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Motivation

Typical delay differential equation model with discrete delay:

x′(t) = f(x(t − τ)).

Delay τ > 0 arises due to gestation, maturation, propagation of
information from one part of system to the other.
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Motivation

Typical delay differential equation model with discrete delay:

x′(t) = f(x(t − τ)).

Delay τ > 0 arises due to gestation, maturation, propagation of
information from one part of system to the other.

In many biological systems, delay may vary from instance to instance. The
it is more appropriate to include a distribution of delays:

x′(t) =

∫

∞

0
f(x(t − u))g(u) du

g(u) is the kernel of the distribution. Can be thought of as a probability
distribution. Satisfies

∫

∞

0
g(u) du = 1.

References: Cushing (1977), MacDonald (1978)
S.A. Campbell and R. Jessop (Waterloo) Approximate Stability Region May 14, 2010 2 / 29



Motivation

Uniform distribution with mean τ

g(u) =

{ 1
τρ
, for τ(1− ρ

2 ) ≤ u ≤ τ(1 + ρ
2 )

0, elsewhere.
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Motivation

Gamma distribution with mean τ = p
a
.

g(u) =
up−1ape−au

Γ(p)
,
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Motivation

Many studies of models with distributed delays consider a fixed type of
distribution (uniform, gamma, etc) or even a fixed distribution (gamma
with p = 1, 2).
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Motivation

Many studies of models with distributed delays consider a fixed type of
distribution (uniform, gamma, etc) or even a fixed distribution (gamma
with p = 1, 2).

In reality we may only know some properties of the distribution, e.g. mean
and variance.

Our Goal: Consider linear stability analysis for a general distribution of
delays.

Formulate general conditions for stability where possible.

Formulate approximate conditions for stability based only on
knowledge of some properties of the distributions.

References: Wolkowicz et al. (1997,1999); Bernard et al. (2001);
Adimy et al. (2005); Arino et al. (2006); Ruan (2006);
Gopalsamy et al. (1994, 1992, 2008); Chen (2002); Faria et al. (2008)
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Overview

Model
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Overview

Model

Stability Analysis - Distribution Independent Results

Symmetric Connection Matrix
Nonsymmetric Connection Matrix

Stability Analysis - Approximations

Nonsymmetric Connection Matrix
Verification for Gamma and Uniform Distributions

Summary/Conclusions
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Model - Artificial Neural Network

Artificial neural network with identical neurons

Cv ′k(t) = −
vk(t)

R
+

n
∑

j=1

akj f (vj (t)), k = 1, . . . , n.
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vk is voltage of k th neuron

C ,R are capacitance and resistance of each neuron

akj are synaptic weights

f (u) is the activation function.
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Model - Artificial Neural Network

Artificial neural network with identical neurons

Cv ′k(t) = −
vk(t)

R
+

n
∑

j=1

akj f (vj (t)), k = 1, . . . , n.

where

vk is voltage of k th neuron

C ,R are capacitance and resistance of each neuron

akj are synaptic weights

f (u) is the activation function. Assumed properties:

monotonically increasing and differentiable on (−∞,∞)
f (0) = 0, 0 < f ′(x) ≤ f ′(0) = β for any x ∈ R

limx→±∞ f (x) = ±1

References: Cohen-Grossberg (1983); Hopfield (1984)
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Model - Neural Network with Discrete Delays

Dividing through by C and taking into account propagation time and
signal processing time:

v ′k(t) = −αvk(t) +

n
∑

j=1

wkj f (vj(t − τ)), k = 1, . . . , n.

where

α = 1
CR

is the intrinsic decay rate of the neuron

wjk =
akj
C
, W = [wjk ] is the connection matrix

τ > 0 is the time delay
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Model - Neural Network with Discrete Delays

Dividing through by C and taking into account propagation time and
signal processing time:

v ′k(t) = −αvk(t) +

n
∑

j=1

wkj f (vj(t − τ)), k = 1, . . . , n.

