Possible Group Structures of Elliptic Curves over Finite Fields

Igor Shparlinski (Sydney)

Joint work with:

Bill Banks (Columbia-Missouri) Francesco Pappalardi (Roma)

Introduction

Two common beliefs

- **A.** Besides torsion groups, we know where little about possible group structures of elliptic curves over Q.
- **B.** We know everything we need about possible group structures of elliptic curves over \mathbb{F}_q , Ruck, Schoof, Voloch, Waterhouse, . . .
- **A.** is certainly correct...

How about B.?

What do we know about $E(\mathbb{F}_q)$?

 $E(\mathbb{F}_q)$ is of rank two:

$$E(\mathbb{F}_q) \cong \mathbf{Z}_n \times \mathbf{Z}_{nk}$$

E.g., nk is the exponent of $E(\mathbb{F}_q)$.

Question: What pairs (n,k) can be realised by all possible prime powers q and curves E/\mathbb{F}_q ?

We introduce and study the set

$$\mathcal{S}_{\Pi} = \{(n,k) \in \mathbb{N} \times \mathbb{N} : \exists \text{ prime power } q \text{ and } E/\mathbb{F}_q \}$$
 with $E(\mathbb{F}_q) \cong \mathbb{Z}_n \times \mathbb{Z}_{nk}\}$

We are also study the subset $\mathcal{S}_{\pi} \subset \mathcal{S}_{\Pi}$ defined by

$$\mathcal{S}_{\pi} = \{(n,k) \in \mathbb{N} \times \mathbb{N} : \exists \text{ prime } p \text{ and } E/\mathbb{F}_p \}$$
 with $E(\mathbb{F}_p) \cong \mathbb{Z}_n \times \mathbb{Z}_{nk}\}$

What do we know about n and k?

Hasse Bound:

$$\#E(\mathbb{F}_q) = n^2 k = q + 1 - t$$
 where $|t| \le 2q^{1/2}$

Weil pairing

$$n \mid q - 1$$

Lemma 1 If q is a prime power, and E/\mathbb{F}_q is such that

$$E(\mathbb{F}_q) \cong \mathbf{Z}_n \times \mathbf{Z}_{nk},$$

then

$$q = n^2k + n\ell + 1$$
 where $|\ell| \le 2\sqrt{k}$.

Warning: These conditions are **almost** "if and only if", but not quite...

Remark: Given an pair (n,k) we can test whether $(n,k) \in \mathcal{S}_{\Pi}$ or $(n,k) \in \mathcal{S}_{\pi}$ in finitely many steps.

What do we study?

One expects S_{π} and S_{Π} to be reasonably "dense" in $\mathbb{N} \times \mathbb{N}$, the complementary sets appear to be rather large:

List of the pairs $(n, k) \not\in \mathcal{S}_{\Pi}$ with $n, k \leq 25$: (11, 1), (11, 14), (13, 6), (19, 7), (19, 10), (19, 14),(19, 15), (19, 18), (21, 18), (23, 1), (23, 5), (23, 8),

To investigate the distribution of the elements of S_{π} and of S_{Π} , we introduce the sets

(23, 19), (25, 5), (25, 14).

$$S_{\pi}(N,K) = \left\{ (n,k) \in S_{\pi} : n \leq N, k \leq K \right\},$$

$$S_{\Pi}(N,K) = \left\{ (n,k) \in S_{\Pi} : n \leq N, k \leq K \right\},$$

We obtain estimates for the cardinalities of these sets in various ranges of N and K

We consider the set of primes p such that $\mathbb{Z}_n \times \mathbb{Z}_{nk}$ can be realized as the group of points of an elliptic curve over \mathbb{F}_p :

$$\mathcal{J}_{\pi}(n,k) = \{ \text{primes } p : \exists E/\mathbb{F}_p \text{ for which}$$
 $E(\mathbb{F}_p) \cong \mathbb{Z}_n \times \mathbb{Z}_{nk} \}.$

