf{w}^- \le c$, $\mathbf{w}^+ - \mathbf{w}^- = 1$. $c = 1 \Longrightarrow$ no short-sale; $c = \infty \Longrightarrow$ Markowitz problem.

<u>Portfolio selection</u>: solution is usually sparse.

Applicability: Any coherent risk measures (Artzner et al, 1999)

Exposure-constrained portfolio selection

Portfolio allocation: (Fan, et al, 08; DeMiguel et al, 08; Bordie et al, 08)

$$\min_{\boldsymbol{w}^{\mathsf{T}}\boldsymbol{1}=1,\ \boldsymbol{A}\boldsymbol{w}=\boldsymbol{a}}\ \boldsymbol{w}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{w},\qquad \|\boldsymbol{w}\|_{\boldsymbol{1}}\leq \boldsymbol{c}.$$

Constraints:

- expected return or sector exposures via A.
- short positions: $\mathbf{w}^- \le (c-1)/2$, since $w^+ + w^- \le c$, $w^+ - w^- = 1$. $c = 1 \Longrightarrow$ no short-sale; $c = \infty \Longrightarrow$ Markowitz problem.

<u>Portfolio selection</u>: solution is usually sparse.

Applicability: Any coherent risk measures (Artzner et al, 1999)

Utility Approximations

<u>Utility Approx.</u>: Let $M(\mu, \Sigma) = \mathbf{w}^T \mu - \lambda \mathbf{w}^T \Sigma \mathbf{w}$ be expected utility.

$$\begin{split} |M(\hat{\mu}, \hat{\Sigma}) - M(\mu, \Sigma)| & \leq & \|\hat{\mu} - \mu\|_{\infty} \|\mathbf{w}\|_{1} + \lambda |\hat{\Sigma} - \Sigma|_{\infty} \|\mathbf{w}\|_{1}^{2} \\ & \leq & \|\hat{\mu} - \mu\|_{\infty} c + \lambda |\hat{\Sigma} - \Sigma|_{\infty} c^{2}, \end{split}$$

- No noise accumulation effect for moderate $c \le 3$, say.
- ■applicable to any number of assets p

Risk Approx.: Letting $R(\mathbf{w}, \Sigma) = \mathbf{w}^T \Sigma \mathbf{w}$,

$$|R(\mathbf{w}, \hat{\Sigma}) - R(\mathbf{w}, \Sigma)| \le |\hat{\Sigma} - \Sigma|_{\infty} c^2$$

Utility Approximations

<u>Utility Approx.</u>: Let $M(\mu, \Sigma) = \mathbf{w}^T \mu - \lambda \mathbf{w}^T \Sigma \mathbf{w}$ be expected utility.

$$\begin{split} |M(\hat{\mu}, \hat{\Sigma}) - M(\mu, \Sigma)| & \leq & \|\hat{\mu} - \mu\|_{\infty} \|\mathbf{w}\|_{1} + \lambda |\hat{\Sigma} - \Sigma|_{\infty} \|\mathbf{w}\|_{1}^{2} \\ & \leq & \|\hat{\mu} - \mu\|_{\infty} c + \lambda |\hat{\Sigma} - \Sigma|_{\infty} c^{2}, \end{split}$$

- ■No noise accumulation effect for moderate $c \le 3$, say.
- \blacksquare applicable to any number of assets p

Risk Approx.: Letting $R(\mathbf{w}, \Sigma) = \mathbf{w}^T \Sigma \mathbf{w}$,

$$|R(\mathbf{w}, \hat{\Sigma}) - R(\mathbf{w}, \Sigma)| \leq |\hat{\Sigma} - \Sigma|_{\infty} c^2,$$

Risk Approximation Theory

Actual and Empirical risks:
$$R(\mathbf{w}) = \mathbf{w}^T \Sigma \mathbf{w}$$
, $R_n(\mathbf{w}) = \mathbf{w}^T \hat{\Sigma} \mathbf{w}$.

Theoretical and empirical allocation vector:

$$\mathbf{w}_{opt} = \operatorname{argmin}_{||\mathbf{w}||_1 \le c} R(\mathbf{w}), \qquad \hat{\mathbf{w}}_{opt} = \operatorname{argmin}_{||\mathbf{w}||_1 \le c} R_n(\mathbf{w})$$

Risks:
$$\sqrt{R(\mathbf{w}_{opt})}$$
 —oracle, $\sqrt{R_n(\hat{\mathbf{w}}_{opt})}$ —empirical $\sqrt{R(\hat{\mathbf{w}}_{opt})}$ —actual risk of a selected portfolio.

Theorem 1: Let $a_n = |\hat{\Sigma} - \Sigma|_{\infty}$. Then, we have

$$|R(\hat{\mathbf{w}}_{opt}) - R(\mathbf{w}_{opt})| \leq 2a_n c^2$$

$$|R(\hat{\mathbf{w}}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2$$

$$|R(\mathbf{w}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2.$$

Risk Approximation Theory

Actual and Empirical risks:
$$R(\mathbf{w}) = \mathbf{w}^T \Sigma \mathbf{w}$$
, $R_n(\mathbf{w}) = \mathbf{w}^T \hat{\Sigma} \mathbf{w}$.