where

α = 1
CR

is the intrinsic decay rate of the neuron

wjk =
akj
C
, W = [wjk ] is the connection matrix

τ > 0 is the time delay

References: Grossberg (1967, 1968); Marcus and Westervelt (1989);
See literature reviews in: Horikawa and Kitajima (2009); Singh (2009);
Yuan et al. (2008)
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Model - Neural Network with Distribution of Delays

Allowing for delay to vary from one instance to the next:

v ′k(t) = −αvk(t) +

n
∑

j=1

wkj

∫

∞

0
f (vj(t − u))g(u) du, k = 1, . . . , n.

where g(u) is a the kernel of the distribution with

∫

∞

0
g(u) du = 1.

References: Gopalsamy et al. (1994, 1992, 2008); Chen (2002);
Faria et al. (2008)
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Model - Neural Network with Distribution of Delays

Rescale so that the mean delay τ =
∫

∞

0 ug(u) du occurs explicitly:

v ′k(t) = −ατvk(t) + τ
n

∑

j=1

wkj

∫

∞

0
f (vj(t − u))ĝ(u) du, k = 1, . . . , n.

where ĝ(u) satisfies

∫

∞

0
ĝ(u) du = 1,

∫

∞

0
uĝ(u) du = 1.

S.A. Campbell and R. Jessop (Waterloo) Approximate Stability Region May 14, 2010 10 / 29



Model - Neural Network with Distribution of Delays

Rescale so that the mean delay τ =
∫

∞

0 ug(u) du occurs explicitly:

v ′k(t) = −ατvk(t) + τ
n

∑

j=1

wkj

∫

∞

0
f (vj(t − u))ĝ(u) du, k = 1, . . . , n.

where ĝ(u) satisfies

∫

∞

0
ĝ(u) du = 1,

∫

∞

0
uĝ(u) du = 1.

Model admits the trivial solution. Linearization:

x ′k(t) = −ατxk(t) + τ
n

∑

j=1

wkj

∫

∞

0
xj(t − u)ĝ(u) du, k = 1, . . . , n.
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Linearization

Vector form of linearization:

ẋ(s) = −ατx(s) + βτW

∫

∞

0
x(s − v)ĝ(v) dv ,
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Vector form of linearization:

ẋ(s) = −ατx(s) + βτW

∫

∞

0
x(s − v)ĝ(v) dv ,

Let zk , k = 1, . . . , n be the eigenvalues of W.
W symmetric implies zk real, otherwise zk complex.
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W symmetric implies zk real, otherwise zk complex.

There exists P such that E = P−1WP is upper triangular.
Let x = Py to obtain

S.A. Campbell and R. Jessop (Waterloo) Approximate Stability Region May 14, 2010 11 / 29



Linearization

Vector form of linearization:
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∞

0
x(s − v)ĝ(v) dv ,

Let zk , k = 1, . . . , n be the eigenvalues of W.
W symmetric implies zk real, otherwise zk complex.

There exists P such that E = P−1WP is upper triangular.
Let x = Py to obtain

ẏ(s) = −ατy(s) + βτE

∫

∞

0
y(s − v)ĝ(v) dv .
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Linearization

Vector form of linearization:

ẋ(s) = −ατx(s) + βτW

∫

∞

0
x(s − v)ĝ(v) dv ,

Let zk , k = 1, . . . , n be the eigenvalues of W.
W symmetric implies zk real, otherwise zk complex.

There exists P such that E = P−1WP is upper triangular.
Let x = Py to obtain

ẏ(s) = −ατy(s) + βτE

∫

∞

0
y(s − v)ĝ(v) dv .

Let y = eλsc to find characteristic equation.
Reference: Bélair et al. (1996)
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Stability Analysis

Characteristic equation:

∆(λ) =
n
∏

k=1

∆k(λ) =
n
∏

k=1

(

λ+ ατ − βτzk

∫

∞

0
e−λv ĝ(v) dv

)

= 0.
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Stability Analysis

Characteristic equation:

∆(λ) =
n
∏

k=1

∆k(λ) =
n
∏

k=1

(

λ+ ατ − βτzk

∫

∞

0
e−λv ĝ(v) dv

)

= 0.

