# Integer Matrices with Constrained Eigenvalues Cyclotomic matrices and graphs

Graeme Taylor

Edinburgh

September 2009

### A question

Which symmetric integer matrices have all eigenvalues in [-2,2]?

Let  $P(z) = a_0 z^d + \cdots + a_d = a_0 \prod_{i=1}^d (z - \alpha_i)$  be a non-constant polynomial.

Let  $P(z) = a_0 z^d + \cdots + a_d = a_0 \prod_{i=1}^d (z - \alpha_i)$  be a non-constant polynomial.

#### Definition

$$M(P) := |a_0| \prod_{i=1}^d \max(1, |\alpha_i|)$$

Let  $P(z) = a_0 z^d + \cdots + a_d = a_0 \prod_{i=1}^d (z - \alpha_i)$  be a non-constant polynomial.

#### Definition

The Mahler Measure M(P) is given by

$$M(P) := |a_0| \prod_{i=1}^d \max(1, |\alpha_i|)$$

▶ Clearly,  $M(P) \ge 1$  for all P.

Let  $P(z) = a_0 z^d + \cdots + a_d = a_0 \prod_{i=1}^d (z - \alpha_i)$  be a non-constant polynomial.

#### Definition

$$M(P) := |a_0| \prod_{i=1}^d \max(1, |\alpha_i|)$$

- ▶ Clearly,  $M(P) \ge 1$  for all P.
- ▶ If M(P) = 1, then all roots of P lie in the closed unit disc.

Let  $P(z) = a_0 z^d + \cdots + a_d = a_0 \prod_{i=1}^d (z - \alpha_i)$  be a non-constant polynomial.

#### Definition

$$M(P) := |a_0| \prod_{i=1}^d \max(1, |\alpha_i|)$$

- ▶ Clearly,  $M(P) \ge 1$  for all P.
- ▶ If M(P) = 1, then all roots of P lie in the closed unit disc.
- $\blacktriangleright$   $\forall \lambda \geq 1$ ,  $\exists P$  s.t.  $M(P) = \lambda$ .

Let  $P(z) = z^d + \cdots + a_d = \prod_{i=1}^d (z - \alpha_i) \in \mathbb{Z}[z]$  be a monic, non-constant polynomial.

Let  $P(z) = z^d + \cdots + a_d = \prod_{i=1}^d (z - \alpha_i) \in \mathbb{Z}[z]$  be a monic, non-constant polynomial.

#### Definition

$$M(P) := \prod_{i=1}^d \max(1, |\alpha_i|)$$

Let  $P(z) = z^d + \cdots + a_d = \prod_{i=1}^d (z - \alpha_i) \in \mathbb{Z}[z]$  be a monic, non-constant polynomial.

#### Definition

The Mahler Measure M(P) is given by

$$M(P) := \prod_{i=1}^d \max(1, |\alpha_i|)$$

▶ Clearly,  $M(P) \ge 1$  for all P.

Let  $P(z) = z^d + \cdots + a_d = \prod_{i=1}^d (z - \alpha_i) \in \mathbb{Z}[z]$  be a monic, non-constant polynomial.

#### Definition

$$M(P) := \prod_{i=1}^d \max(1, |\alpha_i|)$$

- ▶ Clearly,  $M(P) \ge 1$  for all P.
- ▶ If M(P) = 1, then all roots of P lie on the unit circle.

Let  $P(z) = z^d + \cdots + a_d = \prod_{i=1}^d (z - \alpha_i) \in \mathbb{Z}[z]$  be a monic, non-constant polynomial.

#### Definition

$$M(P) := \prod_{i=1}^d \max(1, |\alpha_i|)$$

- ▶ Clearly,  $M(P) \ge 1$  for all P.
- ▶ If M(P) = 1, then all roots of P lie on the unit circle.
- ▶ So  $M(P) = 1 \Leftrightarrow P$  cyclotomic.

Let  $P(z) = z^d + \cdots + a_d = \prod_{i=1}^d (z - \alpha_i) \in \mathbb{Z}[z]$  be a monic, non-constant polynomial.

#### Definition

$$M(P) := \prod_{i=1}^d \max(1, |\alpha_i|)$$

- ▶ Clearly,  $M(P) \ge 1$  for all P.
- ▶ If M(P) = 1, then all roots of P lie on the unit circle.
- ▶ So  $M(P) = 1 \Leftrightarrow P$  cyclotomic.
- What about noncyclotomic polynomials?

### Lehmer's Conjecture

▶ Lehmer's Problem: For such polynomials with M(P) > 1, can M(P) be arbitrarily close to 1?