Theoretical and empirical allocation vector:

$$\mathbf{w}_{opt} = \operatorname{argmin}_{||\mathbf{w}||_1 \le c} R(\mathbf{w}), \qquad \hat{\mathbf{w}}_{opt} = \operatorname{argmin}_{||\mathbf{w}||_1 \le c} R_n(\mathbf{w})$$

■Risks:
$$\sqrt{R(\mathbf{w}_{opt})}$$
 —oracle, $\sqrt{R_n(\hat{\mathbf{w}}_{opt})}$ —empirical; $\sqrt{R(\hat{\mathbf{w}}_{opt})}$ —actual risk of a selected portfolio.

Theorem 1: Let $a_n = |\hat{\Sigma} - \Sigma|_{\infty}$. Then, we have

$$|R(\hat{\mathbf{w}}_{opt}) - R(\mathbf{w}_{opt})| \leq 2a_n c^2$$

$$|R(\hat{\mathbf{w}}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2$$

$$|R(\mathbf{w}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2.$$

Risk Approximation Theory

Actual and Empirical risks:
$$R(\mathbf{w}) = \mathbf{w}^T \Sigma \mathbf{w}$$
, $R_n(\mathbf{w}) = \mathbf{w}^T \hat{\Sigma} \mathbf{w}$.

Theoretical and empirical allocation vector:

$$\mathbf{w}_{opt} = \operatorname{argmin}_{||\mathbf{w}||_1 \le c} R(\mathbf{w}), \qquad \hat{\mathbf{w}}_{opt} = \operatorname{argmin}_{||\mathbf{w}||_1 \le c} R_n(\mathbf{w})$$

■Risks:
$$\sqrt{R(\mathbf{w}_{opt})}$$
 —oracle, $\sqrt{R_n(\hat{\mathbf{w}}_{opt})}$ —empirical; $\sqrt{R(\hat{\mathbf{w}}_{opt})}$ —actual risk of a selected portfolio.

Theorem 1: Let $a_n = |\hat{\Sigma} - \Sigma|_{\infty}$. Then, we have

$$|R(\hat{\mathbf{w}}_{opt}) - R(\mathbf{w}_{opt})| \leq 2a_n c^2$$

$$|R(\hat{\mathbf{w}}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2$$

$$|R(\mathbf{w}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2.$$

Impact of dimensionality

Actual vs Empirical risks

Actual vs Empirical

Theorem 2: If $\max_{i,j} P\{\sqrt{n}|\sigma_{ij} - \hat{\sigma}_{ij}| > x\} < \exp(-\mathbf{C}\mathbf{x}^{1/a})$ for large x,

$$|\Sigma - \hat{\Sigma}|_{\infty} = O_P\left(\frac{\left(\log p\right)^a}{\sqrt{n}}\right).$$

■Impact of dimensionality is limited.

on inverse of tail.

Portfolio Selection with dynamic covariance

Time-dependent volatility matrix

Return and Risk with holding period τ :

$$\mathbf{Return} = \mathbf{w}^T \mathbf{R}_{t,\tau} = \mathbf{w}^T \int_t^{t+\tau} d\mathbf{X}_s, \qquad \mathbf{risk} = \mathbf{w}^T \boldsymbol{\Sigma}_{t,\tau} \mathbf{w},$$

where $\Sigma_{t,\tau} = E_t \int_t^{t+\tau} \mathbf{S}_u du$, allowing **stochastic** volatility and $\mathbf{S}_u = \left(\sigma_u^{(i)} \sigma_u^{(j)} \rho_u^{(i,j)}\right)$ is instantaneous cov matrix.

Portfolio allocation and selection:

$$\min_{\mathbf{W}^T\mathbf{1}=\mathbf{1},\ \mathbf{A}\mathbf{W}=\mathbf{a}}\mathbf{w}^T\boldsymbol{\Sigma}_{t,\tau}\mathbf{w},\qquad \|\mathbf{w}\|_{\mathbf{1}}\leq \mathbf{c}.$$

Time-dependent volatility matrix

Return and Risk with holding period τ :

$$\mathbf{Return} = \mathbf{w}^T \mathbf{R}_{t,\tau} = \mathbf{w}^T \int_t^{t+\tau} d\mathbf{X}_s, \qquad \mathbf{risk} = \mathbf{w}^T \boldsymbol{\Sigma}_{t,\tau} \mathbf{w},$$

where $\Sigma_{t,\tau} = E_t \int_t^{t+\tau} \mathbf{S}_u du$, allowing **stochastic** volatility and $\mathbf{S}_u = \left(\sigma_u^{(i)} \sigma_u^{(j)} \rho_u^{(i,j)}\right)$ is instantaneous cov matrix.

