
Intersecting

algebraic plane curves

with the Euclidean algorithm

Jan Hilmar and Chris Smyth

Fields Institute, 24 September 2009

arXiv:0907.0361[math]



A(x, y, z) =
∑

i,j

aijx
iyjzm−i−j

B(x, y, z) =
∑

i,j

bijx
iyjzn−i−j

iP(A,B) = intersection multiplicity of A and B

at P ∈ KP
2,

=

{

> 0 if P lies on both A and B,

= 0 otherwise.

Want formal sum A·B =
∑

P iP(A,B)P,
the intersection cycle of A and B, an
object for recording the intersection of
these curves.

Our algorithm does not need to use
the definition of iP(A,B) , only standard
properties of intersection cycles:



Proposition 1. Let A,B and C be
algebraic curves with

gcd(A,B) = gcd(A,C) = 1.

Then

(a) A · B = B · A;

(b) A · (BC) = A · B + A · C;

(c) A · (B + AC) = A · B if ∂B =
∂(AC);

(d) If A and B are distinct lines, say
A(x, y, z) = a1x + a2y + a3z and
B(x, y, z) = b1x + b2y + b3z, then
their intersection cycle A ·B is the
single point P× given by
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Applying the Euclidean algorithm

A,B ∈ K[x, y, z] be algebraic curves,
gcd(A,B) = 1
∂xA ≥ ∂xB ≥ 1.
By polynomial division we can find

q, r ∈ K(y, z)[x] with

A = qB + r

and 0 ≤ ∂xr < ∂xB and q, r 6= 0.
Can multiply through by LCM H ∈

K[y, z] of their denominators to get

HA = QB + R,

where Q = qH,R = rH ∈ K[x, y, z]
homogeneous, ∂(QB) = ∂R.



Suppose now that G = gcd(B,R).
As gcd(A,B) = 1, it is clear that
also gcd(B,H) = G, so we can divide
through by G to get

H ′A = QB′ + R′,

where B = B′G, H = H ′G, R = R′G,
and gcd(B′, R′) = gcd(B′, H ′) = 1.
Now

A · B = A · (B′G)

= A · B′ + A · G
= (H ′A) · B′ − H ′ · B′ + A · G
= (QB′ + R′) · B′ − H ′ · B′ + A · G
= R′ · B′ − H ′ · B′ + A · G



Intersecting curve with product

of lines

Given C ∈ K[x, y, z], D ∈ K[y, z],
can assume D irreducible /K.

D(y, z) =
∏

β

(y − βz), (1)

where the β are roots in K of D(y, 1).
Thus D = product of lines. Then since

C(x, y, z) = C(x, βz, z) + (y − βz)C ′′(x, y, z)

for some C ′′ in K[x, y, z],

C · (y − βz) = C(x, βz, z) · (y − βz).

C · D = C(x, y, z) · (
∏

β

(y − βz))

=
∑

β

C(x, βz, z) · (y − βz).



Next, factorize C(x, βz, z) over K(β).
C2(x, z) = a typical factor, we have

that over K, we have

C2(x, z) =
∏

γ

(x − γz),

where the γ are the roots in K of
C2(x, 1), and

C2 · D =
∑

β

∑

γ

(x − γz) · (y − βz)

=
∑

β

∑

γ

(γ, β, 1).



From our algorithm: intersection cycle
A · B = sum or difference of simpler
sums of the following types:

(1) The point (1, 0, 0);

(2) A sum
∑

α(α, 1, 0), over roots α of
monic f ∈ K[x] irreducible over K;
denote this sum by C0(f (x));

(3) A double sum
∑

β

∑

γ(γ, β, 1), where
∑

β over the roots β of monic polynomial
g ∈ K[y] irreducible over K, with
∑

γ taken over the roots γ of some
monic polynomial hβ ∈ K(β)[x]
irreducible over K(β).

Then can write hβ as h(x, β) ∈
K[x, y], where β-degree of h < degree
of g; denote double sum by C1(h(x, y), g(y)).



Example. Take

A(x, y, z) = y2z − x3

B(x, y, z) = y2z − x2(x + z).

Applying Euclid’s algorithm to A and
B as polynomials in x, we first have

A(x, y, z) = B(x, y, z) + x2z,

so that

A · B = A · (x2z) = 2(A · x) + A · z.
Then

A·x =(y2z)·x = 2(y·x)+z·x = 2(0, 0, 1)+(0, 1, 0)

while

A · z = (x3) · z = 3(0, 1, 0).

So

A · B = 4(0, 0, 1) + 5(0, 1, 0).



Example 2.

A(x, y, z) = (y − z)x5 + (y2 − yz)x4

+(y3 − y2z)x3 + (−y2z2 + yz3)x2

+(−y3z2 + y2z3)x − y4z2 + y3z3

B(x, y, z) = (y2 − 2z2)x2 + (y3 − 2yz2)x

+y4 − y2z2 − 2z4.

