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Periodic Annulus + Perturbation ?

Especially: X2 + εY2 ?

This is a special case for the Weak Hilbert’s 16th
problem, proposed by Arnold in 1977.

This is also a special case for the cyclicity
problem, proposed by Dumortier, Roussarie and
Rousseau in 1994, and by Rousseau and Huaiping

Zhu, and some others.
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Classification of Quadratic Integrable systems

By H. Zoladek, JDE 1994:

• QH
3 µThe Hamiltonian class;

• QR
3µThe reversible class;

• QLV
3 : The Lotka-Volterra class;

• Q4: The codimension 4 class.
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Generic and Degenerate

For example, for the Hamiltonian class:

• Generic: X ∈ QH
3 \ {QR

3 ∪QLV
3 ∪Q4};

• DegenerateµX ∈ QH
3 ∩ {QR

3 ∪QLV
3 ∪Q4}.

Similarly for other classes.
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Study of perturbation of Hamiltonian class QH
3

dx

dt
=

∂H(x, y)

∂y
+ ǫf(x, y),

dy

dt
= −∂H(x, y)

∂x
+ ǫg(x, y).

where degH = 3, deg(f, g) = 2.

γ(h, ε)

σσ hh P (h, ε)

Γh

(i) ε = 0 (ii) 0 < |ε| ≪ 1

By using the Poincaré-Pontryagin Theorem we have:
the displacement function

d(h, ǫ) = P (h, ǫ)− h = ǫ(I(h) + ǫφ(h, ǫ)),

where
I(h) =

∮

Γh

f(x, y)dy − g(x, y)dx,

is an Abelian integral, and φ(h, ǫ) is analytic and uniformly
bounded for (h, ε) in a compact region near (h, 0).
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Cyclicity of Period Annulus

Hence, for perturbed generic quadratic Hamiltonian system,

the cyclicity of period annulus can be defined as

Maximum number of isolated zeros of the I(h) (with their multiplicities) for h ∈ (h1, h2);

which gives

Maximal number of limit cycles bifurcated from a compact region insider the annulus.

The region contains:

– the singular point inside the annulus;

– the homoclinic loop as the boundary (by P. Madisic and R. Roussarie);

– but dos not include the heteroclinic loop as the boundary (by M. Caubergh, F. Dumortier

& R. Roussarie about Alien limit cycles).
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Study the Cyclicity for generic QH
3

A universal unfolding of QH
3 contains at least 3 parameters, hence the Abelian

integrals can be expressed as

I(h) = αI0(h) + βI1(h) + γI2(h).

–A basic tool for the study is the Picard-Fuchs equation, but we must add some I3(h) in

order to find the ”closed” differential equation of order 4:

G(h)
dĨ

dt
= A(h)Ĩ ,

where Ĩ = (I0, I1, I2, I3)T .
– Some other methods (in complex or real) are needed to get the final answer:

The cyclicity is two.
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The phase portraits of QH
3

E. Horozov and I. D. Iliev proved in 1994 that any cubic Hamiltonian, with at

least one period annulus contained in its level curves, can be transformed into the following

form

H(x, y) =
1

2
(x2 + y2)− 1

3
x3 + a xy2 +

1

3
b y3,

where a, b are parameters lying in the region

Ḡ =

{
(a, b) : −1

2
≤ a ≤ 1, 0 ≤ b ≤ (1− a)

√
1 + 2a

}
.

XH are generic if (a, b) ∈ G = G1 ∪ l2 ∪G2 ∪ l∞ ∪G3: 5 cases;

and degenerate if XH ∈ ∂Ḡ: 8 cases.

The classification of all 13 phase portraits are shown in the next figure:
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Results for generic cases

(1) (a, b) ∈ l∞, Z.-F. Zhang and C. Li Adv.in Math.(1987);

(2) (a, b) ∈ G3, E. Horozov and I. D. Iliev Proc. London Math. Soc. (1994);

(3) (a, b) ∈ G1 ∪G2, L. Gavrilov Invent. Math (2001);

(4) (a, b) ∈ l2, C. Li and Z.-H. Zhang Nonlinearity(2002);

• A unified proof by F. Chen, C. Li, J. Llibre and Z.-H. Zhang JDE(2006).
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Basic idea of the unified proof

I(h) = αI0(h) + βI1(h) + γI2(h)

= I0(h) [α + βp(h) + γq(h)] ,

where I0(h) 6= 0 for h ∈ (h0, h1], h0 ∼ center point, h1 ∼ the loop, and

p(h) =
I1(h)

I0(h)
, q(h) =

I2(h)

I0(h)
.