Portfolio allocation and selection:

$$\min_{\mathbf{W}^T \mathbf{1} = \mathbf{1}, \ \mathbf{A} \mathbf{W} = \mathbf{a}} \mathbf{w}^T \Sigma_{t, \tau} \mathbf{w}, \qquad \|\mathbf{w}\|_{\mathbf{1}} \leq \mathbf{c}.$$

Prediction of Covariance Matrix

Covariance matrix is predicted based on following approximations:

short-horizon τ : $\frac{1}{\tau} \Sigma_{t,\tau} \approx \frac{1}{h} \int_{t-h}^{t} \mathbf{S}_{u} du$ (use of continuity)

long-horizon τ : $\frac{1}{\tau} \Sigma_{t,\tau} \approx \frac{1}{h} E \int_{t-h}^{t} \mathbf{S}_{u} du$ (use of ergoticity)

- Even with observed \mathbf{S}_u in the past, $\Sigma_{t,\tau}$ is at best approximated.
- Important to reduce the sensitivity of ${f w}$ on the prediction of $\Sigma_{t, au}$
- Gross-exposure constraint is an effective method.

Prediction of Covariance Matrix

Covariance matrix is predicted based on following approximations:

short-horizon
$$\tau$$
 : $\frac{1}{\tau} \Sigma_{t,\tau} \approx \frac{1}{h} \int_{t-h}^{t} \mathbf{S}_{u} du$ (use of continuity)

long-horizon
$$\tau$$
 : $\frac{1}{\tau} \Sigma_{t,\tau} \approx \frac{1}{h} E \int_{t-h}^{t} \mathbf{S}_u du$ (use of ergoticity)

- **E**ven with observed \mathbf{S}_u in the past, $\Sigma_{t,\tau}$ is at best approximated.
- Important to reduce the sensitivity of \mathbf{w} on the prediction of $\Sigma_{t,\tau}$.
- Gross-exposure constraint is an effective method.

High- and low-frequency data

Low frequency Data: Daily data w/ h = 252 or h = 512 days.

- Estimated is the expected covariance matrix from [t-h,t].
- Can be very different from $\Sigma_{t,\tau}$ next day or week.
- Not applicable to short holding period.
- Applicable to long holding period only when stationary.

Use of high-frequency data:

- ★ More data available for estimating covariance matrix
- ★ Shorten the time interval, reducing approximation errors
- ★ Adapts better local correlation.
- ★ Applicable to both long- and short-term holding periods

High- and low-frequency data

Low frequency Data: Daily data w/ h = 252 or h = 512 days.

- Estimated is the expected covariance matrix from [t h, t].
- Can be very different from $\sum_{t,\tau}$ next day or week.
- Not applicable to short holding period.
- Applicable to long holding period only when stationary.

Use of high-frequency data:

- ★ More data available for estimating covariance matrix
- ★ Shorten the time interval, reducing approximation errors
- Adapts better local correlation.
- ★ Applicable to both long- and short-term holding periods

Covariance Estimation Using High-Frequency Data

Style features

- Microstructure noise (Aït-Sahalia, Mykland, Zhang, RFS, 05);
- Nonsynchronized trading (Barndorff-Nielsen, Hansen, Lunde and Shephard, EconJ,08);
- Jumps in the data (Fan and Wang, 07; BNS, 04, 06, JFEC);
- Data cleaning (BNHLS, EconJ, 09)

Integrated volatility: Diagonal elements

$$\underline{\text{Model}} \colon Y_{t_i} = X_{t_i} + \varepsilon_{t_i}, \qquad \qquad X_{t_i} - \text{latent log-price, } \eta^2 = \text{var}(\varepsilon)$$

- Two-scale and Multi-scaled realized volatility. (AMZ, 05; Zhang, 07)
- Realized kernel method (BNHLS, JFEC 09, JEcon, 09)
- Wavelets (Fan and Wang, 07) and Bipower (BNS, 04, 06, JFEC)
- Quasi-MLE (Xiu, 09)
- Pre-averaging (smoothing) (Jacod, Li, Mykland, Podolskij, Vetter, 09).

Sub-sampling

Subsampling: Use once every *K* points

$$RV_{K,i} = \sum_{j=1}^{n_s} (Y_{t_{i+jK}} - Y_{t_{i+(j-1)K}})^2, \qquad n_s = n/K, \quad \Theta = \int_{t-n}^t \sigma_u^2 du.$$

$$= \Theta + 2n_s \eta^2 + \left[4n_s E \varepsilon^4 + \frac{2}{n_s} \int \sigma_t^4 dt \right]^{1/2} \cdot N(0,1),$$

Averaging:
$$[Y]^{(K)} = \frac{1}{K} \sum_{i=0}^{K-1} R_{K,i} = \frac{1}{K} \sum_{i=1}^{n-K} (Y_{t_i+K} - Y_{t_i})^2$$

$$\approx \Theta + 2n_s \eta^2 + \left[\frac{4n_s}{K} E \varepsilon^4 + \frac{4}{3n_s} \int \sigma_t^4 dt \right]^{1/2} \cdot N(0,1)$$

