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The tangled edge of turbulence in bursting Couette flow
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I. Introduction

We study plane Couette flow at Re = 400 in the minimal flow unit. The aim is to
understand the global dynamics of bursting and subcritical transition.

From a dynamaical systems point of view we are interested in equilibria,

time-periodic solutions and invariant manifolds.
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Pamsr WU I. Introduction

Kawahara & Kida computed a periodic solution close to the laminar state. Its
stable manifold separates the phase space. See also work by Viswanath, Gibson,
Schneider, . ..

A quiescent and a turbulent periodic orbit, projected on

energy wnmput rate and enerqgy disspipation rate. Kawa-
hara € Kida, JFM 2001.

Fields, May 2010
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An oversimplified picture. ..

Laminar eq
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@ xmxz WUOLL II. Manifold computation

91(11) =0

ga(2) =0

93(73) =0

# equations is (k — 1)n + k
# unknowns is (k — I)n + k+ 1

There exists a one-parameter family of solutions
and this family covers a piece of W,.
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@ xmxz WUOLT II. Manifold computation

We can solve the arclength continuation equations
F(X)=0 where F: RVt RV

by a prediction—correction method. In every step we must solve

( I \ ( —F1(X) \
—_J, I, |
—Js 1, A
AdX = aX = | —Fu1yn(X)
—F—1yn+1(X)
B C
\ ) —F—1yn+1(X)

U
where A, B and C are sparse. The last row in the matrix is T = X.

Fields, May 2010



@ #lxz @UOLT IT. Manifold computation

Multiple shooting Newton-Krylov continuation of BVP

. Find an initial solution by forward integration starting from ~(0) = X + €yuys.
Set T = (0,...,0,1).

. Prediction: zg_l_l —z; + AsT;.

. Correction: approximate the solution to

J
Adz! = DF 0z) = — F(Ziﬂ)
T? 0

i
by GMRES iterations up to tolerance d and update zZill = 7/ L1 + 0z’ until a
Newton-Raphson convergence criterion is met. Then set z;,1 = z;Z 41

. Control step size As.

. Compute T by finite differences.

. Repeat 2.-5. for 1 =1,2,..., tmax.
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II. Manifold computation

Lemma

Matrix A has eigenvalue \y = 1 with algebraic multiplicity at least (kK —1)(n — 1)

and geometric multiplicity at least (n — 1)

Proposition

Assume that all eigenvalues of A other than Ay = 1 are simple. Then the number

of GMRES iterations necessary is at most (3k — 1) with exact arithmetic.

residue ||F(z)||
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As expected, the “local” unstable manifold looks like a cylinder:
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A piece of the global unstable manifold:
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I1I. Homoclinic orbit
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I1I. Homoclinic orbit

Higure 3.4.7. The Homoclinic Torus Tangle, Cut Away Half View.
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Figure 3.4.8. The Hegion I and Its [terat

Wiggins, Global Bifurcations and Chaos, 1988.
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g5, Cul Away Hall View.
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Pamsr WU IV. Conclusion

1) Strong evidence for the existence of an orbit homoclinic to the “edge state”.
2) The global geometry of the (un)stable manifold will be quite complex.
3) The homoclinic orbit might serve as a global target for control.
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