In (p, q)−plane define a family of curves

Ωa,b =
{(
p, q
)
(h) : h0 ≤ h ≤ h1

}
,

and a family of straight lines

Lαβγ : α + βp + γq = 0.

Then
#{I(h) = 0} = #{Ωa,b ∩ Lαβγ}.
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Implying all configurations of limit cycles:

(0,0), (1,0), (0,1), (2,0), (1,1), (0,2).
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The study for degenerate cases

• Good things: The order of Picard-Fuchs equation is 3 or 2; and the Hamiltonian function

contains only one parameter.

• Bad things: Instead of I(h) = M1(h), one has to study M2(h) or M3(h):

d(h, ε) = P (h, ε)− h = εM1(h) + ε2M2(h) + ε3M3(h) + O(ε4).

M2(h) and M3(h) may be pseudo-Abelian integrals.

Answer of the cyclicity of period annulus or annuli for degenerate cases:

– 3 for the Hamiltonian triangle;

– 2 for other cases.
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Results for degenerate cases

(1) a saddle loop with a double singularity at infinity, Iliev Adv. Diff. Eq.(1996);

(2) a saddle loop with two more saddles, Chow,Li and Yi Ergod. Th.& Dyn. Sys.(2002);

(3) a triangular heteroclinic loop, Iliev JDE(1998);

(4) a hyperbolic segment loop, Zhao and Zhu Bull.Sci.Math(2001);

(5) a parabolic segment loop, Iliev Adv.Diff.Eq.(1996);

(6) an elliptic segment loop, Chow, Li and Yi Ergod.Th.& Dyn.Sys.(2002);

(7) a non-Morsean point, Zhao etc JDE(2000);

(8) a saddle loop, a pair of complex singularities, Gavrilov and Iliev Ergod.Th.& Dyn.Sys.(2000).

• A unified proof (except the case (3)) by Li and Llibre JDDE(2004).
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The number of limit cycles bifurcating from QH
3

Only the following cases are open: The limit cycles may appear

• from the cusp point when (a, b) ∈ l2 (in generic case);

• from infinity (in generic or degenerate cases);

Partially studied by L. Gavrilov and I.D. Iliev, Can. J. Math, 2002.

• from the non-Morse point when (a, b) = (−1/2, 0) (in degenerate case), can be changed

to above case by the Poincar’e transformation;

• from the heteroclinic loop (the boundary of the period annulus in degenerate cases):

partially studied by C. Li and R. Roussarie, JDE, 2004.
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Perturbations of Integrable and non-Hamilton systems

dx

dt
= P (x, y) + εf (x, y),

dy

dt
= Q(x, y) + εg(x, y).

We need to use the integrating factor µ(x, y) 6= 0, such that

dx

dt
= µP + εµf = −∂H(x, y)

∂y
+ εµ(x, y)f (x, y),

dy

dt
= µQ + εµf =

∂H(x, y)

∂x
+ εµ(x, y)g(x, y).

Now we have to study the pseudo-Abelian integral

I(h) =

∮

Γh

µ(x, y)(f (x, y)dy − g(x, y)dx),

here H,µf, µg are not polynomials anymore (in general), the study becomes more difficult.
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Study the perturbations of Q4

• For generic Q4, L. Gavrilov and I. D. Iliev [JMAA, 2009] proved that

cyclicity ≤ 8

by using the Petrov method (the Argument Principle).

• For X ∈ Q4 ∩QR
3 , there are two cases:

ż = −iz + 4z2 + 2|z|2 ± z̄2.