Two-scale Realized Volatility

TSRV:
$$[Y]^{(K)} - [Y]^{(1)} / K \cdot \frac{n - K + 1}{n}$$

Asymptotic normality (AMZ, 05): with optimal choice $K = cn^{2/3}$,

$$n^{1/6}(\mathit{TSRV} - \Theta)
ightarrow \left[8c^{-2}\eta^4 + c \frac{4}{3} \int \sigma_t^4 \mathit{d}t
ight]^{1/2} \cdot \mathit{N}(0,1).$$

Theorem 3 (Concentration inequality): For large x that satisfies $|x| \le cn^{1/6}$,

$$P\{n^{1/6}|TSRV - \Theta| > x\} \le 3\exp\{-Cx^2\}$$

By Thm 2, diagonals be estimated uniformly with rate $O(\frac{(\log p)^{1/2}}{n_{\min}^{1/6}})$.

Two-scale Realized Volatility

$$\underline{\mathsf{TSRV}}: [Y]^{(K)} - [Y]^{(1)} / K \cdot \tfrac{n - K + 1}{n}$$

Asymptotic normality (AMZ, 05): with optimal choice $K = cn^{2/3}$,

$$n^{1/6}(\mathit{TSRV} - \Theta) \rightarrow \left[8c^{-2}\eta^4 + c\frac{4}{3}\int \sigma_t^4 dt\right]^{1/2} \cdot \mathit{N}(0,1).$$

Theorem 3 (Concentration inequality): For large x that satisfies $|x| \le cn^{1/6}$,

$$P\{n^{1/6}|TSRV - \Theta| > x\} \le 3\exp\{-Cx^2\}$$

■By Thm 2, diagonals be estimated uniformly with rate $O(\frac{(\log p)^{1/2}}{n_{\min}^{1/6}})$.

Data Synchronization

Refresh time: Barndorff-Nielsen, Hansen, Lunde and Shephard (2008)

<u>Previous ticks and its generalization</u>: $\{\tau_i - \tau_{i-1}\}$ are i.i.d. $O_P(n^{-1})$, and at least 1 data for <u>each asset</u> in $(\tau_{i-1}, \tau_i]$.

Estimation of integrated covariance

Two-Scale Realized Covariance (Zhang, 09):

$$\mbox{TSCV} = [Y_1, Y_2]^{(K)} - [Y_1, Y_2]^{(1)} / K \cdot \frac{\tilde{n} - K + 1}{\tilde{n}},$$

where \tilde{n} is no of synchronized data, and

$$[Y_1,Y_2]^{(K)}=rac{1}{K}\sum_{i=K}^{ ilde{n}}(Y_{1,t_i}-Y_{1,t_{i-K}})(Y_{2,t_i}-Y_{2,t_{i-K}}),$$
 subsam cov

2 Realized Covariance(BNHLS, 08): log-return \mathbf{y}_t

$$K(X) = \sum_{h=-H}^{H} k\left(\frac{h}{H+1}\right) \Gamma_h, \qquad \Gamma(h) = \sum_{j=|h|+1}^{n} \mathbf{y}_j \mathbf{y}'_{j-|h|}$$

QMLE (Aït-Sahalia, Fan and Xiu, 2010)

$$\widehat{\langle Y_1, Y_2 \rangle} = \frac{1}{4} \{ \langle Y_1 + \widehat{Y_2, Y_1} + Y_2 \rangle_{QMLE} - \langle Y_1 - \widehat{Y_2, Y_1} - Y_2 \rangle_{QMLE} \}$$

Estimation of integrated covariance

Two-Scale Realized Covariance (Zhang, 09):

TSCV =
$$[Y_1, Y_2]^{(K)} - [Y_1, Y_2]^{(1)} / K \cdot \frac{\tilde{n} - K + 1}{\tilde{n}},$$

where \tilde{n} is no of synchronized data, and

$$[Y_1,Y_2]^{(K)}=rac{1}{K}\sum_{i=K}^{ ilde{n}}(Y_{1,t_i}-Y_{1,t_{i-K}})(Y_{2,t_i}-Y_{2,t_{i-K}}),$$
 subsam cov

Realized Covariance(BNHLS, 08): log-return y_t

$$K(X) = \sum_{h=-H}^{H} k\left(\frac{h}{H+1}\right) \Gamma_h, \qquad \Gamma(h) = \sum_{j=|h|+1}^{n} \mathbf{y}_j \mathbf{y}'_{j-|h|}$$

QMLE (Aït-Sahalia, Fan and Xiu, 2010)

$$\langle \widehat{Y_1, Y_2} \rangle = \frac{1}{4} \{ \langle Y_1 + \widehat{Y_2, Y_1} + Y_2 \rangle_{QMLE} - \langle Y_1 - \widehat{Y_2, Y_1} - Y_2 \rangle_{QMLE} \}$$

Estimation of integrated covariance

Two-Scale Realized Covariance (Zhang, 09):

