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1 SELF-EXCITING JUMPS AND CONTAGION

1. Self-Exciting Jumps and Contagion

� Stock market crashes are very unlikely under standard Brownian-driven
statistical models.

� Even more unlikely would be crashes that happen in many if not all
markets around the world. Yet even more unlikely would be crashes
that happen in close succession, like earthquake aftershocks.

� Despite the predictions of standard models, recurring crises happen
every decade or so.

� These crises seldom have discernible economic causes or warnings, and
they tend to propagate across the world with little regard for economic
fundamentals in the a�ected markets.
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1 SELF-EXCITING JUMPS AND CONTAGION

� There is a large literature on contagion, both in economics and in
�nance.

� Theoretical rationales for the observed contagion

{ Krugman (1979); Gerlach and Smets (1995); Obstfeld (1996);

Dornbusch, Park and Claessens (2000); Calvo and Mendoza (2000);

Chang and Velasco (2001); Kodres and Pritsker (2002); Nikitin and

Smith (2008); Pavlova and Rigobon (2008).
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1 SELF-EXCITING JUMPS AND CONTAGION

� Empirical measurements of contagion

{ Hamao, Masulis and Ng (1990); Becker, Finnerty and Gupta (1990);

Eichengreen, Rose and Wyplosz (1996); Glick and Rose (1999);

Kaminsky and Reinhart (2000); Van Rijckeghem and Weder (2001);

Forbes and Rigobon (2002); Rigobon (2003); Bae, Karolyi and

Stulz (2003); Caramazza, Ricci and Salgado (2004); Hartmann,

Straetmans and de Vries (2004); Goetzmann, Li and Rouwenhorst

(2005); Dungey and Gonzalez-Hermosillo (2005); Dungey, Fry and

Martin (2007).
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1 SELF-EXCITING JUMPS AND CONTAGION

� In a crisis, a shock somewhere seems to increase the probability of
successive shocks not only in the a�ected sector but also in other
economic sectors or regions.

� To model this, we need jumps.

{ The observed clusters are too extreme to be explainable by volatility
clusters.

{ With jumps, we need to leave the widely applied class of L�evy
processes.

{ L�evy processes have independent increments and so do not allow
for any type of serial dependence.

{ Whereas the propagation of jumps over time is a key component
we wish to capture.
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1 SELF-EXCITING JUMPS AND CONTAGION

� So, in this paper, we propose a model for asset return dynamics that
captures the cross-sectional and serial dependence observed across

stock markets around the world

� We suggest to use mutually exciting jumps, known as Hawkes processes
after Hawkes (1971).

� Hawkes processes were originally proposed to model epidemics. They
have also been used to model earthquake occurrences and more re-

cently joint defaults in credit derivatives (Giesecke (2008)).

� We will use Hawkes processes to represent the jump part of our price
processes, which remain semimartingales.
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1 SELF-EXCITING JUMPS AND CONTAGION

� Key features

{ A crisis is not just made up of jumps, it also needs them to be

ampli�ed across both markets and time.

{ The model generates the type of successive jumps across world

markets that are often observed in economic crises.

{ And produces clusters of jumps over time: for example, what was

frequently observed in 2008.

7



1 SELF-EXCITING JUMPS AND CONTAGION

An example: February 26-29, 2007
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1 SELF-EXCITING JUMPS AND CONTAGION

Another example: October 3-10, 2008
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1 SELF-EXCITING JUMPS AND CONTAGION

Jump clustering in the full sample

2

0

0.2

US

2

0

0.2

UK

2

0

0.2

EU

2

0

0.2

JA

2

0

0.2

ASEM

1980 1985 1990 1995 2000 2005

2

0

0.2

LA

10



1 SELF-EXCITING JUMPS AND CONTAGION

� A self-exciting process is a special case of a point process, whose

intensity depends on the path of the underlying process.

� Here, the jump intensity is going to increase in response to recent
jumps.