I. D. Ilive proved in both cases

cyclicity ≤ 3

in ”−” case: Proc. Royal Sci. Edinburg, 2007; in ”+” case: Bulletin Sci. Math, 2008.
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Study the perturbations of QLV
3

For the sub-class: with 2 or 3 invariant lines, i. e. the classical Lotka-Volterra

class, H. Zoladek proved in 1994: the maximal number of zeros of the first order Melnikov

function M1(h) = I(h) is

• 2, for generic QLV
3 ;

• 1, for QLV
3 ∩QR

3 \QH
3 ;

• 0, for QLV
3 ∩QR

3 ∩QH
3 (Hamiltonian triangle).

Remark: In degenerate cases, this number gives no information about the max-

imal number of limit cycles bifuracting from the annulus, it is needed to study M2(h) or

M3(h). In fact, in Hamiltonian triangle case, the cyclicity is 3 (by Ilive, metioned above, it

is the maximal number of zeros of M3(h)).
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Study the perturbations of QR
3

• After perturbations, the reversible class QR
3 may get more rich bifurcation phenomena.

• The general form of QR
3µ

dx

dt
= −y + ax2 + by2 ,

dy

dt
= x(1 + cy) .

The map (x, t) 7→ (−x,−t) does not change the orbits, only changes the direction on

the flows, so it is called reversible.

• The topological classification of QR
3 :
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a

b

a = c a = 0

b = −c

b = 0

QLV
3

QLV
3

QH
3 (a = 1)

c = 0

1



D
ra

ft

Reversible Quadratic Systems with Two Centers

• c 6= 0: taking c = −2 (by scaling);

• 0 < b < 2; b = 1corresponds to the symmetry case;

• case 1: −∞ < a < −2,

case 2: −2 < a < 0,

case 3: 0 < a < +∞.

Correspond to 3 kinds of topological phase portraits:
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Phase portraits of reversible system with two centers.
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The study of QR
3 with quadratic perturbations

• Case 1, taking a = −3

• b = 1, Dumortier, Li & Zhang, JDE, 139(1997)

• b ∈ (0, 2), Iliev, Li & Yu, Nonlinearity, 18(2005)

One centerµ

• b = −1, Peng, Acta. Math. Sinica (English Series), 18(2002)

• b ∈ (−∞, 0) \ {−1}, Yu & Li, JMAA, 269(2002)

• b = 3 (X ∈ QR
3 ∩QLV

3 ), Li & Llibre, Nonlinearity, 22(2009)

• b ∈ (2,+∞) \ {3}, Iliev, Li & Yu, CPAA, 9(2010)
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The study of QR
3 with quadratic perturbations

• Case 1, taking a = −3

• b = 1, Dumortier, Li & Zhang, JDE, 139(1997)

• b ∈ (0, 2), Iliev, Li & Yu, Nonlinearity, 18(2005)

One centerµ

• b = −1, Peng, Acta. Math. Sinica (English Series), 18(2002)

• b ∈ (−∞, 0) \ {−1}, Yu & Li, JMAA, 269(2002)

• b = 3 (X ∈ QR
3 ∩QLV

3 ), Li & Llibre, Nonlinearity, 22(2009)

• b ∈ (2,+∞) \ {3}, Iliev, Li & Yu, CPAA, 9(2010)

• Case 2

• a = −3
2, b ∈ (0, 2), Liu, preprint

• a = −1
2, b ∈ (0, 2), Coll, Li & Prohens, Dis. Contin. Dyn. Sys. 24(2009)
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The study of QR
3 with quadratic perturbations

• Case 1, taking a = −3

• b = 1, Dumortier, Li & Zhang, JDE, 139(1997)

• b ∈ (0, 2), Iliev, Li & Yu, Nonlinearity, 18(2005)

One centerµ

• b = −1, Peng, Acta. Math. Sinica (English Series), 18(2002)

• b ∈ (−∞, 0) \ {−1}, Yu & Li, JMAA, 269(2002)

• b = 3 (X ∈ QR
3 ∩QLV

3 ), Li & Llibre, Nonlinearity, 22(2009)

• b ∈ (2,+∞) \ {3}, Iliev, Li & Yu, CPAA, 9(2010)

• Case 2

• a = −3
2, b ∈ (0, 2), Liu, preprint

• a = −1
2, b ∈ (0, 2), Coll, Li & Prohens, Dis. Contin. Dyn. Sys. 24(2009)

• Case 3
a = 2, b ∈ (0, 2) and a = −4, Chen, Li, Liu & Llibre, Dis. Contin. Dyn. Sys. 16(2006)
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A Difficulty: The Order of P-F Equation

The order K of the Picard-Fuchs equation ([CLLL])µ

• K <∞ if a ∈ Q (a 6= 0,−1,−2); K =∞ if a is irrational.
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A Difficulty: The Order of P-F Equation

The order K of the Picard-Fuchs equation ([CLLL])µ

• K <∞ if a ∈ Q (a 6= 0,−1,−2); K =∞ if a is irrational.

