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Alx,y, 2) :Zawa}y L

B(x,y, 2 waxyzn =7

ip(A, B) = intersection multiplicity of A and B
at P € FIPQ,
B {> 0 if P lies on both A and B,

= () otherwise.

Want formal sum A-B = ) pip(4, B)P,
the intersection cycle of A and B, an
object for recording the intersection ot
these curves.

Our algorithm does not need to use
the definition of ip(A, B) , only standard
properties of intersection cycles:



Proposition 1. Let A, B and C be
algebraic curves with

gcd(A, B) = ged(A,C) = 1.
Then
(a) A-B=B-A;
(b)) A-(BC)=A-B+A-C;
(c)A-(B+ AC) = A- B if 0B =
0(AC);

(d) If A and B are distinct lines, say
Alx,y,z) = a1z + avy + azz and
B(xz,y,z) = bijx + boy + bsz, then
their intersection cycle A- B 1is the
single point Px given by
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Applying the Euclidean algorithm

A, B € K|x,y, z| be algebraic curves,

gcd(A, B) =1

0yA>0,B>1.

By polynomial division we can find
q,r € K(y, z)|x| with

A=qB+r

and 0 < 0yr < 0B and ¢q,r # 0.
Can multiply through by LCM H €
Ky, z| of their denominators to get

HA = QB +R,

where ) = ¢H, R = rH € Klz,y, 2|
homogeneous, 0(QB) = OR.



Suppose now that G = ged(B, R).
As ged(A,B) = 1, it is clear that
also ged(B, H) = G, so we can divide
through by G to get

H'A=QB +R,
where B = B'G. H=H'G. R = R'G,
and ged(B', R') = ged(B',H') = 1.
Now
A-B=A-(B'G)
—A-B+A.-G
= (H'A)-B'-H' -B'+A4.G
—(QB'+RY-B—-H -B+A.-G
- R .-B—-H -B+A-G



Intersecting curve with product
of lines

Given C € Klz,y,z], D € Kly, 2|,
can assume D irreducible /K.

D(y,z) = | [y - 82, (1)
&

where the 3 are roots in K of D(y,1).
Thus D = product of lines. Then since

C(SE,y, Z) — C(SE,ﬁZ, Z) + <y R ﬂZ)C//<CC,y, Z)

for some C” in Kz, v, 2],

¢ - <y - ﬂ2> — C(I,ﬁZ,Z) ' (y - ﬂZ)

5

=) C(z,822) (y— B2).
E



Next, factorize C'(x, 0z, z) over K ().
Co(z, 2) = a typical factor, we have
that over K, we have

Cola,2) = [[ (& = 72).

~

where the ~ are the roots in K of
Co(x, 1), and

Cy-D=> > (x—72) (y—B2)
5
= > > (6,1,
5



From our algorithm: intersection cycle
A - B = sum or difference of simpler
sums of the following types:

(1) The point (1,0, 0);

(2) A sum ) (a,1,0), over roots a of
monic f € K|z irreducible over K;
denote this sum by Cy( f(x));

(3) Adoublesum » Jg > (v, 5,1), where

D g over theroots § of monic polynomial
g € Kly| irreducible over K, with
D~ taken over the roots + of some
monic polynomial hg € K(3)|x]
irreducible over K ().

Then can write hg as h(z,B) €
K|z, y|, where B-degree of h < degree
of g; denote double sum by Cy(h(z, y), g(y)).



Example. Take
A(SE, Y, Z) — yQZ o xg
B(x,y,2) = y°z — °(z + 2),

Applying Euclid’s algorithm to A and

B as polynomials in x, we first have
2

Alz,y,2z) = B(z,y,2) + x°z,
so that
A-B=A-(2°2)=2(A-2)+ A- 2.
Then
Az =(y?2)-x = 2(y-x)+zx = 2(0,0,1)4(0, 1, 0)
while

A-z=(2%)-2=3(0,1,0).

S0

A- B =4(0,0,1) +5(0,1,0).



Example 2.