TSCV =
$$[Y_1, Y_2]^{(K)} - [Y_1, Y_2]^{(1)} / K \cdot \frac{\tilde{n} - K + 1}{\tilde{n}},$$

where \tilde{n} is no of synchronized data, and

$$[Y_1,Y_2]^{(K)}=rac{1}{K}\sum_{i=K}^{ ilde{n}}(Y_{1,t_i}-Y_{1,t_{i-K}})(Y_{2,t_i}-Y_{2,t_{i-K}}),$$
 subsam cov

Realized Covariance(BNHLS, 08): log-return y_t

$$K(X) = \sum_{h=-H}^{H} k\left(\frac{h}{H+1}\right) \Gamma_h, \qquad \Gamma(h) = \sum_{j=|h|+1}^{n} \mathbf{y}_j \mathbf{y}'_{j-|h|}$$

QMLE (Aït-Sahalia, Fan and Xiu, 2010)

$$\langle \widehat{Y_1,Y_2} \rangle = \frac{1}{4} \{ \langle Y_1 + \widehat{Y_2,Y_1} + Y_2 \rangle_{QMLE} - \langle Y_1 - \widehat{Y_2,Y_1} - Y_2 \rangle_{QMLE} \}$$

A concentration inequality for TSCV

Theorem 4. For large x that satisfies $|x| \le c\tilde{n}^{1/6}$,

$$P\{\tilde{n}^{1/6}|\mathsf{TSCV} - \int_0^1 \sigma_t^{Y_1} \sigma_t^{Y_2} \rho_t^{(Y_1,Y_2)} dt| > x\} \leq 3 \exp\{-Cx^2\}.$$

Conditions

- **1** Log-price: $dX_t^{(i)} = \sigma_t^{(i)} dB_t^{(i)}$ with $cor(B_t^{(i)}, B_t^{(j)}) = \rho_t^{(i,j)}$.
- **2** Volatility: $|\sigma_t^{(i)}| < C_{\sigma}$.
- **3** Refresh time: $\sup_{j} |\tau_{j} \tau_{j-1}| \leq C_{\Delta}/n_{1}$
- **Noise**: $\{\epsilon_{t_i}^{Y_i}\}$ are independent, also independent of $X^{(i)}$.

A concentration inequality for TSCV

Theorem 4. For large x that satisfies $|x| \le c\tilde{n}^{1/6}$,

$$P\{\tilde{n}^{1/6}|\mathsf{TSCV} - \int_0^1 \sigma_t^{Y_1} \sigma_t^{Y_2} \rho_t^{(Y_1,Y_2)} dt| > x\} \leq 3 \exp\{-Cx^2\}.$$

Conditions:

- **1** Log-price: $dX_t^{(i)} = \sigma_t^{(i)} dB_t^{(i)}$ with $cor(B_t^{(i)}, B_t^{(j)}) = \rho_t^{(i,j)}$.
- **Volatility**: $|\sigma_t^{(i)}| < C_{\sigma}$.
- **3** Refresh time: $\sup_j |\tau_j \tau_{j-1}| \le C_{\Delta}/n_1$
- **Noise**: $\{\epsilon_{t_i}^{Y_i}\}$ are independent, also independent of $X^{(i)}$.

Applications to Portfolio Allocation

Portfolio Optimization

<u>Portfolio allocation</u>: $\min_{\mathbf{W}^T \mathbf{1} = 1, \|\mathbf{w}\|_1 \le c} \mathbf{w}^T \widehat{\Sigma} \mathbf{w}$. The actual risk is no larger than $2|\widehat{\Sigma} - \Sigma|_{\infty} c^2$ away from the oracle.

Estimation of Covariance

• Pairwise refresh: Componentwise estimation, far more data, but $\hat{\Sigma}$ is **not** semi-positive:

$$|\hat{\Sigma} - \Sigma|_{\infty} = O\left(\frac{\sqrt{\log p}}{\bar{n}^{1/6}}\right), \qquad \bar{n} = \min_{i,j} n_{i,j}.$$

2 All refresh: Far less data, but $\hat{\Sigma}$ is semi-positive:

$$|\hat{\Sigma} - \Sigma|_{\infty} = O\left(\frac{\sqrt{\log p}}{n_*^{1/6}}\right)$$

Portfolio Optimization

<u>Portfolio allocation</u>: $\min_{\mathbf{W}^T \mathbf{1} = 1, \|\mathbf{w}\|_1 \le c} \mathbf{w}^T \widehat{\Sigma} \mathbf{w}$. The actual risk is no larger than $2|\widehat{\Sigma} - \Sigma|_{\infty} c^2$ away from the oracle.