• K(a, b) = K(−(a + 2), 2− b), hence only need to consider a > −1.
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A Difficulty: The Order of P-F Equation

The order K of the Picard-Fuchs equation ([CLLL])µ

• K <∞ if a ∈ Q (a 6= 0,−1,−2); K =∞ if a is irrational.

• K(a, b) = K(−(a + 2), 2− b), hence only need to consider a > −1.

• If |a| < 1 and a = ±m
n ∈ Q, 0 < m < n, (m,n) = 1, than K = 2n.

• If a ≥ 1 is an integer, than K = a + 2.

• If a > 1, a ∈ Q and is not an integer, a = [a] + m
n , than K = ([a] + 2)n.
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A Difficulty: The Order of P-F Equation

The order K of the Picard-Fuchs equation ([CLLL])µ

• K <∞ if a ∈ Q (a 6= 0,−1,−2); K =∞ if a is irrational.

• K(a, b) = K(−(a + 2), 2− b), hence only need to consider a > −1.

• If |a| < 1 and a = ±m
n ∈ Q, 0 < m < n, (m,n) = 1, than K = 2n.

• If a ≥ 1 is an integer, than K = a + 2.

• If a > 1, a ∈ Q and is not an integer, a = [a] + m
n , than K = ([a] + 2)n.

In particular,

• K = 3 if a = 1 (QR
3 ∩QH

3 ) or a = −3.

• K = 4 if a = 2,−4,−1
2,−3

2,
1
2,−5

2.

• K ≥ 5, otherwise.
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More Difficulties

• By using Picard-Fuchs equation it is possible to get some results locally, not globally.
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More Difficulties

• By using Picard-Fuchs equation it is possible to get some results locally, not globally.

• In integrable and non-Hamiltonian case, it is hard to make analytic extension of the

integrand function, so it is hard to use the Argument Principle (as Petrov did).
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More Difficulties

• By using Picard-Fuchs equation it is possible to get some results locally, not globally.

• In integrable and non-Hamiltonian case, it is hard to make analytic extension of the

integrand function, so it is hard to use the Argument Principle (as Petrov did).

• The method of complexification, developed by Arnold, Ilyashenko and Yakovenko, is

valid only for the polynomial perturbation of polynomial Hamiltonian. It is invalid for

the integrable and non-Hamiltonian case.
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More Difficulties

• By using Picard-Fuchs equation it is possible to get some results locally, not globally.

• In integrable and non-Hamiltonian case, it is hard to make analytic extension of the

integrand function, so it is hard to use the Argument Principle (as Petrov did).

• The method of complexification, developed by Arnold, Ilyashenko and Yakovenko, is

valid only for the polynomial perturbation of polynomial Hamiltonian. It is invalid for

the integrable and non-Hamiltonian case.

• Hence, it is necessary to develop some new methods and new techniques.
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Exampleµ[DLZ§1997]

• Taking a = −3, b = 1, c = −2, then any quadratic perturbation can be changed to the

3-parameters family (universal unfolding)

ẋ = −y − 3x2 + y2 + δ(µ1x + µ2xy) ,

ẏ = x− 2xy + δµ3x
2 .

• Conclusion: the bifurcation diagram and the topological classification of the phase por-

traits are shown below:

(since the bifurcation diagram is unchanged under the scaling

(µ1, µ2, µ3) 7→ (εµ1, εµ2, εµ3)

so we need only consider the intersection of the bifurcation diagram with half sphere,

then project the diagram on a plane.)
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H1

H2

L1

L2

DH1

DH2

DL1

DL2

T1

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1) (1, 1) (2, 0)

(3, 0)
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Ω1

Ω2

Lαβγ

q

p

1
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THANK YOU VERY MUCH!
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