Integer Matrices with Constrained Eigenvalues Cyclotomic matrices and graphs

Graeme Taylor

Edinburgh
September 2009

A question

Which symmetric integer matrices have all eigenvalues in $[-2,2]$?

Mahler Measure

Let $P(z)=a_{0} z^{d}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\alpha_{i}\right)$ be a non-constant polynomial.

Mahler Measure

Let $P(z)=a_{0} z^{d}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\alpha_{i}\right)$ be a non-constant polynomial.

Definition
The Mahler Measure $M(P)$ is given by

$$
M(P):=\left|a_{0}\right| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

Mahler Measure

Let $P(z)=a_{0} z^{d}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\alpha_{i}\right)$ be a non-constant polynomial.

Definition
The Mahler Measure $M(P)$ is given by

$$
M(P):=\left|a_{0}\right| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.

Mahler Measure

Let $P(z)=a_{0} z^{d}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\alpha_{i}\right)$ be a non-constant polynomial.

Definition
The Mahler Measure $M(P)$ is given by

$$
M(P):=\left|a_{0}\right| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.
- If $M(P)=1$, then all roots of P lie in the closed unit disc.

Mahler Measure

Let $P(z)=a_{0} z^{d}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\alpha_{i}\right)$ be a non-constant polynomial.
Definition
The Mahler Measure $M(P)$ is given by

$$
M(P):=\left|a_{0}\right| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.
- If $M(P)=1$, then all roots of P lie in the closed unit disc.
- $\forall \lambda \geq 1, \exists P$ s.t. $M(P)=\lambda$.

Mahler Measure

$$
\begin{aligned}
& \text { Let } P(z)=z^{d}+\cdots+a_{d}=\prod_{i=1}^{d}\left(z-\alpha_{i}\right) \in \mathbb{Z}[z] \text { be a monic, } \\
& \text { non-constant polynomial. }
\end{aligned}
$$

Mahler Measure

Let $P(z)=z^{d}+\cdots+a_{d}=\prod_{i=1}^{d}\left(z-\alpha_{i}\right) \in \mathbb{Z}[z]$ be a monic, non-constant polynomial.

Definition

The Mahler Measure $M(P)$ is given by

$$
M(P):=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

Mahler Measure

Let $P(z)=z^{d}+\cdots+a_{d}=\prod_{i=1}^{d}\left(z-\alpha_{i}\right) \in \mathbb{Z}[z]$ be a monic, non-constant polynomial.

Definition

The Mahler Measure $M(P)$ is given by

$$
M(P):=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.

Mahler Measure

Let $P(z)=z^{d}+\cdots+a_{d}=\prod_{i=1}^{d}\left(z-\alpha_{i}\right) \in \mathbb{Z}[z]$ be a monic, non-constant polynomial.

Definition

The Mahler Measure $M(P)$ is given by

$$
M(P):=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.
- If $M(P)=1$, then all roots of P lie on the unit circle.

Mahler Measure

Let $P(z)=z^{d}+\cdots+a_{d}=\prod_{i=1}^{d}\left(z-\alpha_{i}\right) \in \mathbb{Z}[z]$ be a monic, non-constant polynomial.

Definition

The Mahler Measure $M(P)$ is given by

$$
M(P):=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.
- If $M(P)=1$, then all roots of P lie on the unit circle.
- So $M(P)=1 \Leftrightarrow P$ cyclotomic.

Mahler Measure

Let $P(z)=z^{d}+\cdots+a_{d}=\prod_{i=1}^{d}\left(z-\alpha_{i}\right) \in \mathbb{Z}[z]$ be a monic, non-constant polynomial.
Definition
The Mahler Measure $M(P)$ is given by

$$
M(P):=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

- Clearly, $M(P) \geq 1$ for all P.
- If $M(P)=1$, then all roots of P lie on the unit circle.
- So $M(P)=1 \Leftrightarrow P$ cyclotomic.
- What about noncyclotomic polynomials?

Lehmer's Conjecture

- Lehmer's Problem: For such polynomials with $M(P)>1$, can $M(P)$ be arbitrarily close to 1 ?