Estimation of Covariance

Pairwise refresh: Componentwise estimation, far more data, but $\hat{\Sigma}$ is not semi-positive:

$$|\hat{\Sigma} - \Sigma|_{\infty} = O\left(\frac{\sqrt{\log p}}{\bar{n}^{1/6}}\right), \qquad \bar{n} = \min_{i,j} n_{i,j}.$$

2 All refresh: Far less data, but $\hat{\Sigma}$ is semi-positive:

$$|\hat{\Sigma} - \Sigma|_{\infty} = O\left(\frac{\sqrt{\log p}}{n_*^{1/6}}\right)$$

Portfolio Optimization

<u>Portfolio allocation</u>: $\min_{\mathbf{W}^T \mathbf{1} = 1, \|\mathbf{W}\|_1 \le c} \mathbf{w}^T \widehat{\Sigma} \mathbf{w}$. The actual risk is no larger than $2|\hat{\Sigma} - \Sigma|_{\infty} c^2$ away from the oracle.

Estimation of Covariance

Pairwise refresh: Componentwise estimation, far more data, but $\hat{\Sigma}$ is not semi-positive:

$$|\hat{\Sigma} - \Sigma|_{\infty} = O\left(\frac{\sqrt{\log p}}{\bar{n}^{1/6}}\right), \qquad \bar{n} = \min_{i,j} n_{i,j}.$$

All refresh: Far less data, but $\hat{\Sigma}$ is semi-positive:

$$|\hat{\Sigma} - \Sigma|_{\infty} = O\left(\frac{\sqrt{\log p}}{n_*^{1/6}}\right).$$

Projection of symmetric matrices

Need of projection: Programming algorithms require $\widehat{\Sigma} \geq 0$.

Projection 1: $\mathbf{A}_1^+ = \Gamma^T \operatorname{diag}(\lambda_1^+, \cdots, \lambda_n^+) \Gamma$, for a symmetric matrix with SVD $\mathbf{A} = \Gamma^T \operatorname{diag}(\lambda_1, \cdots, \lambda_n) \Gamma$.

Projection 2: $\mathbf{A}_2^+ = (\mathbf{A} - \lambda_{\min}^- I_p)/(1 - \lambda_{\min}^-)$, where λ_{\min}^- is the negative part of the minimum eigenvalue.

- Both projections do not alter eigenvectors
- Applied to the correlation rather than volatility matrix
- The projection has an adverse effect on the performance.

Projection of symmetric matrices

Need of projection: Programming algorithms require $\widehat{\Sigma} \geq 0$.

Projection 1: $\mathbf{A}_1^+ = \Gamma^T \mathrm{diag}(\lambda_1^+, \cdots, \lambda_n^+) \Gamma$, for a symmetric matrix with SVD $\mathbf{A} = \Gamma^T \mathrm{diag}(\lambda_1, \cdots, \lambda_n) \Gamma$.

<u>Projection 2</u>: $\mathbf{A}_2^+ = (\mathbf{A} - \lambda_{\min}^- I_p)/(1 - \lambda_{\min}^-)$, where λ_{\min}^- is the negative part of the minimum eigenvalue.

- Both projections do not alter eigenvectors
- Applied to the correlation rather than volatility matrix
- The projection has an adverse effect on the performance.

Projection of symmetric matrices

Need of projection: Programming algorithms require $\widehat{\Sigma} \geq 0$.

Projection 1:
$$\mathbf{A}_1^+ = \Gamma^T \mathrm{diag}(\lambda_1^+, \cdots, \lambda_n^+) \Gamma$$
, for a symmetric matrix with SVD $\mathbf{A} = \Gamma^T \mathrm{diag}(\lambda_1, \cdots, \lambda_n) \Gamma$.

<u>Projection 2</u>: $\mathbf{A}_2^+ = (\mathbf{A} - \lambda_{\min}^- I_p)/(1 - \lambda_{\min}^-)$, where λ_{\min}^- is the negative part of the minimum eigenvalue.

- Both projections do not alter eigenvectors;
- Applied to the correlation rather than volatility matrix
- The projection has an adverse effect on the performance.

Remarks

- It appears projections **distort** more "pairwise refresh" method than "all refresh". Thus, the smaller componentwise estimation errors might not be materialized in implementation.
- Risk approximation is an upper bound, not necessarily tight.
- 3 We experimented 2×2 simulation studies with the first element of $\widehat{\Sigma}$ replaced by its true value. The performance is not always better (about 65%).
- Because of distortion, pairwise refresh performs not necessarily better.

Remarks

- It appears projections **distort** more "pairwise refresh" method than "all refresh". Thus, the smaller componentwise estimation errors might not be materialized in implementation.
- Risk approximation is an upper bound, not necessarily tight.
- **3** We experimented 2×2 simulation studies with the first element of $\widehat{\Sigma}$ replaced by its true value. The performance is not always better (about 65%).
- Because of distortion, pairwise refresh performs not necessarily better.

