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Introduction

West Nile virus:

West Nile virus (WNV) is a mosquito-borne disease.

The life cycle of the virus circulates between mosquitoes and birds.

The virus is transmitted
to humans by
mosquitoes, but, cannot
be transmitted back to
mosquitoes due to the
low concentration of the
virus in human body.
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Introduction

Forward bifurcation and Backward bifurcation:
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Review and Comparison

Model Mosquitos Birds Backward

bifurcation

Wonham et al. 2004 Constant Constant No

Bowman et al. 2005 Logistic Logistic Yes [7]

Lord and Day 2001 Logistic Logistic ?

Cruz-Pacheco et al. 2005 Constant Logistic ?
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Question:

If the backward bifurcation can occur for the model of
Cruz-Pacheco et al. and Lord and Day ?

When will the backward bifurcation happen in the compartmental
models for WNV ?
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Dynamical analysis of the Cruz-Pacheco’s Model

State variables:

State variables Mosquito Bird

Susceptible SV SR

Infectious IV IR
Recovered RR

Total adults NV NR
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Dynamical analysis of the Cruz-Pacheco’s Model

Parameters:

Parameters in the models Vector Reservoir

Per capita birth rate bV

Recruitment rate ΛR

Proportion of births that are infected p
Natural death rate µV µR

Disease-induced death rate αR

Recovery rate γR

Biting rate b
Transmission probability (from vectors to birds) βR

Transmission probability (from birds to vectors) βV
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Dynamical analysis of the Cruz-Pacheco’s Model

Model:

dSR

dt
= ΛR −

bβR

NR
IV SR − µRSR ,

dIR
dt

=
bβR

NR
IV SR − (γR + µR + αR)IR ,

dRR

dt
= γR IR − µRRR ,

dSV

dt
= µV SV + (1− p)µV IV − bβV

IR
NR

SV − µV SV ,

dIV
dt

= pµV IV + bβV
IR
NR

SV − µV IV ,

(1)

where SV + IV = NV and SR + IR + RR = NR are the total number of
mosquitoes and birds respectively.
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Dynamical analysis of the Cruz-Pacheco’s Model

Variable change:

sa =
SR

ΛR/µR
, ia =

IR
ΛR/µR

,

ra =
RR

ΛR/µR
, na =

NR

ΛR/µR
,

sv =
SV

NV
, iv =

IV
NV

.

(2)
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Dynamical analysis of the Cruz-Pacheco’s Model



dsa
dt

= µR −
bβRm

na
iv sa − µRsa,

dia
dt

=
bβRm

na
iv sa − (γR + µR + αR)ia,

div
dt

=
bβV

na
ia(1− iv )− (1− p)µV iv ,

dna

dt
= µR − µRna − αR ia.

(3)

m = NV
ΛR/µR

: the ratio of the number of mosquitoes and birds at the
disease-free equilibrium.
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Dynamical analysis of the Cruz-Pacheco’s Model

Existence of equilibria:

The disease-free equilibrium P0(1, 0, 0, 1) always exists.

For any positive equilibrium P̂(ŝa, îa, îv , n̂a), its coordinates satisfy the
following relations

ŝa =
µR − (γR + µR + αR )̂ia

µR
, (4)

n̂a =
µR − αR îa

µR
, (5)

îv =
µRbβV îa

(bβV µR − αR(1− p)µV )̂ia + (1− p)µV µR

. (6)
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Dynamical analysis of the Cruz-Pacheco’s Model

ia-coordinate must be a positive root of the quadratic polynomial

Γ(ia) = Ai2a + Bia + C , (7)

in the interval îa ∈
(
0, µR

µR+γR+αR

)
, where

A = [bβV µR − αR(1− p)µV ]
αR

µR
, (8)

B = 2αR(1− p)µV − bβV µR −mb2βRβV , (9)

C = µR(1− p)µV (R2
0G − 1), (10)

and R0G is the basic reproduction number.
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Dynamical analysis of the Cruz-Pacheco’s Model

Theorem

For existence of equilibria of the model (3), we have the following:

1 The boundary equilibrium, the disease free equilibrium P0(1, 0, 0, 1)
always exists.

2 If R0G > 1, there exists a unique positive equilibrium P∗.

3 If R0G = 1, then there exists a positive equilibrium provided A < 0
and B > 0, otherwise there is no positive equilibrium.