# Lehmer's Conjecture

- ▶ Lehmer's Problem: For such polynomials with M(P) > 1, can M(P) be arbitrarily close to 1?
- ▶ If not, then there exists some  $\lambda > 1$  such that  $M(P) > 1 \Rightarrow M(P) > \lambda$ , forcing a 'gap' between cyclotomic and non-cyclotomic polynomials.

# Lehmer's Conjecture

The smallest known Mahler measure greater than 1 for a monic polynomial from  $\mathbb{Z}[z]$  is

$$\lambda_0 = 1.176280818$$

which is the larger real root of the Lehmer polynomial

$$z^{10} + z^9 - z^7 - z^6 - z^5 - z^4 - z^3 + z + 1$$



▶ Likely candidates for small Mahler measure are polynomials that are 'almost cyclotomic'- as few roots outside the unit circle as possible.

- Likely candidates for small Mahler measure are polynomials that are 'almost cyclotomic'- as few roots outside the unit circle as possible.
- ▶ Difficulty: There's no obvious way to obtain such an 'almost cyclotomic' integer polynomial from a cyclotomic one.

### Associated Polynomials

▶ If A is an  $n \times n$  integer symmetric matrix, then its associated polynomial is  $R_A(z) := z^n \chi_A(z + 1/z)$ 

### Associated Polynomials

- ▶ If A is an  $n \times n$  integer symmetric matrix, then its associated polynomial is  $R_A(z) := z^n \chi_A(z + 1/z)$
- ▶ If A has all eigenvalues in [-2, 2], then  $R_A$  is a cyclotomic polynomial- We describe A as a cyclotomic matrix.

### Theorem (Cauchy Interlacing Theorem)

Let A be a real symmetric  $n \times n$  matrix with eigenvalues  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ .

Let B be obtained from A by deleting row i and column i from A. Then the eigenvalues  $\mu_1 \leq \cdots \leq \mu_{n-1}$  of B interlace with those of A: that is,

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_n$$

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$-2 \leq \mu_1 \leq \cdots \leq \mu_{n-1} \leq 2$$

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$-2 \leq \mu_1 \leq \cdots \leq \mu_{n-1} \leq 2$$

Then if we 'grow' a matrix A from B by adding an extra row and column, we have by interlacing

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_n$$

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$-2 \leq \mu_1 \leq \cdots \leq \mu_{n-1} \leq 2$$

Then if we 'grow' a matrix A from B by adding an extra row and column, we have by interlacing

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_n$$

So

$$\lambda_2,\ldots,\lambda_{n-1}\in[\mu_1,\mu_{n-1}]\subseteq[-2,2]$$

We can run this process in reverse. Let B be a cyclotomic matrix, so its eigenvalues satisfy

$$-2 \leq \mu_1 \leq \cdots \leq \mu_{n-1} \leq 2$$

Then if we 'grow' a matrix A from B by adding an extra row and column, we have by interlacing

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_n$$

So

$$\lambda_2,\ldots,\lambda_{n-1}\in[\mu_1,\mu_{n-1}]\subseteq[-2,2]$$

At worst,

$$\lambda_1, \lambda_n \notin [-2, 2]$$

### Cyclotomic Matrices: Entries

#### Lemma

The only cyclotomic  $1 \times 1$  matrices are

$$(0),(1),(-1),(2),(-2)$$

# Cyclotomic Matrices: Entries

#### Lemma

The only cyclotomic  $1 \times 1$  matrices are

$$(0), (1), (-1), (2), (-2)$$

#### Corollary

By interlacing, the entries of an integer cyclotomic matrix must be elements of  $\{0, 1, -1, 2, -2\}$ .

# Cyclotomic Matrices: Indecomposability

If *M* decomposes as a block-diagonal matrix, then its eigenvalues are those of the blocks; thus a cyclotomic matrix decomposes into one or more indecomp. cyclotomic matrices, and it suffices to classify these.

# Cyclotomic Matrices: Indecomposability

If M decomposes as a block-diagonal matrix, then its eigenvalues are those of the blocks; thus a cyclotomic matrix decomposes into one or more indecomp. cyclotomic matrices, and it suffices to classify these.

#### Lemma

Apart from the matrices

$$(2), (-2), \left(\begin{array}{cc} 0 & 2 \\ 2 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & -2 \\ -2 & 0 \end{array}\right)$$

any indecomp. cyclotomic matrix has all entries from  $\{0,1,-1\}$ .

# Cyclotomic Matrices: Maximality

▶ If A is cyclotomic, so is any B obtained by deleting some set of rows and corresponding columns of A: B is described as being *contained in A*.

# Cyclotomic Matrices: Maximality

- ▶ If A is cyclotomic, so is any B obtained by deleting some set of rows and corresponding columns of A: B is described as being contained in A.
- ▶ If *M* is an indecomp. cyclotomic matrix that is not contained in any strictly larger indecomp. cyclotomic matrix, then *M* is described as being *maximal*.

# Cyclotomic Matrices: Maximality

- ▶ If A is cyclotomic, so is any B obtained by deleting some set of rows and corresponding columns of A: B is described as being contained in A.
- ▶ If *M* is an indecomp. cyclotomic matrix that is not contained in any strictly larger indecomp. cyclotomic matrix, then *M* is described as being *maximal*.

### Theorem (McKee, Smyth)

Any non-maximal indecomp. cyclotomic matrix is contained in a maximal one.

# Cyclotomic Matrices: Equivalence

Let  $O_n(\mathbb{Z})$  be the orthogonal group of  $n \times n$  signed permutation matrices, generated by permutation matrices and matrices of the form

$$diag(1,1,\ldots,1,-1,1,\ldots,1)$$

# Cyclotomic Matrices: Equivalence

Let  $O_n(\mathbb{Z})$  be the orthogonal group of  $n \times n$  signed permutation matrices, generated by permutation matrices and matrices of the form

$$diag(1,1,\ldots,1,-1,1,\ldots,1)$$

▶ If M is cyclotomic and  $X \in O_n(\mathbb{Z})$ , then  $M' = XMX^{-1}$  is cyclotomic since it has the same eigenvalues. We describe M and M' as strongly equivalent.

# Cyclotomic Matrices: Equivalence

Let  $O_n(\mathbb{Z})$  be the orthogonal group of  $n \times n$  signed permutation matrices, generated by permutation matrices and matrices of the form

$$diag(1,1,\ldots,1,-1,1,\ldots,1)$$

- ▶ If M is cyclotomic and  $X \in O_n(\mathbb{Z})$ , then  $M' = XMX^{-1}$  is cyclotomic since it has the same eigenvalues. We describe M and M' as strongly equivalent.
- A matrix M' is then described as equivalent to M if it is strongly equivalent to either M or −M.

### The question, refined

Our original question thus reduces to classifying all maximal, indecomposable, cyclotomic, symmetric  $\{-1,0,1\}$ -matrices, up to equivalence.

A convenient representation of such a matrix M is given by a charged, signed graph G.

A convenient representation of such a matrix M is given by a charged, signed graph G.

- ▶  $M_{ii} = 0$  gives a neutral vertex i, denoted •.
- ▶  $M_{ii} = 1$  gives a positively-charged vertex i, denoted  $\oplus$ .
- ▶  $M_{ii} = -1$  gives a negatively-charged vertex i, denoted  $\ominus$ .

A convenient representation of such a matrix M is given by a charged, signed graph G.

- ▶  $M_{ii} = 0$  gives a neutral vertex i, denoted •.
- ▶  $M_{ii} = 1$  gives a positively-charged vertex i, denoted  $\oplus$ .
- ▶  $M_{ii} = -1$  gives a negatively-charged vertex i, denoted  $\ominus$ .
- ▶  $M_{ij} = -1$ ,  $i \neq j$  gives a negative edge between vertices i and j, denoted · · · · · · .

▶ M indecomposable  $\Leftrightarrow G$  connected.

- ▶ M indecomposable  $\Leftrightarrow G$  connected.
- ► Maximality: M not contained in a larger cyclotomic matrix ⇔ G not an induced subgraph of a larger cyclotomic graph.

- ▶ M indecomposable  $\Leftrightarrow G$  connected.
- ► Maximality: M not contained in a larger cyclotomic matrix ⇔ G not an induced subgraph of a larger cyclotomic graph.
- ▶  $M_1$  a permutation of  $M_2 \Leftrightarrow G_1$  is a re-labelling of  $G_2$ .

- ▶ M indecomposable  $\Leftrightarrow G$  connected.
- ► Maximality: M not contained in a larger cyclotomic matrix ⇔ G not an induced subgraph of a larger cyclotomic graph.
- ▶  $M_1$  a permutation of  $M_2 \Leftrightarrow G_1$  is a re-labelling of  $G_2$ .
- ▶ Conjugation of M by kth diagonal matrix  $\Leftrightarrow$  Switching of signs of all edges incident at vertex k of G.

# Charged Sporadics $S_7, S_8, S_8'$ :



Infinite family  $C_{2k}^{+\pm}$ ,  $k \ge 2$ :



Uncharged Sporadic  $S_{14}$ :



Uncharged Sporadic  $S_{16}$ :



### Infinite family $T_{2k}$ , $k \ge 3$ :



Example:  $T_{24}$ 



# A special case of Lehmer's Problem

Theorem (McKee,Smyth)

If A is a noncyclotomic integer symmetric matrix then

$$M(R_A(z)) \geq \lambda_0$$

# A special case of Lehmer's Problem

Theorem (McKee,Smyth)

If A is a noncyclotomic integer symmetric matrix then

$$M(R_A(z)) \geq \lambda_0$$





# A special case of Lehmer's Problem

### Theorem (McKee, Smyth)

If A is a noncyclotomic integer symmetric matrix then

$$M(R_A(z)) \geq \lambda_0$$



# Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})},\ d<0$ squarefree

▶ Interlacing Theorem still holds for Hermitian matrices.

# Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})},\ d<0$ squarefree

- ▶ Interlacing Theorem still holds for Hermitian matrices.
- ▶  $M_{i,i} \in \{0, \pm 1, \pm 2\}$  as before.

# Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})},\ d<0$ squarefree

- ▶ Interlacing Theorem still holds for Hermitian matrices.
- ▶  $M_{i,i} \in \{0, \pm 1, \pm 2\}$  as before.
- ▶ Off-diagonal entries satisfy  $M_{i,j}M_{j,i} = N(M_{i,j}) \le 4$ .

# Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ , $d\leq -11$ squarefree

▶ For  $d \le -17$ ,  $\{x \in R \mid N(x) \le 4\} \subset \mathbb{Z}$ .

# Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ , $d\leq -11$ squarefree

- ▶ For  $d \le -17$ ,  $\{x \in R \mid N(x) \le 4\} \subset \mathbb{Z}$ .
- ▶ For d = -15, -11, only finitely many cyclotomic matrices with entries from  $R \setminus \mathbb{Z}$ :



# Cyclotomic Matrices over $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ , $-7\leq d\leq -1$

#### Many possible entries!

## 4-Cyclotomic Matrices

#### Observation

For 
$$R=\mathbb{Z},\mathcal{O}_{\mathbb{Q}(\sqrt{-15})},\mathcal{O}_{\mathbb{Q}(\sqrt{-11})}$$
:

$$M \in Mat(R)$$
 maximal cyclotomic  $\Leftrightarrow M^2 = 4I$ 

## 4-Cyclotomic Matrices

#### Observation

For 
$$R=\mathbb{Z},\mathcal{O}_{\mathbb{Q}(\sqrt{-15})},\mathcal{O}_{\mathbb{Q}(\sqrt{-11})}$$
:

$$M \in Mat(R)$$
 maximal cyclotomic  $\Leftrightarrow M^2 = 4I$ 

Determining 4-cyclotomic matrices for  $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ ,  $d \in \{-1, -2, -3, -7\}$  is computationally feasible!















### Conjecture

For 
$$R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d<0$$
:

$$M \in Mat(R)$$
 maximal cyclotomic  $\Leftrightarrow M^2 = 4I$ 

### Conjecture

For 
$$R = \mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d < 0$$
:

$$M \in Mat(R)$$
 maximal cyclotomic  $\Leftrightarrow M^2 = 4I$ 

▶ ← not hard to show.

### Conjecture

For 
$$R = \mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d < 0$$
:

$$M \in Mat(R)$$
 maximal cyclotomic  $\Leftrightarrow M^2 = 4I$ 

- ► ← not hard to show.
- ightharpoonup  $\Rightarrow$  holds for  $d \leq -11$ , or  $R = \mathbb{Z}$ .

### Conjecture

For 
$$R = \mathcal{O}_{\mathbb{Q}(\sqrt{d})}, d < 0$$
:

$$M \in Mat(R)$$
 maximal cyclotomic  $\Leftrightarrow M^2 = 4I$ 

- ► ← not hard to show.
- ightharpoonup  $\Rightarrow$  holds for  $d \leq -11$ , or  $R = \mathbb{Z}$ .
- Caution: Not true for adjacency matrices of graphs!

# Maximal Cyclotomic Graphs

### Theorem (Smith)

The connected cyclotomic graphs are precisely the induced subgraphs of the graphs  $\tilde{E}_6$ ,  $\tilde{E}_7$ ,  $\tilde{E}_8$  and those of the (n+1)-vertex graphs  $\tilde{A}_n (n \geq 2)$ ,  $\tilde{D}_n, (n \geq 4)$ :

