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I. Introduction

We study plane Couette flow at Re = 400 in the minimal flow unit. The aim is to

understand the global dynamics of bursting and subcritical transition.

From a dynamical systems point of view we are interested in equilibria,

time-periodic solutions and invariant manifolds.
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I. Introduction

Kawahara & Kida computed a periodic solution close to the laminar state. Its

stable manifold separates the phase space. See also work by Viswanath, Gibson,

Schneider, . . .
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A quiescent and a turbulent periodic orbit, projected on

energy input rate and energy disspipation rate. Kawa-

hara & Kida, JFM 2001.
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I. Introduction
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An oversimplified picture. . .
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II. Manifold computation

# equations is (k − 1)n + k
# unknowns is (k − 1)n + k + 1

There exists a one-parameter family of solutions

and this family covers a piece of Wu.
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II. Manifold computation

We can solve the arclength continuation equations

F(X) = 0 where F : RN+1 → RN

by a prediction–correction method. In every step we must solve

A dX =



In
−J1 In

−J2 In A

. . .
. . .

B C



dX =



−F1(X)

·
·
·

−F(k−1)n(X)

−F(k−1)n+1(X)
...

−F(k−1)n+k(X)

0


where A, B and C are sparse. The last row in the matrix is T = Ẋ.
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II. Manifold computation

Multiple shooting Newton-Krylov continuation of BVP

1. Find an initial solution by forward integration starting from γ(0) = x̄ + ε0u1.

Set T = (0, . . . , 0, 1)t.

2. Prediction: z0i+1 = zi +∆sTi.

3. Correction: approximate the solution to

A δzj =

 DF

Tt
i

 δzj = −

 F(zji+1)

0


by GMRES iterations up to tolerance d and update zj+1

i+1 = zji+1 + δzj until a

Newton-Raphson convergence criterion is met. Then set zi+1 = zji+1.

4. Control step size ∆s.

5. Compute T by finite differences.

6. Repeat 2.-5. for i = 1, 2, . . . , imax.
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II. Manifold computation

Lemma

Matrix A has eigenvalue λ0 = 1 with algebraic multiplicity at least (k − 1)(n− 1)

and geometric multiplicity at least (n− 1)

Proposition

Assume that all eigenvalues of A other than λ0 = 1 are simple. Then the number

of GMRES iterations necessary is at most (3k − 1) with exact arithmetic.
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II. Manifold computation

As expected, the “local” unstable manifold looks like a cylinder:
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III. Homoclinic orbit

A piece of the global unstable manifold:
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III. Homoclinic orbit
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e/ē  2  2.5  3  3.5

 2

 2.5

 3

 3.5

 4

ǫ/ǫeq

e/
e e

q

Fields, May 2010



III. Homoclinic orbit

Wiggins, Global Bifurcations and Chaos, 1988. Fields, May 2010



IV. Conclusion

1) Strong evidence for the existence of an orbit homoclinic to the “edge state”.

2) The global geometry of the (un)stable manifold will be quite complex.

3) The homoclinic orbit might serve as a global target for control.
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