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Thank you for the invitation!

This work was partially supported by NSERC.

Warning: this talk does not cite all the work that it should cite.
Our preprint is more responsible: “Nonnegative solutions for a long-
wave unstable thin film equation with convection” with M. Chugunova
and R.M. Taranets, to appear in the SIAM Journal on Mathematical
Analysis.
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Coating and rimming flows

Consider a horizontal cylinder, rotating about its axis. If
there is a fluid on the outside of the cylinder, this is called
a coating flow. If the fluid is on the inside of the cylinder,
this is called a rimming flow.

“It is a matter of common experience that if a knife is dipped
in honey and then held horizontally, the honey will drain off;
but that the honey may be retained on the knife by simply
rotating it about its length. The question arises: what is
the maximum load of honey that can be supported per unit
length of knife for a given rotation rate?” — H.K. Moffatt,
Journal de Méchanique 16(1977)5:651–673.
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Coating experiments

H.K. Moffatt, Journal de Méchanique 16(1977)5:651–673. Reproduced without author’s permission.
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Rimming experiments

S.T. Thoroddsen and L. Mahadevan Experiments in Fluids 23(1997)1-13. Reproduced without authors’ permission.
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Model parameters

Consider a thin liquid film on the outer surface of a cylinder:

R is the radius of the cylinder. ω is the rate of rotation. g is
the acceleration due to gravity. ν is the kinematic viscosity.
ρ is the density. σ is the surface tension.
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Lubrication approximation model

Three dimensionless quantities: the Reynolds number Re =
R2ω
ν , γ = g

Rω2, and the Weber number We = ρR3ω2

σ .

Modelling assumptions:

• The fluid flow is modelled by the Navier Stokes equations

• There is no slip at the liquid/solid interface

• There is surface tension at the liquid/air interface

• If ū is the average thickness of the fluid then ε = ū/R is
small

• χ = Re
Weε

3 and µ = γ Re ε2 have finite, nonzero limits as
ε→ 0.
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Lubrication approximation model

Assume the flow is constant along the length of the cylinder.

Pukhnachov, Journal of Applied Mechanics and Technical
Physics 18(1977)3:344–351:

∂u

∂t
+
∂

∂θ

(
u− µ

3
u3 sin(θ)

)
+
χ

3

∂

∂θ

(
u3

[
∂u

∂θ
+
∂3u

∂θ3

])
= 0

θ ∈ [−π, π], ∂iu
∂θi

(−π, t) = ∂iu
∂θi

(π, t) for t > 0, i = 0, 3

where µ = γ Re ε2 = gR
ωνε

2 and χ = Re
Weε

3 = σ
νρRωε

3 .

Moffatt (1973, 1977) found the same evolution equation for
the zero surface tension (χ = σ = 0) case:

∂u

∂t
+
∂

∂θ

(
u− µ

3
u3 sin(θ)

)
= 0.
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Steady States: zero surface tension

∂

∂θ

(
u− µ

3
u3 sin(θ)

)
= 0 =⇒ u− µ

3
u3 sin(θ) = q

for some fixed q.

θ = 0, θ = π =⇒ u(0) = u(π) = q

θ = π/2 =⇒ u(π/2) is a root of u− µ

3
u3 = q

θ = 3π/2 =⇒ u(3π/2) is a root of u +
µ

3
u3 = q

At θ = π/2 there might be no positive root if q is too big.

If q “small” then smooth solution, at q critical there’s a
corner, if q is too big the steady state is discontinuous.
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Steady states: positive surface tension

If there’s no surface tension then qcrit = 2
3
√
µ = 2

3ε

√
ων
gR The

total amount of “honey” in the steady state is closely re-
lated to the value of q and so we see that the larger ω is,
the more “honey” you can hold on your knife.

If there is surface tension, Pukhnachov1 proved that qcrit ≤
2
√

3/µ ≈ 3.464/
√
µ. We improve on this:

Theorem(ChugPughTara 2009) For positive surface tension,
there is no strictly positive 2π periodic steady state with flux

q > 2
3

√
2
µ ≈ 0.943/

√
µ.

The upper bound on qcrit doesn’t depend on surface tension, but qcrit

likely will. See Benilov et al.2 for extensive simulations of steady states.

1V.V. Pukhnachov, Mathematics and Continuum Mechanics (2004)191-199.
2E.S. Benilov, M.S. Benilov, and N. Kopteva, J Fluid Mechanics 597(2008)91-118
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Proof positive surface tension steady state result

The steady state satisfies

u− µ

3
u3 sin(θ) +

χ

3
u3 (uθθθ + uθ) = q.

Rescale the flux q to 1 by introducing y(θ) = u(θ)/q

Ly = γ (yθθθ + yθ) = β sin(θ)− 1

y2
+

1

y3

where γ := χq3/3 and β := µq2/3. The righthand side must be orthogonal
to the kernel of L hence∫ π

−π

(
1

y(θ)2
− 1

y(θ)3

)
dθ = 0,

∫ π

−π

(
1

y(θ)2
− 1

y(θ)3

)
sin(θ) dθ = βπ.

Adding these, ∫ π

−π

(
1

y(θ)2
− 1

y(θ)3

)
[1 + sin(θ)] dθ = βπ.

The term [. . . ] is nonnegative, so bound the (. . . ) term over {y ≥ 1}. . .