Stability depends on zeros of ∆k(λ) which depends on eigenvalues, zk , of
connection matrix, and parameters α, β, τ .
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Stability Analysis

Characteristic equation:

∆(λ) =
n
∏

k=1

∆k(λ) =
n
∏

k=1

(

λ+ ατ − βτzk

∫

∞

0
e−λv ĝ(v) dv

)

= 0.

Stability depends on zeros of ∆k(λ) which depends on eigenvalues, zk , of
connection matrix, and parameters α, β, τ .

The trivial equilibrium point will be asymptotically stable if all roots of
each ∆k(λ) have negative real part.

The trivial equilibrium point will be unstable if one ∆k(λ) has a root with
positive real part.
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Stability Analysis - Distribution Independent Results
Symmetric Connection Matrix

Theorem 1

If W is symmetric and
∫

∞

0 ĝ(v)e−λv dv
is analytic in Re(λ) ≥ 0, then the triv-
ial equilibrium point is locally asymptot-
ically stable if, for each k = 1, . . . , n,
either

(1) |zk | <
α

β
,

or

(2) −
1

βτ
< zk ≤ −

α

β
.
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Stability Analysis - Distribution Independent Results
Symmetric Connection Matrix

Theorem 1

If W is symmetric and
∫

∞

0 ĝ(v)e−λv dv
is analytic in Re(λ) ≥ 0, then the triv-
ial equilibrium point is locally asymptot-
ically stable if, for each k = 1, . . . , n,
either

(1) |zk | <
α

β
,

or

(2) −
1

βτ
< zk ≤ −

α

β
.

τ

−α α z
β

I

β

II III
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Stability Analysis - Distribution Independent Results
Symmetric Connection Matrix

Theorem 2

Let W be symmetric. The trivial equi-
librium point is unstable if at least one
zk , k = 1, . . . , n, satisfies zk > α/β
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Stability Analysis - Distribution Independent Results
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Theorem 2

Let W be symmetric. The trivial equi-
librium point is unstable if at least one
zk , k = 1, . . . , n, satisfies zk > α/β

τ

−α α z
β

I

β

II III
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Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Recall

∆k(λ) = λ+ ατ − βτzk

∫

∞

0
e−λv ĝ(v) dv

Let zk = ak + ibk . The λ = iω is a zero of ∆k(λ) if

α = βakC (ω) + βbkS(ω),

−ω = βτakS(ω)− βτbkC (ω).

where

C (ω) =

∫

∞

0
cos(ωv) ĝ(v) dv

S(ω) =

∫

∞

0
sin(ωv) ĝ(v) dv
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Changes in stability will occur along the parameter values described by
these equations.

S.A. Campbell and R. Jessop (Waterloo) Approximate Stability Region May 14, 2010 15 / 29



Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Recall

∆k(λ) = λ+ ατ − βτzk

∫

∞

0
e−λv ĝ(v) dv

Let zk = ak + ibk . The λ = iω is a zero of ∆k(λ) if

α = βakC (ω) + βbkS(ω),

−ω = βτakS(ω)− βτbkC (ω).

where

C (ω) =

∫

∞

0
cos(ωv) ĝ(v) dv

S(ω) =

∫

∞

0
sin(ωv) ĝ(v) dv

Changes in stability will occur along the parameter values described by
these equations.
Note: For model with a discrete delay C (ω) = cos(ω), S(ω) = sin(ω).
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Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Theorem 3

The trivial equilibrium point is locally
asymptotically stable for any distribu-
tion, g , if |zk | < α/β, k = 1, 2, . . . , n.
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Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Theorem 3

The trivial equilibrium point is locally
asymptotically stable for any distribu-
tion, g , if |zk | < α/β, k = 1, 2, . . . , n.

