The tangled edge of turbulence in bursting Couette flow

Genta Kawahara Matsumura Atsushi

Lennaert van Veen

We study plane Couette flow at Re = 400 in the minimal flow unit. The aim is to understand the global dynamics of bursting and subcritical transition.

From a *dynamical systems* point of view we are interested in equilibria, time-periodic solutions and invariant manifolds.

Kawahara & Kida computed a periodic solution close to the laminar state. Its stable manifold separates the phase space. See also work by Viswanath, Gibson, Schneider, . . .

A quiescent and a turbulent periodic orbit, projected on energy input rate and energy disspipation rate. Kawahara & Kida, JFM 2001.

We can solve the arclength continuation equations

$$\mathbf{F}(\mathbf{X}) = \mathbf{0}$$
 where $\mathbf{F}: \mathbb{R}^{N+1} \to \mathbb{R}^N$

by a prediction-correction method. In every step we must solve

$$A d\mathbf{X} = \begin{pmatrix} \mathbb{I}_n & & & & \\ -J_1 & \mathbb{I}_n & & & & \\ & -J_2 & \mathbb{I}_n & & & \\ & & \ddots & \ddots & & \\ & & \mathbf{B} & & \mathbf{C} \end{pmatrix} d\mathbf{X} = \begin{pmatrix} -F_1(\mathbf{X}) & & & \\ & \ddots & & & \\ & & -F_{(k-1)n}(\mathbf{X}) & \\ & & \vdots & \\ -F_{(k-1)n+k}(\mathbf{X}) & \\ & 0 & \end{pmatrix}$$

where **A**, **B** and **C** are sparse. The last row in the matrix is $T = \dot{X}$.

Multiple shooting Newton-Krylov continuation of BVP

- 1. Find an initial solution by forward integration starting from $\gamma(0) = \bar{\mathbf{x}} + \epsilon_0 \mathbf{u}_1$. Set $\mathbf{T} = (0, \dots, 0, 1)^t$.
- 2. Prediction: $\mathbf{z}_{i+1}^0 = \mathbf{z}_i + \Delta s \, \mathbf{T}_i$.
- 3. Correction: approximate the solution to

$$\mathcal{A}\,\delta\mathbf{z}^{j} = \begin{pmatrix} D\mathbf{F} \\ \mathbf{T}_{i}^{t} \end{pmatrix} \delta\mathbf{z}^{j} = -\begin{pmatrix} \mathbf{F}(\mathbf{z}_{i+1}^{j}) \\ 0 \end{pmatrix}$$

by GMRES iterations up to tolerance d and update $\mathbf{z}_{i+1}^{j+1} = \mathbf{z}_{i+1}^{j} + \delta \mathbf{z}^{j}$ until a Newton-Raphson convergence criterion is met. Then set $\mathbf{z}_{i+1} = \mathbf{z}_{i+1}^{j}$.

- 4. Control step size Δs .
- 5. Compute \mathbf{T} by finite differences.
- 6. Repeat 2.-5. for $i = 1, 2, ..., i_{\text{max}}$.

Lemma

Matrix \mathcal{A} has eigenvalue $\lambda_0 = 1$ with algebraic multiplicity at least (k-1)(n-1) and geometric multiplicity at least (n-1)

Proposition

Assume that all eigenvalues of \mathcal{A} other than $\lambda_0 = 1$ are simple. Then the number of GMRES iterations necessary is at most (3k-1) with exact arithmetic.

As expected, the "local" unstable manifold looks like a cylinder:

A piece of the global unstable manifold:

Figure 3.4.7. The Homoclinic Torus Tangle, Cut Away Half View.

Figure 3.4.8. The Region D and Its Iterates, Cut Away Half View.

- 1) Strong evidence for the existence of an orbit homoclinic to the "edge state".
- 2) The global geometry of the (un)stable manifold will be quite complex.
- 3) The homoclinic orbit might serve as a global target for control.