11



1 SELF-EXCITING JUMPS AND CONTAGION

� Consider m point processes Nt =
h
N1;t; :::; Nm;t

i
such that

Pr
h
Nl;t+�t �Nl;t = 1jFt

i
= �l;t�t+ o (�t)

Pr
h
Nl;t+�t �Nl;t > 1jFt

i
= o (�t)

with jump intensities given by

�l;t = �1;l;t +
mX
j=1

Z t
0
dj;l;t�sdNj;s

where �1;l;t is a deterministic function.
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1 SELF-EXCITING JUMPS AND CONTAGION

� There will be one such jump process Nl;t for each of the m sectors (or

regions of the world).

� Each region's jump intensity is stochastic and depends upon the path
of the past jumps:

{ in its own region

{ and in the other regions.
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1 SELF-EXCITING JUMPS AND CONTAGION

� A special case of particular interest is one where intensities depend on
an exponentially weighted moving average of the recent jumps

dj;l;s = �j;le
��ls

where �l and �l;j are positive constant parameters such that �l >

�mj=1�l;j.

� The intensities then become stationary Markov processes with �l;t
jumping up by �j;l whenever a shock in sector j occurs, and then

decaying exponentially back towards �l;1:

d�l;t = �l
�
�l;1 � �l;t

�
dt+

mX
j=1

�l;jdNj;t
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1 SELF-EXCITING JUMPS AND CONTAGION

Sample path of an intensity �l;t

t

Jump Times

In
te

ns
ity

T T T T1 2 3 4

15



1 SELF-EXCITING JUMPS AND CONTAGION

� These jumps, by virtue of their self-excitation, introduce a feedback
element.

{ This can be thought of as playing the same role for jumps as ARCH

does for volatility.

{ Engle (1982)'s ARCH introduces feedback from returns to volatility

and back: large returns! large volatilities! more likely to observe

large returns. Then mean reversion.

{ In the absence of further excitation, volatility then reverts to its

steady state level.

{ Here, similarly, jumps ! larger jump intensities! more likely to

observe further jumps. Then mean reversion.
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1 SELF-EXCITING JUMPS AND CONTAGION

� Our model for asset prices: to these jumps, we add a drift and sto-
chastic volatility to produce what me might call a \Hawkes-di�usion"

process.

{ Basically, self-exciting jumps are there to capture crises

{ The rest of the model is there to represent the evolution of the

asset returns the rest of the time.
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1 SELF-EXCITING JUMPS AND CONTAGION

� m sectors (or regions) with k �rms (or countries) each

� n = mk assets

� Model for asset prices j = 1; : : : ; n

dXi;t = (r +Ri) dt+
nX
j=1

�i;j;tdWj;t +
mX
l=1

�i;lJiZl;tdNl;t

where Nl is a self-exciting process.
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2 INFERENCE FOR SELF-EXCITING JUMPS

2. Inference for Self-Exciting Jumps

� We use Morgan Stanley Capital International (MSCI) equity index
data, for six series: US; Latin America (LA); UK; Developed European

countries (EU); Japan (JA); Emerging markets Asia (ASEM).

� Daily data are available from January 1, 1980 (for US, UK, EU and

JA), from January 29, 1988 (for LA) and from January 1, 1988 (for

ASEM).
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2 INFERENCE FOR SELF-EXCITING JUMPS

� Inference is based on GMM

� We compute the �rst four moments explicitly

{ �rst the conditional moments using the full state vector: asset re-

turns, stochastic volatilities, jump intensities

{ then condition down by taking expected values over the latent state

variables: volatilities and jump intensities

20



2 INFERENCE FOR SELF-EXCITING JUMPS

� We use as moment functions, for each pair of assets

E
h
�Xj;t

i
E
h
(�Xj;t � E

h
�Xj;t

i
)r
i
; r = 2; : : : ; 4

E
h
�Xj;t�Xk;t � E

h
�Xj;t

i
E
h
�Xk;t

ii
; j 6= k

E
h
�Xj;t+��Xk;t � E

h
�Xj;t

i
E
h
�Xk;t

ii
; � > 0

� Higher order moments (r > 2) separate jumps from volatility charac-

teristics

� Auto- and cross-correlation moments isolate the self-excitation com-
ponent of the model
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2 INFERENCE FOR SELF-EXCITING JUMPS