−α α Re(z)

Im(z)

β β
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Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Theorem 4

Let α, β and τ be fixed. The trivial
equilibrium point is locally asymptoti-
cally stable if for each k = 1, 2, . . . , n
the point (ak , bk) lies inside the curve
(R(ω), I (ω)), ω ∈ [−ω̄, ω̄] where

R(ω) =
ταC (ω) − ωS(ω)

βτ(C 2(ω) + S2(ω))

I (ω) =
ταS(ω) + ωC (ω)

βτ(C 2(ω) + S2(ω))

and ω̄ is the first zero of I (ω).
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Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Theorem 4

Let α, β and τ be fixed. The trivial
equilibrium point is locally asymptoti-
cally stable if for each k = 1, 2, . . . , n
the point (ak , bk) lies inside the curve
(R(ω), I (ω)), ω ∈ [−ω̄, ω̄] where

R(ω) =
ταC (ω) − ωS(ω)

βτ(C 2(ω) + S2(ω))

I (ω) =
ταS(ω) + ωC (ω)

βτ(C 2(ω) + S2(ω))

and ω̄ is the first zero of I (ω).

−α α Re(z)

Im(z)

β β

We will call the region defined by (R(ω), I (ω)) the stability region.
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Stability Analysis - Distribution Independent Results
Nonsymmetric Connection Matrix

Theorem 5

In the limit τ → ∞, the stability region
corresponding to a discrete delay lies in-
side or is the same as the stability region
corresponding to any distribution of de-
lays.

τ=20

τ=3

−1.0

−0.5

0.0

−2 −1−4 0

1.0

−3

0.5
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Stability Analysis - Approximations

Stability region bounded by the curve (R(ω), I (ω)), ω ∈ [−ω̄, ω̄] where

R(ω) =
ταC (ω) − ωS(ω)

βτ(C 2(ω) + S2(ω))

I (ω) =
ταS(ω) + ωC (ω)

βτ(C 2(ω) + S2(ω))

C (ω) =

∫

∞

0
cos(ωv) ĝ(v) dv

S(ω) =

∫

∞

0
sin(ωv) ĝ(v) dv
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Stability Analysis - Approximations

Stability region bounded by the curve (R(ω), I (ω)), ω ∈ [−ω̄, ω̄] where

R(ω) =
ταC (ω) − ωS(ω)

βτ(C 2(ω) + S2(ω))

I (ω) =
ταS(ω) + ωC (ω)

βτ(C 2(ω) + S2(ω))

C (ω) =

∫

∞

0
cos(ωv) ĝ(v) dv

S(ω) =

∫

∞

0
sin(ωv) ĝ(v) dv

Approximate stability boundary by approximating C (ω) and S(ω).
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Stability Analysis - Approximations

The moment/cumulant generating function of the distribution ĝ is

φ(t) =

∫

∞

0
e itv ĝ(v) dv .
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Stability Analysis - Approximations

The moment/cumulant generating function of the distribution ĝ is

φ(t) =

∫

∞

0
e itv ĝ(v) dv .

The moments mn and the cumulants κn are then given by

dn

dtn
φ(t)

∣

∣

∣

∣

t=0

= inmn and
dn

dtn
lnφ(t)

∣

∣

∣

∣

t=0

= inκn.
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Stability Analysis - Approximations

The moment/cumulant generating function of the distribution ĝ is

φ(t) =

∫

∞

0
e itv ĝ(v) dv .

The moments mn and the cumulants κn are then given by

dn

dtn
φ(t)

∣

∣

∣

∣

t=0

= inmn and
dn

dtn
lnφ(t)

∣

∣

∣

∣

t=0

= inκn.