Applying one step of Euclid’s algorithm
to A and B as polynomials in x, we get

A =
(y − z)x(x2 − z2)

y2 − 2z2
B+z2(y−z)(z2x−y3);

thus clearing the denominator y2 − 2z2

gives

(y2 − 2z2)A = (y − z)x(x2 − z2)B

+ (y2 − 2z2)z2(y − z)(z2x − y3).



Get

A·B = 2(1, 0, 0) + 2C0(x
2 + x + 1)

+ C1(x
2 + x + 2, y − 1) + C1(x + y, y2 + 1)

+ C1(x − y3, y4 + 1) + C1(x
3 − y, y2 − 2)

+ C1(x
2 + yx + 2, y2 − 2).

Once this final form has been obtained,
the Galois cycles can be unpacked to
write them explicitly as sums of points.
For instance,

C0(x
2 + x + 1) = (ω, 1, 0) + (ω2, 1, 0)

where ω = −1+
√
−3

2 ,

C1(x
3 − y, y2 − 2) = (γ, γ3, 1) + (ωγ, γ3, 1)

+ (ω2γ, γ3, 1) + (−γ,−γ3, 1)

+ (−ωγ,−γ3, 1) + (−ω2γ,−γ3, 1),

where γ = 21/6.



Theorem 2 (Bézout’s Theorem). Let
A,B ∈ K[x, y, z] be homogeneous
of degrees m,n respectively, with no
nonconstant common factor. Then
in KP

2 the curves A = 0 and B = 0
intersect in exactly mn points, counting
multiplicities.



Proof of Bézout’s Theorem

We need to show that #(A · B) =
∑

P iP(A,B) = mn. We proceed by
induction on the x-degree of B.

Base case. First suppose that B has
x-degree 0. Then B factors over K into
a product of n lines L, so that A · B
is a sum of n intersection cycles A · L.
Each A ·L = A′ ·L, where A′ = degree
m polynomial in two variables , so a
product of m lines. Hence A ·L can be
written as a sum of m intersections L′ ·
L, giving mn such intersections in total.
Since, by Proposition , L′ ·L consists of
a single point, we have #(A ·B) = mn
in this case.



Induction step. Suppose now that
B has x-degree k > 0 and that we
know that the result holds for all B with
∂xB < k and for all A. Then

#(A · B) = #(R′ · B′) − #(H ′ · B′)
+#(A · G)

= (∂R′ − ∂H ′)∂B′ + ∂A∂G,

recalling that ∂xR
′ < ∂xB = k and

∂xH
′ = ∂xG = 0.

By homogeneity, we have that ∂R′ −
∂H ′ = ∂A. Finally, since ∂B′ + ∂G =
∂B from B = B′G, the result #(A ·
B) = ∂A∂B = mn follows for ∂xB =
k.



Define the local ring of rational functions
of degree 0 at P ∈ KP

2 to be

RP =

{

S

T
: S, T ∈ K[x, y, z], ∂S = ∂T,

T (P) 6= 0} ,

(A,B)P =

{

S

T
∈ RP : S = MA + NB,

M,N, T ∈ K[x, y, z], T (P) 6= 0
}

,

the ideal generated by A and B in RP.
Following e.g. Fulton, we can now

define the intersection multiplicity iP(A,B)
of A and B to be the dimension of the
K-vector space RP/(A,B)P (and so
equal to 0 if (A,B)P = RP).



Lemma 3.Let P ∈ KP
2 and A,B,C ∈

K[x, y, z] with gcd(A,B) = gcd(A,C) =
1. Then

(a) iP(A,B) > 0 if and only if P lies
on both A and B;

(b) iP(A,B) = iP(B,A);

(c) iP(A,BC) = iP(A,B) + iP(A,C);

(d) iP(A,B+AC) = iP(A,B) if ∂(AC) =
∂B;

(e) For distinct lines L,L′, the only
point on both lines is P× given by
(1), and iP×(L,L′) = 1.



x
K0.5 0.0 0.5 1.0 1.5

y

K2

K1

0

1

2

Figure 1: The ‘slice’ z = 1 of the cubic
curves y2z − x3 (solid line) and y2z −
x2(x + z) (dotted line) near (0, 0, 1),
an intersection point of multiplicity 4.
(These are the curves y2 = x3 and
y2 = x2(x + 1).)
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Figure 2: The ‘slice’ y = 1 of the same
curves y2z − x3 (solid line) and y2z −
x2(x + z) (dotted line) near (0, 1, 0),
an intersection point of multiplicity 5.
(These are the curves z = x3 and
z = x3/(1 − x2).)