An Empirical Study

An empirical testing

- 30 stocks from DJ Industrial components from 1/2/08–9/30/08
 (Total trade: 2,307,004. Average trading: 76,900. Size: 13G)
- Holding period: $\tau = 1$ or 5 days and rebalanced
- testing period: 5/27/08 9/30/08 (90 days)
- Risk profile: Use 15 minutes returns (total 26 * 90 = 2340 returns), excluding overnight holding risks.
- High frequency h = 10 days; low frequency h = 100 days

Summary of Trading Frequencies

An empirical result ($\tau = 1$)

An empirical result ($\tau = 5$)

A Simulation Study

Stochastic models

Log-prices of *p*-stocks follow the **one-factor** model $(X_0^{(i)} = 1)$:

$$\mathrm{d} X_t^{(i)} = \mu^{(i)} \, \mathrm{d} t + \rho^{(i)} \sigma_t^{(i)} \, \mathrm{d} B_t^{(i)} + \sqrt{1 - (\rho^{(i)})^2} \sigma_t^{(i)} \, \mathrm{d} W_t + \lambda^{(i)} \, \mathrm{d} Z_t^{(i)},$$

the synchronized data highest freq (second) -latent (oracle) price.

Stochastic volatility: $\mathbf{\eta}_t^{(i)} = \log \mathbf{\sigma}_t^{(i)}$ follows Vasicek model (OU)

$$d\eta_t^{(i)} = \alpha^{(i)} (\beta_0^{(i)} - \eta_t^{(i)}) dt + \beta_1^{(1)} dB_t^{(i)}.$$

Choice of parameter: $\rho^{(i)} = -0.7$, $\lambda^{(i)} = exp(\beta_0^{(i)})$,

$$(\mu^{(i)}, \beta_0^{(i)}, \beta_1^{(i)}, \alpha^{(i)}) = (0.03, -1, .75, 1/40) \otimes \mathbf{U}^{(i)},$$

where $\mathbf{U}^{(i)} \sim_{i.i.d.} \text{Unif}(0.7, 1.3)^{\otimes 4}$.

Stochastic models

Log-prices of *p*-stocks follow the **one-factor** model $(X_0^{(i)} = 1)$:

$$\mathrm{d} X_t^{(i)} = \mu^{(i)} \, \mathrm{d} t + \rho^{(i)} \sigma_t^{(i)} \, \mathrm{d} B_t^{(i)} + \sqrt{1 - (\rho^{(i)})^2} \sigma_t^{(i)} \, \mathrm{d} W_t + \lambda^{(i)} \, \mathrm{d} Z_t^{(i)},$$

the synchronized data highest freq (second) —latent (oracle) price.

Stochastic volatility: $\eta_t^{(i)} = \log \sigma_t^{(i)}$ follows Vasicek model (OU):

$$d\eta_t^{(i)} = \alpha^{(i)}(\beta_0^{(i)} - \eta_t^{(i)})dt + \beta_1^{(1)}dB_t^{(i)}.$$

Choice of parameter: $\rho^{(i)} = -0.7$, $\lambda^{(i)} = \exp(\beta_0^{(i)})$,

$$(\mu^{(i)}, \beta_0^{(i)}, \beta_1^{(i)}, \alpha^{(i)}) = (0.03, -1, .75, 1/40) \otimes \mathbf{U}^{(i)},$$

where $\mathbf{U}^{(i)} \sim_{i,i,d} \text{Unif}(0.7, 1.3)^{\otimes 4}$.

Stochastic models

Log-prices of *p*-stocks follow the **one-factor** model $(X_0^{(i)} = 1)$:

$$\mathrm{d} X_t^{(i)} = \mu^{(i)} \, \mathrm{d} t + \rho^{(i)} \sigma_t^{(i)} \, \mathrm{d} B_t^{(i)} + \sqrt{1 - (\rho^{(i)})^2} \sigma_t^{(i)} \, \mathrm{d} W_t + \lambda^{(i)} \, \mathrm{d} Z_t^{(i)},$$

the synchronized data highest freq (second) —latent (oracle) price.

Stochastic volatility: $\eta_t^{(i)} = \log \sigma_t^{(i)}$ follows Vasicek model (OU):

$$d\eta_t^{(i)} = \alpha^{(i)}(\beta_0^{(i)} - \eta_t^{(i)})dt + \beta_1^{(1)}dB_t^{(i)}.$$

Choice of parameter: $\rho^{(i)} = -0.7$, $\lambda^{(i)} = \exp(\beta_0^{(i)})$,

$$(\mu^{(i)}, \beta_0^{(i)}, \beta_1^{(i)}, \alpha^{(i)}) = (0.03, -1, .75, 1/40) \otimes \mathbf{U}^{(i)},$$

where $\mathbf{U}^{(i)} \sim_{i.i.d.} \text{Unif}(0.7, 1.3)^{\otimes 4}$.

Stochastic model (II)

Trading frequency: Poisson process with $\lambda_i = 0.02i \times 23400$

—no. of seconds / day.

Size of investment universe: p = 50.

all-fresh pairwise-refresh Ave of min pairwise-refresh 375 5355 410

<u>Microstructural noise</u>: $Y_{t_{ij}}^{(i)} = X_{t_{ij}}^{(i)} + N(0, 0.0005^2)$.

Examples of realized volatilities and prices

Varying volatility, but relatively calm.