Lehmer's Conjecture

- Lehmer's Problem: For such polynomials with $M(P)>1$, can $M(P)$ be arbitrarily close to 1 ?
- If not, then there exists some $\lambda>1$ such that $M(P)>1 \Rightarrow M(P)>\lambda$, forcing a 'gap' between cyclotomic and non-cyclotomic polynomials.

Lehmer's Conjecture

The smallest known Mahler measure greater than 1 for a monic polynomial from $\mathbb{Z}[z]$ is

$$
\lambda_{0}=1.176280818
$$

which is the larger real root of the Lehmer polynomial

$$
z^{10}+z^{9}-z^{7}-z^{6}-z^{5}-z^{4}-z^{3}+z+1
$$

From cyclotomic to noncyclotomic?

- Likely candidates for small Mahler measure are polynomials that are 'almost cyclotomic'- as few roots outside the unit circle as possible.

From cyclotomic to noncyclotomic?

- Likely candidates for small Mahler measure are polynomials that are 'almost cyclotomic'- as few roots outside the unit circle as possible.
- Difficulty: There's no obvious way to obtain such an 'almost cyclotomic' integer polynomial from a cyclotomic one.

Associated Polynomials

- If A is an $n \times n$ integer symmetric matrix, then its associated polynomial is $R_{A}(z):=z^{n} \chi_{A}(z+1 / z)$

Associated Polynomials

- If A is an $n \times n$ integer symmetric matrix, then its associated polynomial is $R_{A}(z):=z^{n} \chi_{A}(z+1 / z)$
- If A has all eigenvalues in $[-2,2]$, then R_{A} is a cyclotomic polynomial- We describe A as a cyclotomic matrix.

From cyclotomic to noncyclotomic

Theorem (Cauchy Interlacing Theorem)
Let A be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.
Let B be obtained from A by deleting row i and column i from A.
Then the eigenvalues $\mu_{1} \leq \cdots \leq \mu_{n-1}$ of B interlace with those of
A: that is,

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_{n}
$$

From cyclotomic to noncyclotomic

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$
-2 \leq \mu_{1} \leq \cdots \leq \mu_{n-1} \leq 2
$$

From cyclotomic to noncyclotomic

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$
-2 \leq \mu_{1} \leq \cdots \leq \mu_{n-1} \leq 2
$$

Then if we 'grow' a matrix A from B by adding an extra row and column, we have by interlacing

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_{n}
$$

From cyclotomic to noncyclotomic

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$
-2 \leq \mu_{1} \leq \cdots \leq \mu_{n-1} \leq 2
$$

Then if we 'grow' a matrix A from B by adding an extra row and column, we have by interlacing

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_{n}
$$

So

$$
\lambda_{2}, \ldots, \lambda_{n-1} \in\left[\mu_{1}, \mu_{n-1}\right] \subseteq[-2,2]
$$

From cyclotomic to noncyclotomic

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$
-2 \leq \mu_{1} \leq \cdots \leq \mu_{n-1} \leq 2
$$

Then if we 'grow' a matrix A from B by adding an extra row and column, we have by interlacing

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_{n}
$$

So

$$
\lambda_{2}, \ldots, \lambda_{n-1} \in\left[\mu_{1}, \mu_{n-1}\right] \subseteq[-2,2]
$$

At worst,

$$
\lambda_{1}, \lambda_{n} \notin[-2,2]
$$

Cyclotomic Matrices: Entries

Lemma

The only cyclotomic 1×1 matrices are

$$
(0),(1),(-1),(2),(-2)
$$

Cyclotomic Matrices: Entries

Lemma

The only cyclotomic 1×1 matrices are

$$
(0),(1),(-1),(2),(-2)
$$

Corollary

By interlacing, the entries of an integer cyclotomic matrix must be elements of $\{0,1,-1,2,-2\}$.

Cyclotomic Matrices: Indecomposability

If M decomposes as a block-diagonal matrix, then its eigenvalues are those of the blocks; thus a cyclotomic matrix decomposes into one or more indecomp. cyclotomic matrices, and it suffices to classify these.

