Likelihood-based inference on the cause of multiple waves in the 1918 influenza pandemic in London, UK

Daihai He

Department of Math and Stats, McMaster University, Canada

2010 Southern Ontario Dynamics Day Workshop

May 13, 2010

Joint work with

David Earn, Math & Stats Department, McMaster University
Jonathan Dushoff, Department of Biology, McMaster University
Troy Day, Math & Stats Department, Queen's University
Junling Ma, Math & Stats Department, University of Victoria

Pneumonia & Influenza Mortality in London (UK)

Kermack-McKendrick model with vital

 $(Susceptible \rightarrow Infectious \rightarrow Recovered)$

$$\dot{S} = \nu N - \frac{\beta}{N} SI - \mu S$$

$$\dot{I} = \frac{\beta}{N} SI - \gamma I - \mu I$$

$$\dot{R} = \gamma I - \mu R$$

- β = transmission rate
- γ = recovery rate $(\gamma^{-1}$ = mean infectious period)
- ν , μ , birth and death rate per capita

The scaled SIR model without vital

$$\dot{S} = -\beta SI$$

$$\dot{I} = \beta SI - \gamma I$$

$$\dot{R} = \gamma I$$

The reproductive number

$$\mathcal{R}_{\mathrm{e}} = \frac{\beta}{\gamma} S$$

The basic reproductive number

$$\mathcal{R}_0 = \frac{\beta}{\gamma} = \frac{\mathcal{R}_{\mathrm{e}}}{S}$$

The SIRS model with immunity decay

$$\dot{S} = -\beta SI + \delta R$$

$$\dot{I} = \beta SI - \gamma I$$

$$\dot{R} = \gamma I - \delta R$$

- δ = immunity decay rate (due to viral evolution), δ^{-1} = mean immunity duration
- β = transmission rate
- γ = recovery rate, γ^{-1} = mean infectious period

The SIRS model with mortality

$$\dot{S} = -\beta SI + \delta R$$

$$\dot{I} = \beta SI - \gamma I$$

$$\dot{R} = (1 - \phi)\gamma I - \delta R$$

$$\dot{M} = \phi \gamma I$$

• ϕ = Case Fatality Proportion (CFP)

The SIRS model flow chart

Likelihood of a model with parameters θ

(Burnham and Anderson, 2002; Ionides et al., 2006)

- Data: observed time series $C_{1:N_s}$
- "Likelihood of the model (θ) given the data ($C_{1:N_s}$)" is defined to be the "probability of the data given the model:"

$$f(C_{1:N_{s}}|\theta) = \prod_{n=1}^{N_{s}} f(C_{n}|C_{1:n-1},\theta)$$

where $f(C_n|C_{1:n-1},\theta)$ is conditional probability of C_n given the earlier data $C_{1:n-1}$

• Log likelihood function is $\ell(\theta) = \sum_{n=1}^{N_s} \log f(C_n|C_{1:n-1}, \theta)$

Compare models using Akaike Information Criterion

(Akaike, 1974; Burnham and Anderson, 2002; King et al., 2008)

The second-order Akaike Information Criterion (AIC_c) is

$$AIC_{c} = -2 \max_{\theta} \ell(\theta) + \frac{2N_{p}N_{s}}{N_{s} - N_{p} - 1}$$

where

 $N_{\rm p}$ is the number of parameters in the model $N_{\rm s}$ is the sample size ($N_{\rm s}=52$ here).

Calculate and maximize likelihood using Particle Filtering, MIF, and POMP

- Calculate $\ell(\theta)$ via Particle Filtering (Doucet et al., 2001)
- Maximize $\ell(\theta)$ via MIF (maximization via iterated filtering) (Ionides et al., 2006)
- An R package POMP (partially observed Markov processes) (King et al., 2009)

B-spline function and AIC_c as a function of N_b

Reconstructed $\mathcal{R}_0(t)$ and simulations

Parameter Estimates

Parameter	Our Estimates	Our 95% CI	Previous Results
Infectious Period (days)	4.5	(3.4, 5.8)	3 to 6
Overall R_0	1.39	(1.09, 1.86)	1.3 to 1.9 (Chowell et al, 2008)
CFP (ϕ)	0.0092	(0.0068, 0.0231)	0.02 (Mills et al, 2004)

Effects of immunity decay and CFP changes

Conclusions

- Likelihood method using POMP allows us to compare hypotheses for the origin of multiple waves in pandemics
- Transmission rate changes 'alone' could have been responsible for the multiple waves.
- Our estimates of mean infectious period, basic reproductive number (\mathcal{R}_0) and case fatality proportion (CFP) are comparable to conventionally accepted values.
- The changes in transmission rate we infer are intuitively consistent with climatic variation and human behavioral changes.
- We did not find evidence to support either a constant immunity decay or changes in CFP.

Acknowledgements

Funding: CIHR

Source of Data: IIDDA http://iidda.mcmaster.ca/

Helpful discussions: Raluca Eftimie and Joe Tien

References

- Hirotugu Akaike. A new look at the statistical model identification. *IEEE Transactions on Automatic Control*, 19(6):716–723, 1974. doi: doi:10. 1109/TAC.1974.1100705.
- K.P. Burnham and D.R. Anderson. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, 2nd ed. edition, 2002. ISBN 0-387-95364-7.
- A. Doucet, N. de Freita, and N.J. Gordon. Sequential Monte Carlo Methods in Practice. Springer, New York, 2001.
- E. L. Ionides, C. Bretó, and Aaron A. King. Inference for nonlinear dynamical systems. *Proceedings of the National Academy of Sciences of the United States of America*, 103(49):18438–18443, 2006. doi: 10.1073/pnas.0603181103.

- A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics. *Nature*, 454:877–879, 2008.
- Aaron A. King, Edward L. Ionides, Carles Martinez Bretó, Steve Ellner, and Bruce Kendall. pomp: Statistical inference for partially observed Markov processes (R package), 2009. URL http://pomp.r-forge.r-rproject.org.