� Example: Moments in the univariate case m = 1

� In this situation, there is a single asset with stochastic volatility and
jumps that self-excite (meaning that future jump intensities depend

upon the history of past jumps):8>><>>:
dXt = �dt+ V

1=2
t dWX

t + ZtdNt

dVt = �(� � Vt)dt+ �V
1=2
t dWV

t
d�t = � (�1 � �t) dt+ �dNt

with E
h
dWX

t dW
V
t

i
:= �dt and � := E [�t] = ��1=(�� �):

� We can leave the distribution of the jump size essentially unrestricted,
and provide expressions as functions of the moments of the jump size

Zt: Let M [Z; k] := E
h
Zkt

i
:
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2 INFERENCE FOR SELF-EXCITING JUMPS

Theorem 1: For the univariate model, the moments are given in closed-form
up to order �2 by the following expressions

E [�Xt] = (�+ �M [Z; 1])� + o(�2)

E
�
(�Xt � E [�Xt])

2
�
= (� + �M [Z; 2])� +

�� (2�� �)
2(�� �)

M(Z; 1)2�2 + o(�2)

E
�
(�Xt � E [�Xt])

3
�
= �M [Z; 3]�

+
3

2

�
���+

(2�� �)��M [Z; 1]M [Z; 2]

(�� �)

�
�2 + o(�2)

E
�
(�Xt � E [�Xt])

4
�
= �M [Z; 4]� +

�
3��2

2�
+ 3�2 + 6��M [Z; 2]

+ 3�

�
�+

(2�� �)�
2(�� �)

�
M [Z; 2]2

+
2(2�� �)��M [Z; 1]M [Z; 3]

(�� �)

�
�2 + o(�2)

while the autocorrelation function of the process is given for all � > 0 by

E [(�Xt � E [�Xt])(�Xt+� � E [�Xt+� ])] =
��(2�� �)
2(�� �)

M(Z; 1)2e�(���)��2 + o(�2):
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2 INFERENCE FOR SELF-EXCITING JUMPS

� The identi�cation of the parameters is achieved as follows:

{ The higher order moments (3 and 4) isolate the jump parameters

at the leading order

{ While the variance puts them on an equal footing with the di�usive

parameters

{ The autocovariances isolate the self-exciting jump parameters

� Indeed, if the model had no jump component, then

E [(�Xt) (�Xt+�)] = E [(�Xt)E [(�Xt+�) jFt+� ]]
= �2�2

and so E [(�Xt � E [�Xt])(�Xt+� � E [�Xt+� ])] = 0:

� Thus any autocovariance is due to the jump component.
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2 INFERENCE FOR SELF-EXCITING JUMPS

� Further, if the jump component were Poissonian, then the incre-
ments would be independent.

� Thus the observed autocovariances of the increments isolate the
self-exciting component of the model.

� The same intuition holds in higher dimensions.

� The paper provides explicit expressions for the moments in dimension
m:
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2 INFERENCE FOR SELF-EXCITING JUMPS

Auto- and cross-correlations
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2 INFERENCE FOR SELF-EXCITING JUMPS

� Empirically, we �nd relatively large values for �21, measuring the degree
of transmission from the US to other regions of the world.

{ This implies that when the US jumps, the probability of a consec-
utive jump in another region of the world becomes large.

{ From the empirical cross-correlation plots, the e�ect seems to be
mainly driven by transmission on the same day or the day following
the day of occurrence of a US jump.

� There is little evidence for the reverse excitation (�12 is approximately
0 in all cases).

� Also, we �nd relatively large values for �11 and �22, measuring the
degree of self-excitation, implying that jumps tend to be clustered in
time.
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2 INFERENCE FOR SELF-EXCITING JUMPS

� Testing for the presence of contagion

� In the context of the model, this boils down to testing the join hy-
pothesis that all �ij's are 0:

� We can separate between:

{ Self- or time-series contagion: diagonal �ii = 0

{ Cross-sectional contagion: o�-diagonal �ij = 0; i 6= j
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3 OPTIMAL PORTFOLIO CHOICE WHEN JUMPS ARE SELF-EXCITING

3. Optimal Portfolio Choice When Jumps Are

Self-Exciting

� The model is reduced-form: it cannot explain the source(s) of the
contagion that is observed in the data, or get at the channels of trans-

mission of that contagion, whether trade linkages, �nancial linkages, �-

nancial constraints, out
ows of capital, herding behaviors, the fragility

of the system, lack of coordinated responses, etc.