Cyclotomic Matrices: Indecomposability

If M decomposes as a block-diagonal matrix, then its eigenvalues are those of the blocks; thus a cyclotomic matrix decomposes into one or more indecomp. cyclotomic matrices, and it suffices to classify these.

Lemma
Apart from the matrices

$$
(2),(-2),\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -2 \\
-2 & 0
\end{array}\right)
$$

any indecomp. cyclotomic matrix has all entries from $\{0,1,-1\}$.

Cyclotomic Matrices: Maximality

- If A is cyclotomic, so is any B obtained by deleting some set of rows and corresponding columns of $A: B$ is described as being contained in A.

Cyclotomic Matrices: Maximality

- If A is cyclotomic, so is any B obtained by deleting some set of rows and corresponding columns of $A: B$ is described as being contained in A.
- If M is an indecomp. cyclotomic matrix that is not contained in any strictly larger indecomp. cyclotomic matrix, then M is described as being maximal.

Cyclotomic Matrices: Maximality

- If A is cyclotomic, so is any B obtained by deleting some set of rows and corresponding columns of $A: B$ is described as being contained in A.
- If M is an indecomp. cyclotomic matrix that is not contained in any strictly larger indecomp. cyclotomic matrix, then M is described as being maximal.

Theorem (McKee, Smyth)
Any non-maximal indecomp. cyclotomic matrix is contained in a maximal one.

Cyclotomic Matrices: Equivalence

Let $O_{n}(\mathbb{Z})$ be the orthogonal group of $n \times n$ signed permutation matrices, generated by permutation matrices and matrices of the form

$$
\operatorname{diag}(1,1, \ldots, 1,-1,1, \ldots, 1)
$$

Cyclotomic Matrices: Equivalence

Let $O_{n}(\mathbb{Z})$ be the orthogonal group of $n \times n$ signed permutation matrices, generated by permutation matrices and matrices of the form

$$
\operatorname{diag}(1,1, \ldots, 1,-1,1, \ldots, 1)
$$

- If M is cyclotomic and $X \in O_{n}(\mathbb{Z})$, then $M^{\prime}=X M X^{-1}$ is cyclotomic since it has the same eigenvalues. We describe M and M^{\prime} as strongly equivalent.

Cyclotomic Matrices: Equivalence

Let $O_{n}(\mathbb{Z})$ be the orthogonal group of $n \times n$ signed permutation matrices, generated by permutation matrices and matrices of the form

$$
\operatorname{diag}(1,1, \ldots, 1,-1,1, \ldots, 1)
$$

- If M is cyclotomic and $X \in O_{n}(\mathbb{Z})$, then $M^{\prime}=X M X^{-1}$ is cyclotomic since it has the same eigenvalues. We describe M and M^{\prime} as strongly equivalent.
- A matrix M^{\prime} is then described as equivalent to M if it is strongly equivalent to either M or $-M$.

The question, refined

Our original question thus reduces to classifying all maximal, indecomposable, cyclotomic, symmetric $\{-1,0,1\}$-matrices, up to equivalence.

Charged Signed Graphs

A convenient representation of such a matrix M is given by a charged, signed graph G.

Charged Signed Graphs

A convenient representation of such a matrix M is given by a charged, signed graph G.

- $M_{i i}=0$ gives a neutral vertex i, denoted \bullet.
- $M_{i i}=1$ gives a positively-charged vertex i, denoted \oplus.
- $M_{i i}=-1$ gives a negatively-charged vertex i, denoted \ominus.

Charged Signed Graphs

A convenient representation of such a matrix M is given by a charged, signed graph G.

- $M_{i i}=0$ gives a neutral vertex i, denoted \bullet.
- $M_{i i}=1$ gives a positively-charged vertex i, denoted \oplus.
- $M_{i i}=-1$ gives a negatively-charged vertex i, denoted \ominus.
- $M_{i j}=1, i \neq j$ gives a positive edge between vertices i and j, denoted
- $M_{i j}=-1, i \neq j$ gives a negative edge between vertices i and j, denoted $\cdots \cdots$.