βπ ≤
∫
{y≥1}

(
1

y(θ)2
− 1

y(θ)3

)
[1 + sin(θ)] dθ ≤

∫
{y≥1}

4

27
[1 + sin(θ)] dθ ≤ 4

27
2π.

So there is no steady state if β > 8/27 (which then unravels to q > 2
3

√
2
µ).
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Second– and fourth–order parabolic PDE

Second–order parabolic equations Solutions obey a comparison principle
hence nonnegative initial data yield nonnegative solutions.
Diffusion equation ut = Duxx. Compactly supported initial data yield
solutions that instantaneously lose that compact support.
Porous medium equation ut = (umux)x with m > 0. Compactly supported
initial data yield solutions that continue to have compact support.

Fourth–order parabolic equations Solutions don’t obey a comparison
principle.
linear equation ut = −uxxxx. Positive initial data can yield solutions that
are negative at certain places at certain times. Compactly supported
initial data yield solutions that instantaneously lose that compact sup-
port.
Thin film equation ut = −(unuxxx)x with n > 0. Given nonnegative, com-
pactly supported initial data, one can construct solutions that are non-
negative and have compact support.
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Nonnegative solutions

The classic thin film equation:

ut = −(un uxxx)x, ux(±a) = uxxx(±a) = 0, Ω = (−a, a)

P = QT − ({u = 0} ∪ {t = 0}).
If a solution is positive then it is smooth. But exact solu-
tions (travelling wave, source-type, etc) that go to zero at a
point have a discontinuous uxx at that point. And so if one
is interested in solutions that have contact lines (or develop
contact lines) one must work with weak solutions.

The seminal work in this area is by Bernis and Friedman:
Journal of Differential Equations 83(1990)1:179-206. Cited
212 times and counting. . .
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Weak solutions

Two popular types of weak solutions for ut = −(f (u)uxxx)x:

• weak generalized solution∫∫
QT

uφt +

∫∫
P
f (u)uxxxφx = 0,

u ∈ C1/2,1/8
x,t , f (u)uxxx ∈ L2(P ).

(See Bernis & Friedman JDE 83(1990)1:179-206.)

• strong generalized solution∫∫
QT

uφt −
∫∫

QT

f (u)uxxφxx −
∫∫

QT

f ′(u)uxuxxφx = 0,

u ∈ L2(0, T ;H2
0(Ω)).

(See Beretta, Bertsch, & Dal Passo, ARMA 129(1995)2:175–200 and

Bertozzi & Pugh, CPAM 49(1996)2:85-123.)
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Constructing a nonnegative weak solution for 0 < n < 4

1)Approximate the PDE For ut = −(unuxxx)x consider the
approximate problem

ut = −

(
un+4

u4 + εun
uxxx

)
x

where ε > 0. What?!? Why not just look at ut = −((un + ε)uxxx)x? That’d be

so much easier and nondegenerate to boot. . .

2) Approximate the nonnegative initial data Take your non-
negative initial data u0 and “lift” it, giving the initial data

u0ε = u0 + ε2/5

to the approximate PDE. Why muck with the initial data? Why 2/5?

3) Study the solution of the approximate problem The ap-
proximate problem has a unique, smooth, strictly positive
solution uε(x, t) for all time. Whoah. How did that work when a nice

equation like ut = −uxxxx wouldn’t necessarily give a strictly positive solution?
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Continuing the construction

4) Take ε→ 0 In the limit, the positive functions uε(x, t) will
have a nonnegative limit u(x, t).
5) Show the limiting function is a weak solution The smooth
solutions uε conserve mass:∫

u0ε(x) dx =

∫
uε(x, t) dx ∀t.

They dissipate energy:∫
u2
εx(x, t) dx ≤

∫
u2

0εx(x) dx ∀t.

They dissipate the “entropy”∫
1

un−2
ε (x, t)

dx ≤
∫

1

un−2
0ε (x)

dx ∀t.

This control of the energy and entropy allows one to argue
that initially positive solution of the approximate problem
remains positive and hence exists for all time.
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Finishing the construction

One shows that in the limit, the function u(x, t) inherits some
of this energy and entropy dissipation and, as a result, is a
weak generalized solution

Up to this point, all the above is due to Bernis and Fried-
man, 1990. In 1993, Leo Kadanoff found another dissipated
entropy: the “α entropy”∫

uαε (x, t)

un−2
ε (x, t)

dx ≤
∫

uα0ε(x)

un−2
0ε (x)

dx ∀t.

where −1/2 < α < 1. It was used3 to prove that the weak
generalized solution is a strong generalized solution.

For Pukhnachov’s model, we don’t have dissipated quantities but we do

have an energy and an entropy we can control. These are used to prove

3Baretta+Bertsch+Dal Passo 1995, Bertozzi+Pugh 1996
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Theorem(ChugPughTara 2009) Consider nonnegative initial
data u0 ∈ H1 which has finite entropy. Then given a time
T <∞ there is a nonnegative strong generalized solution
u ∈ L2(0, T ;H2

per(Ω)) for:

ut +
(
|u|3(a0 uθθθ + a1uθ + a2w

′(θ))
)
θ

+ a3uθ = 0

where a1, a2, a3 are arbitrary constants, constant a0 > 0, and
w(θ) is periodic.

Pukhnachov’s model

ut +
[
|u|3 (uθθθ + α2 uθ − sin θ) + ωu

]
θ

= 0, θ ∈ Ω = (−π, π)

is a special case of the equation above.
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Thank you !

THANK YOU FOR YOUR PATIENCE
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