Risk approximation: In-sample evaluation

Specific portfolios:
$$w_1$$
 —equal weight, $w_2 = (1, 0, \dots, 0)^T$,

$$w_3 = (1+2/p,-1,1/p,\cdots,1/p)^T, \qquad w_3 = (2,-1,0,\cdots,0)^T$$

Evaluation: Regard risk estimated by Latent price as the true risk

Median and Robust Standard Deviation (RSD) of Risk

	Latent	All-refresh TSRV	All-refresh RK	Pairwise TSRV
Portfolio	Median(RSD)	Median(RSD)	Median(RSD)	Median(RSD)
W_1	0.440(0.0032)	0.387 (0.107)	0.434 (0.024)	0.419 (0.069)
W ₂	0.591(0.0060)	0.522 (0.125)	0.623 (0.025)	0.593 (0.128)
W ₃	0.539(0.0044)	0.469 (0.090)	0.583 (0.025)	0.520 (0.073)
W_4	0.844(0.0077)	0.753 (0.174)	0.922 (0.041)	0.839 (0.178)

Risk approximation: In-sample evaluation

Specific portfolios:
$$w_1$$
 —equal weight, $w_2 = (1, 0, \dots, 0)^T$,

$$w_3 = (1+2/p, -1, 1/p, \dots, 1/p)^T, \qquad w_3 = (2, -1, 0, \dots, 0)^T$$

Evaluation: Regard risk estimated by Latent price as the true risk.

Median and Robust Standard Deviation (RSD) of Risk

		Latent	All-refresh TSRV	All-refresh RK	Pairwise TSRV
	Portfolio	Median(RSD)	Median(RSD)	Median(RSD)	Median(RSD)
-	<i>W</i> ₁	0.440(0.0032)	0.387 (0.107)	0.434 (0.024)	0.419 (0.069)
	<i>W</i> ₂	0.591(0.0060)	0.522 (0.125)	0.623 (0.025)	0.593 (0.128)
	<i>W</i> ₃	0.539(0.0044)	0.469 (0.090)	990) 0.583 (0.025) 0	0.520 (0.073)
	W_4	0.844(0.0077)	0.753 (0.174)	0.922 (0.041)	0.839 (0.178)

Risk approximation error

Median and RSD of Absolute Risk Difference from the Oracle (Latent)							
	All-refresh TSRV	All-refresh RK	Pairwise TSRV				
Portfolio	Median(RSD)	Median(RSD)	Median(RSD)				
<i>W</i> ₁	0.0889 (0.0769)	0.0183 (0.0153)	0.0547 (0.0439)				
<i>W</i> ₂	0.1054 (0.0700)	0.0344 (0.0272)	0.0804 (0.0813)				
W_3	0.0936 (0.0665)	0.0437 (0.0300)	0.0599 (0.0593)				
<i>W</i> ₄	0.1470 (0.1022)	0.0794 (0.0393)	0.1089 (0.0941)				
Median and RSD of L_1 Norm of Absolute Covariance Difference (a_p)							
	All-refresh TSRV	All-refresh RK	Pairwise TSRV				
Portfolio	Median(RSD)	Median(RSD)	Median(RSD)				
	0.2476 (0.1460)	0.0603 (0.0270)	0.1730 (0.0746)				

Evaluation of portfolio allocation: In-sample risk ($\tau = 1$)

Out-sample evaluation

<u>Data</u>: Simulate 100 days high frequency data.

Low-freq: past 100 days data;

High-freq: past 10-day data

Holding period: holding period $\tau = 1$ or 5-days, rebalanced.

Risk evaluation: 15 minutes returns over 100 days (2600 returns).

Out of sample performance ($\tau = 1$)

Out of sample performance ($\tau = 5$)

Conclusion

- Advocate portfolio selection with gross-exposure constraint.
- It is less sensitive to error of covariance estimation, and has little noise accumulation.
- Propose "all-fresh" and "pair-fresh" to estimates integrated covariance, derive the concentration inequalities, and demonstrate limited impact of portfolio size.
- Use of HF-data increases n, shortens time window, adapts to local covariation.
- Demonstrate the utility via empirical studies and simulations.

Conclusion

- Advocate portfolio selection with gross-exposure constraint.
- It is less sensitive to error of covariance estimation, and has little noise accumulation.
- Propose "all-fresh" and "pair-fresh" to estimates integrated covariance, derive the concentration inequalities, and demonstrate limited impact of portfolio size.
- Use of HF-data increases *n*, shortens time window, adapts to local covariation.
- Demonstrate the utility via empirical studies and simulations.

Conclusion

- Advocate portfolio selection with gross-exposure constraint.
- It is less sensitive to error of covariance estimation, and has little noise accumulation.
- Propose "all-fresh" and "pair-fresh" to estimates integrated covariance, derive the concentration inequalities, and demonstrate limited impact of portfolio size.
- Use of HF-data increases *n*, shortens time window, adapts to local covariation.
- Demonstrate the utility via empirical studies and simulations.

The End

Thank

You