Charged Signed Graphs

- M indecomposable $\Leftrightarrow G$ connected.

Charged Signed Graphs

- M indecomposable $\Leftrightarrow G$ connected.
- Maximality: M not contained in a larger cyclotomic matrix \Leftrightarrow G not an induced subgraph of a larger cyclotomic graph.

Charged Signed Graphs

- M indecomposable $\Leftrightarrow G$ connected.
- Maximality: M not contained in a larger cyclotomic matrix \Leftrightarrow G not an induced subgraph of a larger cyclotomic graph.
- M_{1} a permutation of $M_{2} \Leftrightarrow G_{1}$ is a re-labelling of G_{2}.

Charged Signed Graphs

- M indecomposable $\Leftrightarrow G$ connected.
- Maximality: M not contained in a larger cyclotomic matrix \Leftrightarrow G not an induced subgraph of a larger cyclotomic graph.
- M_{1} a permutation of $M_{2} \Leftrightarrow G_{1}$ is a re-labelling of G_{2}.
- Conjugation of M by k th diagonal matrix \Leftrightarrow Switching of signs of all edges incident at vertex k of G.

Classification

Charged Sporadics $S_{7}, S_{8}, S_{8}^{\prime}$:

Classification

Infinite family $C_{2 k}^{+ \pm}, k \geq 2$:

Classification

Uncharged Sporadic S_{14} :

Classification

Uncharged Sporadic S_{16} :

Classification

Infinite family $T_{2 k}, k \geq 3$:

Classification

Example: T_{24}

A special case of Lehmer's Problem

Theorem (McKee,Smyth)
If A is a noncyclotomic integer symmetric matrix then

$$
M\left(R_{A}(z)\right) \geq \lambda_{0}
$$

A special case of Lehmer's Problem

Theorem (McKee,Smyth)
If A is a noncyclotomic integer symmetric matrix then

$$
M\left(R_{A}(z)\right) \geq \lambda_{0}
$$

A special case of Lehmer's Problem

Theorem (McKee,Smyth)
If A is a noncyclotomic integer symmetric matrix then

$$
M\left(R_{A}(z)\right) \geq \lambda_{0}
$$

Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$ squarefree

- Interlacing Theorem still holds for Hermitian matrices.

Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$ squarefree

- Interlacing Theorem still holds for Hermitian matrices.
- $M_{i, i} \in\{0, \pm 1, \pm 2\}$ as before.

Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$ squarefree

- Interlacing Theorem still holds for Hermitian matrices.
- $M_{i, i} \in\{0, \pm 1, \pm 2\}$ as before.
- Off-diagonal entries satisfy $M_{i, j} M_{j, i}=N\left(M_{i, j}\right) \leq 4$.

Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d \leq-11$ squarefree

- For $d \leq-17,\{x \in R \mid N(x) \leq 4\} \subset \mathbb{Z}$.

Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d \leq-11$

 squarefree- For $d \leq-17,\{x \in R \mid N(x) \leq 4\} \subset \mathbb{Z}$.
- For $d=-15,-11$, only finitely many cyclotomic matrices with entries from $R \backslash \mathbb{Z}$:

Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, \quad-7 \leq d \leq-1$

Many possible entries!

$$
\begin{array}{rllll}
d & N(x)=1 & N(x)=2 & N(x)=3 & N(x)=4 \\
-1: & \pm 1, \pm i & \pm 1 \pm i & & \pm 2, \pm 2 i \\
-2: & \pm 1 & \pm \sqrt{-2} & \pm 1 \pm \sqrt{-2} & \pm 2 \\
-3: & \pm 1, \pm \frac{1}{2} \pm \frac{\sqrt{-3}}{2} & & \pm \frac{3}{2} \pm \frac{\sqrt{-3}}{2}, \pm \sqrt{-3} & \pm 2, \pm 1 \pm \sqrt{-3} \\
-7: & \pm 1 & \pm \frac{1}{2} \pm \frac{\sqrt{-7}}{2} & & \\
\hline 2, \pm \frac{3}{2} \pm \frac{\sqrt{-7}}{2}
\end{array}
$$