4 If R0G < 1 and
1 if A > 0, there is no positive equilibrium;
2 if A < 0, the system (3) has two positive equilibria P1 and P2 if and

only if ∆ > 0 and 0 < −B
2A < µR

µR+γR+αR
. And these two equilibria

coalesce if and only if 0 < −B
2A < µR

µR+γR+αR
and ∆ = 0; otherwise there

is no positive equilibrium.

Hui Wan (York University) Backward bifurcation in WNV models May 14, 2010 14 / 23



Dynamical analysis of the Cruz-Pacheco’s Model

Stability of equilibria:

Theorem

The disease-free equilibrium P0 is stable iff R0G < 1.
For positive equilibria,

1 if R0G ≥ 1, then the unique positive equilibrium P∗ is locally
asymptotically stable.

2 if R0G < 1 and conditions

A < 0, 0 < − B

2A
<

µR

µR + γR + αR
, and ∆ = B2 − 4AC > 0.

(11)
are satisfied, then the positive equilibrium P1 is a saddle point and P2

is locally asymptotically stable.
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Dynamical analysis of the Cruz-Pacheco’s Model

Backward bifurcation:

When R0G < 1, (αR : disease-induced death rate, γR : recovery rate)

with the assumption αR ≥ γR , model (1) has no positive equilibrium
which implies the forward bifurcation occurs at R0G = 1 [4].

with the assumption αR > γR , by our analysis, there can be at most
two positive equilibria which implies the backward bifurcation occurs
at R0G = 1.
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Dynamical analysis of the Cruz-Pacheco’s Model

Backward bifurcation diagram:

We describe the backward bifurcation condition

R0G < 1, A < 0, 0 < − B

2A
<

µR

µR + γR + αR
and ∆ > 0. (12)

in the (µV , µR)-plane.
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Dynamical analysis of the Cruz-Pacheco’s Model

C0 : R0G = 1, C1 : 2µRA + (µR + γR + αR)B = 0,
CA : A = 0, CB : B = 0.
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Simulation

Let (µV , µR) = (0.6, 0.13). Note that R0G = 0.9959 < 1. The initial data
is (sa(0), ia(0), iv (0), na(0)) = (0.38, 0.15, 0.05, 0.58).

Although the basic reproduction number smaller than unity, the disease
can still spread persistently.
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Simulation

The time course of ia with the same parameter values but different initial
states.

In the case backward bifurcation occurs, different initial states may induce
different transmission results.
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Conclusion

Model Mosquitos Birds Backward

bifurcation

Wonham et al. 2004 Constant Constant No

Bowman et al. 2005 Logistic Logistic Yes [7]

Cruz-Pacheco et al. 2005 Constant Logistic Yes

Lord and Day 2001 Logistic Logistic Yes

(For the model of Lord and Day, it is non-autonomous, if we ignore the seasonal

effect and do not distinguish birds as juvenile and adult and consider all

parameters as constant, one can follow the analysis in Section 3 to analyze the

simplified version of the model and prove the existence of the backward

bifurcation.)
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Conclusion

The backward bifurcation is an intrinsic property for compartmental
model of WNV if bird population satisfies logistic type growth and
disease-induced death rate is big enough.

If the backward bifurcation occurs,
the basic reproduction number is not enough to describe whether the
disease will prevail of not. In this case, a subthreshold condition value
R̂0 is needed and we should also pay more attention to the
initial states.
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