D 4

Alz,y,2) = (y — 2)2° + (y° — y2)u
+(y? —y?2) e + (=22 + y2d)a
+(—y3z2 4 y223>£l7 . y422 4 y323

B(z,y,z) = (y° — 222)2° + (y° — 2yz*)a
+y4 — y222 — 2%

2

Applying one step of Euclid’s algorithm
to A and B as polynomials in x, we get

2 2
— Z)r\r- — Z
A — <y y2)_<222 >B+z2(y—z)(z2a:—y3);

thus clearing the denominator y? — 227
g1ves
(v> — 229)A = (y — 2)z(a* — 2°)B
+ (Y —227)2(y — 2)(z"z — o).



Get
A-B =2(1,0,0) + 2Cy(z° + = + 1)
+C (P +r+2,y— D +Clz+y,y° + 1)
+Cix -y y' + )+ Ci(’ —y,y” —2)
+C(z? +yz +2,y° — 2).
Once this final form has been obtained,
the Galois cycles can be unpacked to

write them explicitly as sums of points.
For instance,

Co(z” +z+1) = (w,1,0) + (w?,1,0)
—1+v/-3
) )

where w =

Cl(xg — Y, yQ o 2) — <fy7 ,yS’ 1) + <w77 737 1)



Theorem 2 (Bézout’s Theorem). Let
A,B € Klx,y,z] be homogeneous
of degrees m,n respectively, with no
nonconstant common factor. Then
in KP? the curves A =0 and B = 0
intersect in exactly mn points, counting
multiplicities.



Proof of Bézout’s Theorem

We need to show that #(A - B) =
> pip(A,B) = mn. We proceed by
induction on the x-degree of B.

Base case. First suppose that B has
z-degree 0. Then B factors over K into
a product of n lines L, so that A - B
is a sum of n intersection cycles A - L.
Fach A-L = A’ L, where A" = degree
m polynomial in two variables , so a
product of m lines. Hence A - L can be
written as a sum of m intersections L' -
L, giving mn such intersections in total.
Since, by Proposition , L'+ L consists of
a single point, we have #(A - B) = mn
in this case.



Induction step. Suppose now that
B has z-degree £ > 0 and that we
know that the result holds for all B with
0.B < k and for all A. Then

#(A-B) = #(R'- B') —#(H' - B)
+#(A - G)
— (OR' — 0H"OB' + 0A0G,

recalling that 9,R' < 9,B = k and
O, H = 0,G = 0.

By homogeneity, we have that R’ —
OH' = 0A. Finally, since 0B’ + 0G =
OB from B = B'G, the result #(A -
B) = 0A0B = mn follows for 0, B =
k.



Define the local ring of rational functions
of degree 0 at P € KP? to be

T
T(P)# 0},

(A, B)p = {;ERP:S:MAJrNB,

M,N,T € K[z,y,2],T(P) # 0},

the ideal generated by A and B in Rp.

Following e.g. Fulton, we can now
define the intersection multiplicity ip (A, B)
of A and B to be the dimension of the
K-vector space Rp/(A, B)p (and so
equal to 0 if (A, B)p = Rp).

Rp = {§ S, T € Klx,y,2],08 = 0T,



Lemma 3. Let P € KP? and A, B,C €
K|z, y, z| with gcd(A, B) = ged(A,C) =
1. Then

(a) ip(A, B) > 0 if and only if P lies
on both A and B;

(b) Z'P(Av B) — Z.P(Bv A),
(C) iP(A, BO) = iP(A, B) + iP(A, C),

(d) ip(A, B+AC) = ip(A, B) if 0(AC) =
0B;

(e) For distinct lines L,L’, the only

point on both lines is P« given by
(1), and tp (L,L") = 1.
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rge 1. 1 0e ‘slice’ z = 1 of the cubic
curves 2z — 27 (solid line) and 3%z —
x%(x + z) (dotted line) near (0,0,1),
an intersection point of multiplicity 4.

(These are the curves y> = z° and

Y2 = :132(:1: +1).)



rgwe 22 1 NE ‘slice’” y = 1 of the same
curves 4%z — 2 (solid line) and y?z —
x%(x + z) (dotted line) near (0,1,0),
an intersection point of multiplicity 5.

(These are the curves z = z° and

z=a3/(1 — %))