Note: m0 = φ(0) = 1 and κ0 = lnφ(0) = 0.
Since we have normalized ĝ by its mean, κ1 = m1 = 1.
The moments and cumulants are related, e.g.:

κ2 = m2 −m2
1,

κ3 = m3 − 3m1m2 + 2m3
1,
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Stability Analysis - Approximations

Expanding in φ(t) a Taylor series around t = 0 and substituting t = −ω:

φ(iω) =

∫

∞

0
e−iωv ĝ(v) dv =

∞
∑

n=0

(−1)n inmn
ωn

n!
= exp

{

∞
∑

n=0

(−1)ninκn
ωn

n!

}

.
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Stability Analysis - Approximations

Expanding in φ(t) a Taylor series around t = 0 and substituting t = −ω:

φ(iω) =

∫

∞

0
e−iωv ĝ(v) dv =

∞
∑

n=0

(−1)n inmn
ωn

n!
= exp

{

∞
∑

n=0

(−1)ninκn
ωn

n!

}

.

But
∫

∞

0 e−iωv ĝ(v) dv = C (ω)− iS(ω), i.e.,

C (ω) = Re

(
∫

∞

0
e−iωv ĝ(v) dv

)

and S(ω) = −Im

(
∫

∞

0
e−iωv ĝ(v) dv

)

.
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Stability Analysis - Approximations

Thus we obtain expansions in terms of the moments and cumulants:

C (ω) =

∞
∑

n=0

(−1)nω2n

(2n)!
m2n

= exp

{

∞
∑

n=0

(−1)nω2n

(2n)!
κ2n

}

cos

{

∞
∑

n=0

(−1)nω2n+1

(2n + 1)!
κ2n+1

}
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= exp

{

∞
∑

n=0
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{

∞
∑

n=0

(−1)nω2n+1
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Approximations may be made by truncating these series.
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Stability Analysis - Approximations

Using moments:

(M,N) C (ω) S(ω)

(0, 0) 1 ω

(1, 0) 1− m2
2 ω2 ω

(1, 1) 1− m2
2 ω2 ω − m3

6 ω3

Using cumulants

(M,N) C (ω) S(ω)

(0, 0) cos(ω) sin(ω)

(1, 0) exp
(

−κ2
ω2

2

)

cos(ω) exp
(

−κ2
ω2

2

)

sin(ω)

Note: (0, 0) cumulant approximation recovers the results for discrete delay
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Stability Analysis - Approximations

Uniform distribution with τ = 1/2 and ρ = 1, 2

βτ
−1

β
α

Im(z)

Re(z)
βτ

−1
β
α

Im(z)

Re(z)

True boundary: solid black curve.
Moment approximations: (1, 0) dotted, (1, 1) dashed.
Cumulant approximations: (0, 0) crosses, (1, 0) circles.
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Stability Analysis - Approximations

Gamma distribution with τ = 1/2 and p = 2, 3

βτ
−1

β
α

Im(z)

Re(z)
βτ

−1
β
α

Im(z)

Re(z)

True boundary: solid black curve.
Moment approximations: (1, 0) dotted, (1, 1) dashed.
Cumulant approximations: (0, 0) crosses, (1, 0) circles.
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Stability Analysis - Approximations

Uniform distribution with ρ = 1 and varying τ
True boundaries: solid curves

τ=100τ=0.5

τ=0.2

τ=0.05

τ=0

β
α

Im(z)

Re(z)

τ=100

τ=0.5

τ=0.2

τ=0.05

τ=0

β
α

Im(z)

Re(z)

Moments Cumulants
(1, 0) Approximations (0, 0) Approximations
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Conclusions

Obtained conservative, distribution independent region of stability,
which corresponds to delay independent region of stability for system
with discrete delay.
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Conclusions

Obtained conservative, distribution independent region of stability,
which corresponds to delay independent region of stability for system
with discrete delay.

Approximations are better for smaller values of ω

Approximations are better for smaller values of mean delay.

Approximations using cumulants are generally better than those using
moments.

Approximations improve as more moments or cumulants are added.

Future Work:

Apply approximation technique to study criticality of Hopf bifurcation
(in progress).
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