4-Cyclotomic Matrices

Observation
For $R=\mathbb{Z}, \mathcal{O}_{\mathbb{Q}(\sqrt{-15})}, \mathcal{O}_{\mathbb{Q}(\sqrt{-11})}$:
$M \in \operatorname{Mat}(R)$ maximal cyclotomic $\Leftrightarrow M^{2}=4 I$

4-Cyclotomic Matrices

Observation
For $R=\mathbb{Z}, \mathcal{O}_{\mathbb{Q}(\sqrt{-15})}, \mathcal{O}_{\mathbb{Q}(\sqrt{-11})}:$
$M \in \operatorname{Mat}(R)$ maximal cyclotomic $\Leftrightarrow M^{2}=4 I$
Determining 4-cyclotomic matrices for $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$, $d \in\{-1,-2,-3,-7\}$ is computationally feasible!

Classification

$\begin{array}{llll}\mathcal{S}_{2} & \frac{3}{2}+\frac{\sqrt{-7}}{2} & \mathcal{S}_{2} & \frac{1}{2}+\frac{\sqrt{-15}}{2} \\ \bullet--\cdots\end{array}$
\mathcal{S}_{2}^{\prime}
$\oplus \xlongequal{t} \theta$
$d=-7$
$d=-15$ $t=1+\sqrt{-2}, \frac{3}{2}+\frac{\sqrt{-3}}{2}, \frac{1}{2}+\frac{\sqrt{-11}}{2}$

$$
\begin{aligned}
& \begin{array}{c}
\mathcal{S}_{4} \\
\text { For } d=-1,-2,-7 \\
t=1+i, \sqrt{-2} \text { or } \frac{1}{2}+\frac{\sqrt{-7}}{2} \\
\ominus_{3}=\oplus_{-t} \\
\oplus_{4}
\end{array}
\end{aligned}
$$

For $d=-1,-2,-7$
$\omega=1+i, \sqrt{-2}$ or $\frac{1}{2}+\frac{\sqrt{-7}}{2}$

Classification

$$
d=-3
$$

Classification

Classification

Classification

$$
\begin{array}{llll}
C_{2 k}^{2+} & k \geq 3 & \mathcal{O}_{\mathbb{Q}(i)} \quad A=1+i \\
C_{2 k}^{2+} & k \geq 3 & \mathcal{O}_{\mathbb{Q}(\sqrt{-2})} \quad A=\sqrt{-2} \\
C_{2 k}^{2+} & k \geq 3 & \mathcal{O}_{\mathbb{Q}(\sqrt{-7})} \quad A=\frac{1}{2}+\frac{\sqrt{-7}}{2}
\end{array}
$$

A Conjecture

Conjecture

For $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$:

$$
M \in \operatorname{Mat}(R) \text { maximal cyclotomic } \Leftrightarrow M^{2}=4 I
$$

A Conjecture

Conjecture

For $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$:

$$
M \in \operatorname{Mat}(R) \text { maximal cyclotomic } \Leftrightarrow M^{2}=4 I
$$

- \Leftarrow not hard to show.

A Conjecture

Conjecture

For $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$:

$$
M \in M a t(R) \text { maximal cyclotomic } \Leftrightarrow M^{2}=4 I
$$

- \Leftarrow not hard to show.
- \Rightarrow holds for $d \leq-11$, or $R=\mathbb{Z}$.

A Conjecture

Conjecture

For $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$:

$$
M \in \operatorname{Mat}(R) \text { maximal cyclotomic } \Leftrightarrow M^{2}=4 I
$$

- \Leftarrow not hard to show.
- \Rightarrow holds for $d \leq-11$, or $R=\mathbb{Z}$.
- Caution: Not true for adjacency matrices of graphs!

Maximal Cyclotomic Graphs

Theorem (Smith)

The connected cyclotomic graphs are precisely the induced subgraphs of the graphs $\tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$ and those of the $(n+1)$-vertex graphs $\tilde{A}_{n}(n \geq 2), \tilde{D}_{n},(n \geq 4)$:

