Intersecting algebraic plane curves with the Euclidean algorithm

Jan Hilmar and Chris Smyth

Fields Institute, 24 September 2009
arXiv:0907.0361[math]

$$
\begin{aligned}
A(x, y, z) & =\sum_{i, j} a_{i j} x^{i} y^{j} z^{m-i-j} \\
B(x, y, z) & =\sum_{i, j} b_{i j} x^{i} y^{j} z^{n-i-j}
\end{aligned}
$$

$i_{\mathbf{P}}(A, B)=$ intersection multiplicity of A and B

$$
\begin{aligned}
& \text { at } \mathbf{P} \in \bar{K} \mathbb{P}^{2}, \\
& =\left\{\begin{array}{l}
>0 \text { if } \mathbf{P} \text { lies on both } A \text { and } B, \\
=0 \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Want formal sum $A \cdot B=\sum_{\mathbf{P}} i_{\mathbf{P}}(A, B) \mathbf{P}$, the intersection cycle of A and B, an object for recording the intersection of these curves.
Our algorithm does not need to use the definition of $i_{\mathbf{P}}(A, B)$, only standard properties of intersection cycles:

Proposition 1. Let A, B and C be algebraic curves with

$$
\operatorname{gcd}(A, B)=\operatorname{gcd}(A, C)=1
$$

Then
(a) $A \cdot B=B \cdot A$;
(b) $A \cdot(B C)=A \cdot B+A \cdot C$;
(c) $A \cdot(B+A C)=A \cdot B$ if $\partial B=$ $\partial(A C) ;$
(d) If A and B are distinct lines, say
$A(x, y, z)=a_{1} x+a_{2} y+a_{3} z$ and
$B(x, y, z)=b_{1} x+b_{2} y+b_{3} z$, then their intersection cycle $A \cdot B$ is the single point \mathbf{P}_{\times}given by

$$
\mathbf{P}_{\times}=\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|,\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|\right) .
$$

Applying the Euclidean algorithm

$A, B \in K[x, y, z]$ be algebraic curves, $\operatorname{gcd}(A, B)=1$
$\partial_{x} A \geq \partial_{x} B \geq 1$.
By polynomial division we can find $q, r \in K(y, z)[x]$ with

$$
A=q B+r
$$

and $0 \leq \partial_{x} r<\partial_{x} B$ and $q, r \neq 0$.
Can multiply through by LCM $H \in$ $K[y, z]$ of their denominators to get

$$
H A=Q B+R,
$$

where $Q=q H, R=r H \in K[x, y, z]$ homogeneous, $\partial(Q B)=\partial R$.

Suppose now that $G=\operatorname{gcd}(B, R)$.
As $\operatorname{gcd}(A, B)=1$, it is clear that also $\operatorname{gcd}(B, H)=G$, so we can divide through by G to get

$$
H^{\prime} A=Q B^{\prime}+R^{\prime}
$$

where $B=B^{\prime} G, H=H^{\prime} G, R=R^{\prime} G$, and $\operatorname{gcd}\left(B^{\prime}, R^{\prime}\right)=\operatorname{gcd}\left(B^{\prime}, H^{\prime}\right)=1$. Now

$$
\begin{aligned}
A \cdot B & =A \cdot\left(B^{\prime} G\right) \\
& =A \cdot B^{\prime}+A \cdot G \\
& =\left(H^{\prime} A\right) \cdot B^{\prime}-H^{\prime} \cdot B^{\prime}+A \cdot G \\
& =\left(Q B^{\prime}+R^{\prime}\right) \cdot B^{\prime}-H^{\prime} \cdot B^{\prime}+A \cdot G \\
& =R^{\prime} \cdot B^{\prime}-H^{\prime} \cdot B^{\prime}+A \cdot G
\end{aligned}
$$

Intersecting curve with product of lines

Given $C \in K[x, y, z], D \in K[y, z]$, can assume D irreducible $/ K$.

$$
\begin{equation*}
D(y, z)=\prod(y-\beta z), \tag{1}
\end{equation*}
$$

where the β are roots in \bar{K} of $D(y, 1)$.
Thus $D=$ product of lines. Then since
$C(x, y, z)=C(x, \beta z, z)+(y-\beta z) C^{\prime \prime}(x, y, z)$
for some $C^{\prime \prime}$ in $K[x, y, z]$,
$C \cdot(y-\beta z)=C(x, \beta z, z) \cdot(y-\beta z)$.
$C \cdot D=C(x, y, z) \cdot\left(\prod(y-\beta z)\right)$
$=\sum_{\beta} C(x, \beta z, z) \cdot(y-\beta z)$.

Next, factorize $C(x, \beta z, z)$ over $K(\beta)$.
$C_{2}(x, z)=$ a typical factor, we have that over \bar{K}, we have

$$
C_{2}(x, z)=\prod_{\gamma}(x-\gamma z)
$$

where the γ are the roots in \bar{K} of $C_{2}(x, 1)$, and

$$
\begin{aligned}
C_{2} \cdot D & =\sum_{\beta} \sum_{\gamma}(x-\gamma z) \cdot(y-\beta z) \\
& =\sum_{\beta} \sum_{\gamma}(\gamma, \beta, 1) .
\end{aligned}
$$

From our algorithm: intersection cycle $A \cdot B=$ sum or difference of simpler sums of the following types:
(1) The point $(1,0,0)$;
(2) A sum $\sum_{\alpha}(\alpha, 1,0)$, over roots α of monic $f \in K[x]$ irreducible over K; denote this sum by $\mathcal{C}_{0}(f(x))$;
(3) A double sum $\sum_{\beta} \sum_{\gamma}(\gamma, \beta, 1)$, where
\sum_{β} over the roots β of monic polynomial $g \in K[y]$ irreducible over K, with
\sum_{γ} taken over the roots γ of some monic polynomial $h_{\beta} \in K(\beta)[x]$ irreducible over $K(\beta)$.
Then can write h_{β} as $h(x, \beta) \in$ $K[x, y]$, where β-degree of $h<$ degree of g; denote double sum by $\mathcal{C}_{1}(h(x, y), g(y))$.

Example. Take

$$
\begin{aligned}
& A(x, y, z)=y^{2} z-x^{3} \\
& B(x, y, z)=y^{2} z-x^{2}(x+z)
\end{aligned}
$$

Applying Euclid's algorithm to A and B as polynomials in x, we first have

$$
A(x, y, z)=B(x, y, z)+x^{2} z
$$

so that

$$
A \cdot B=A \cdot\left(x^{2} z\right)=2(A \cdot x)+A \cdot z
$$

Then
$A \cdot x=\left(y^{2} z\right) \cdot x=2(y \cdot x)+z \cdot x=2(0,0,1)+(0,1,0)$ while

$$
A \cdot z=\left(x^{3}\right) \cdot z=3(0,1,0)
$$

So

$$
A \cdot B=4(0,0,1)+5(0,1,0)
$$

Example 2.

$$
\begin{aligned}
A(x, y, z)= & (y-z) x^{5}+\left(y^{2}-y z\right) x^{4} \\
& +\left(y^{3}-y^{2} z\right) x^{3}+\left(-y^{2} z^{2}+y z^{3}\right) x^{2} \\
& +\left(-y^{3} z^{2}+y^{2} z^{3}\right) x-y^{4} z^{2}+y^{3} z^{3} \\
B(x, y, z)= & \left(y^{2}-2 z^{2}\right) x^{2}+\left(y^{3}-2 y z^{2}\right) x \\
& +y^{4}-y^{2} z^{2}-2 z^{4} .
\end{aligned}
$$

Applying one step of Euclid's algorithm to A and B as polynomials in x, we get $A=\frac{(y-z) x\left(x^{2}-z^{2}\right)}{y^{2}-2 z^{2}} B+z^{2}(y-z)\left(z^{2} x-y^{3}\right) ;$
thus clearing the denominator $y^{2}-2 z^{2}$ gives

$$
\begin{aligned}
\left(y^{2}-2 z^{2}\right) A & =(y-z) x\left(x^{2}-z^{2}\right) B \\
& +\left(y^{2}-2 z^{2}\right) z^{2}(y-z)\left(z^{2} x-y^{3}\right)
\end{aligned}
$$

Get

$$
\begin{aligned}
A \cdot & B=2(1,0,0)+2 \mathcal{C}_{0}\left(x^{2}+x+1\right) \\
& +\mathcal{C}_{1}\left(x^{2}+x+2, y-1\right)+\mathcal{C}_{1}\left(x+y, y^{2}+1\right) \\
& +\mathcal{C}_{1}\left(x-y^{3}, y^{4}+1\right)+\mathcal{C}_{1}\left(x^{3}-y, y^{2}-2\right) \\
& +\mathcal{C}_{1}\left(x^{2}+y x+2, y^{2}-2\right)
\end{aligned}
$$

Once this final form has been obtained, the Galois cycles can be unpacked to write them explicitly as sums of points.
For instance,

$$
\begin{aligned}
& \mathcal{C}_{0}\left(x^{2}+x+1\right)=(\omega, 1,0)+\left(\omega^{2}, 1,0\right) \\
& \text { where } \omega=\frac{-1+\sqrt{-3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{C}_{1}\left(x^{3}-y, y^{2}\right. & -2)=\left(\gamma, \gamma^{3}, 1\right)+\left(\omega \gamma, \gamma^{3}, 1\right) \\
& +\left(\omega^{2} \gamma, \gamma^{3}, 1\right)+\left(-\gamma,-\gamma^{3}, 1\right) \\
& +\left(-\omega \gamma,-\gamma^{3}, 1\right)+\left(-\omega^{2} \gamma,-\gamma^{3}, 1\right)
\end{aligned}
$$

where $\gamma=2^{1 / 6}$.

Theorem 2 (Bézout's Theorem). Let $A, B \in K[x, y, z]$ be homogeneous of degrees m, n respectively, with no nonconstant common factor. Then in $\bar{K} \mathbb{P}^{2}$ the curves $A=0$ and $B=0$ intersect in exactly mn points, counting multiplicities.

Proof of Bézout's Theorem

We need to show that $\#(A \cdot B)=$ $\sum_{\mathbf{P}} i_{\mathbf{P}}(A, B)=m n$. We proceed by induction on the x-degree of B.

Base case. First suppose that B has x-degree 0 . Then B factors over \bar{K} into a product of n lines L, so that $A \cdot B$ is a sum of n intersection cycles $A \cdot L$. Each $A \cdot L=A^{\prime} \cdot L$, where $A^{\prime}=$ degree m polynomial in two variables, so a product of m lines. Hence $A \cdot L$ can be written as a sum of m intersections L^{\prime}. L, giving $m n$ such intersections in total. Since, by Proposition,$L^{\prime} \cdot L$ consists of a single point, we have $\#(A \cdot B)=m n$ in this case.

Induction step. Suppose now that B has x-degree $k>0$ and that we know that the result holds for all B with $\partial_{x} B<k$ and for all A. Then $\#(A \cdot B)=\#\left(R^{\prime} \cdot B^{\prime}\right)-\#\left(H^{\prime} \cdot B^{\prime}\right)$

$$
+\#(A \cdot G)
$$

$$
=\left(\partial R^{\prime}-\partial H^{\prime}\right) \partial B^{\prime}+\partial A \partial G
$$

recalling that $\partial_{x} R^{\prime}<\partial_{x} B=k$ and $\partial_{x} H^{\prime}=\partial_{x} G=0$.
By homogeneity, we have that $\partial R^{\prime}-$ $\partial H^{\prime}=\partial A$. Finally, since $\partial B^{\prime}+\partial G=$ ∂B from $B=B^{\prime} G$, the result $\#(A$. $B)=\partial A \partial B=m n$ follows for $\partial_{x} B=$ k.

Define the local ring of rational functions of degree 0 at $\mathbf{P} \in \bar{K} \mathbb{P}^{2}$ to be

$$
\begin{aligned}
R_{\mathbf{P}}= & \left\{\frac{S}{T}: S, T \in \bar{K}[x, y, z], \partial S=\partial T\right. \\
& T(\mathbf{P}) \neq 0\}
\end{aligned}
$$

$$
\begin{aligned}
(A, B)_{\mathbf{P}}= & \left\{\frac{S}{T} \in R_{\mathbf{P}}: S=M A+N B\right. \\
& M, N, T \in \bar{K}[x, y, z], T(\mathbf{P}) \neq 0\}
\end{aligned}
$$

the ideal generated by A and B in $R_{\mathbf{P}}$.
Following e.g. Fulton, we can now define the intersection multiplicity $i_{\mathbf{P}}(A, B)$ of A and B to be the dimension of the \bar{K}-vector space $R_{\mathbf{P}} /(A, B)_{\mathbf{P}}$ (and so equal to 0 if $\left.(A, B)_{\mathbf{P}}=R_{\mathbf{P}}\right)$.

Lemma 3. Let $\mathbf{P} \in \bar{K} \mathbb{P}^{2}$ and $A, B, C \in$ $K[x, y, z]$ with $\operatorname{gcd}(A, B)=\operatorname{gcd}(A, C)=$ 1. Then
(a) $i_{\mathbf{P}}(A, B)>0$ if and only if \mathbf{P} lies on both A and B;
(b) $i_{\mathbf{P}}(A, B)=i_{\mathbf{P}}(B, A)$;
(c) $i_{\mathbf{P}}(A, B C)=i_{\mathbf{P}}(A, B)+i_{\mathbf{P}}(A, C)$;
(d) $i_{\mathbf{P}}(A, B+A C)=i_{\mathbf{P}}(A, B)$ if $\partial(A C)=$ $\partial B ;$
(e) For distinct lines L, L^{\prime}, the only point on both lines is \mathbf{P}_{\times}given by (1), and $i_{\mathbf{P}_{\times}}\left(L, L^{\prime}\right)=1$.

Figure 1 : The 'slice' $z=1$ of the cubic curves $y^{2} z-x^{3}$ (solid line) and $y^{2} z-$ $x^{2}(x+z)$ (dotted line) near $(0,0,1)$, an intersection point of multiplicity 4 . (These are the curves $y^{2}=x^{3}$ and $y^{2}=x^{2}(x+1)$.)

Figure 2: The 'slice' $y=1$ of the same curves $y^{2} z-x^{3}$ (solid line) and $y^{2} z-$ $x^{2}(x+z)$ (dotted line) near $(0,1,0)$, an intersection point of multiplicity 5 . (These are the curves $z=x^{3}$ and $z=x^{3} /\left(1-x^{2}\right)$.)