� But the model can be employed as a description of the process driving
the asset returns, as input for other purposes.

29



3 OPTIMAL PORTFOLIO CHOICE WHEN JUMPS ARE SELF-EXCITING

� Asset return dynamics
dS0;t

S0;t
= rdt;

dSi;t

Si;t�
= (r +Ri) dt+

nX
j=1

�i;jdWj;t +
mX
l=1

�i;lJiZl;tdNl;t

where Nt =
h
N1;t; : : : ; Nm;t

i0
is an m�dimensional mutually exciting

process
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3 OPTIMAL PORTFOLIO CHOICE WHEN JUMPS ARE SELF-EXCITING

� The intensity �l;t of Nl;t is self-exciting with mean-reversion

d�l;t = �l
�
�1;l � �l;t

�
dt+

mX
j=1

�l;jdNj;t:

� The Brownian motions, jump processes and the random jump ampli-

tude variables Zl are all mutually independent.
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3 OPTIMAL PORTFOLIO CHOICE WHEN JUMPS ARE SELF-EXCITING

� Let !0;t denote the weight invested in the riskless asset and !t =h
!1;t; : : : ; !n;t

i0
denote the vector of portfolio weights invested in each

of the n risky assets.

� The investor's problem at time t is to pick fCs; !sgt�s to maximize
expected utility

V (Xt; t) = max
fCs;!s; t�sg

Et

�Z 1
t
e��sU(Cs)ds

�
subject to the wealth dynamics

dXt = �Ctdt+
Xn

i=0
!i;tXt

dSi;t

Si;t�
:
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3 OPTIMAL PORTFOLIO CHOICE WHEN JUMPS ARE SELF-EXCITING

� We can determine !�n;t in closed form in some speci�c situations.

{ For example, suppose that the investor has logarithmic utility:
U (x) = log (x) and that the jump sizes are equally distributed:
�l(dz) = � (z = �z) :

{ There is a unique solution !�n;t satisfying the solvency constraint
!n;tjl�z > �1:

!�n;t =
��1l=k + jl�zrl +

�
(jl�zrl + �1l=k)

2 + 4�l;tj
2
l �z
2�1l=k

�1=2
2jl�z�1l=k

� The optimal solution is now time-varying, with the investor reacting
to changes in the intensity of the jumps.

� Even though this is a log-utility investor, the solution is not myopic.
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4 TAILS AND VAR

4. Tails and VaR

� The model generates fat tails with speci�c roles for the di�erent pa-
rameters.

� Over short horizons (e.g., 10-day for VaR), these expressions are ex-
plicit.

� Self- and cross-excitation parameters have asymmetrical in
uences on
the tails.
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4 TAILS AND VAR

Univariate Tails
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4 TAILS AND VAR

� Typical VaR calculation over a time horizon of � = 10 days

{ from the perspective of a regulator concerned with the probability

of joint individual losses L1 and L2 in two �rms under scrutiny:

P (�X1 � �L1;�X2 � �L2)

{ or that of a portfolio manager concerned with losses exceeding a

level L in a portfolio invested in the two assets in proportions !1
and !2 :

P (!1�X1 + !2�X2 � �L) :

� Depend on the tails of the joint distribution.

36



4 TAILS AND VAR
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5 MEASURING MARKET STRESS USING FILTERED VALUES OF THE JUMP INTENSITIES

5. Measuring Market Stress Using Filtered Val-

ues of the Jump Intensities
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5 MEASURING MARKET STRESS USING FILTERED VALUES OF THE JUMP INTENSITIES

Real-Time Estimated Jump Intensities
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6 DERIVATIVE PRICING

6. Derivative Pricing

� The model can be restricted to �t the rich class of a�ne jump-di�usion
models, in their generalized version allowing for multiple jump types

de�ned in Du�e, Pan and Singleton (2000, Appendix B).

� An a�ne special case of our model would therefore share in the

tractable pricing implementation that results from an a�ne structure.
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