We obtain an asymptotic formula in certain ranges of N and K for

$$J_{\pi}(N,K) = \sum_{n \leq N} \sum_{k \leq K} \# \mathcal{J}_{\pi}(n,k),$$

Motivated by Lemma 1, we compare

$$\mathcal{N}_{k,m}=\{n\in\mathbb{N}\ :\ \exists\ p \ {
m prime and}\ E/\mathbb{F}_{p^m}$$
 with $E(\mathbb{F}_{p^m})\cong \mathbf{Z}_n\times\mathbf{Z}_{kn}\}.$

and

$$\widetilde{\mathcal{N}}_{k,m}=\{n\in\mathbb{N}\ :\ \exists\ l\in\mathbf{Z},\ p\ \text{prime with}\ |l|\leq 2\sqrt{k}\ \text{and}\ p^m=n^2k+ln+1\}.$$

Basic Tools

Characterisation of cardinalities

Waterhouse (1969):

Lemma 2 Let $q = p^m$ be a power of a prime p and let N = q + 1 - a. There is an elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = N$ if and only if $|a| \le 2\sqrt{q}$ and a satisfies one of the following:

- (i) gcd(a, p) = 1;
- (ii) m even and $a = \pm 2\sqrt{q}$;
- (iii) m is even, $p \not\equiv 1 \pmod{3}$, and $a = \pm \sqrt{q}$;
- (iv) m is odd, p = 2 or 3, and $a = \pm p^{(n+1)/2}$;
- (v) m is even, $p \not\equiv 1 \pmod{4}$, and a = 0;
- (vi) m is odd and a = 0.

Characterisation of group structures

Rück and Voloch (1987)

Lemma 3 Let N be an integer that occurs as the order of an elliptic curve over a finite field \mathbb{F}_q where $q = p^m$ is a power of a prime p. Write $N = p^e n_1 n_2$ with $p \nmid n_1 n_2$ and $n_1 \mid n_2$. (possibly $n_1 = 1$). There is an elliptic curve E over \mathbb{F}_q such that

$$E(\mathbb{F}_q) \cong \mathbb{Z}_{p^e} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$$

if and only if

- 1. $n_1 = n_2$ in the case (ii) of Lemma 2;
- 2. $n_1|q-1$ in all other cases of Lemma 2.

Prime fields

Combining Lemmas 2 and 3 we get:

Corollary 4 If

$$|p+1-N| \le 2\sqrt{p}$$

and $N = n_1 n_2$ with

$$n_1 \mid n_2$$
 and $n_1 \mid p-1$

then there is an elliptic curve E/\mathbb{F}_p with

$$E(\mathbb{F}_p) \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}.$$

Corollary 5 We have

$$p \in \mathcal{J}_{\pi}(n,k)$$

if and only if

$$p = n^2k + n\ell + 1$$
 where $|\ell| \le 2\sqrt{k}$.

For prime q=p, Lemma 1 is an "if and only if" statement:

Proof.

"If": Taking $N = n^2 k$, we have

$$|p+1-N|^2 = (n\ell+2)^2 = n^2\ell^2 + 4n\ell + 4$$

 $\leq 4n^2k + 4n\ell + 4 = 4p,$

hence $|p+1-N| \leq 2\sqrt{p}$. Applying Corollary 4 with $n_1 = n$ and $n_2 = nk$, we see that there is an elliptic curve E/\mathbb{F}_p such that $E(\mathbb{F}_p) \cong \mathbb{Z}_n \times \mathbb{Z}_{nk}$, and thus $p \in \mathcal{J}_{\pi}(n,k)$.

"Only If": Lemma 1.

Analytic number theory

We put

$$\pi(x; m, a) = \#\{p \le x : p \equiv a \pmod{m}\},$$
 $\Pi(x; m, a) = \#\{q \le x : q \equiv a \pmod{m}\}.$

Lemma 6 For all $N, K \in \mathbb{N}$ we have

$$J_{\pi}(N,K) = \sum_{\substack{n \leq N \\ |\ell| \leq 2\sqrt{K}}} \left(\pi(n^{2}K + n\ell + 1; n^{2}, n\ell + 1) - \pi(\frac{1}{4}n^{2}\ell^{2} + n\ell; n^{2}, n\ell + 1) \right).$$

What is next?

Good News: $J_{\pi}(N,K)$ is expressed via classical functions

Bad News: We need to study primes in short arithmetic progressions: modulus $\approx N^2$, the length $\approx K$, while unconditional results are very weak.

Good News: We need this "on average" over n: recall Bombieri-Vinogradov

Bad News: The averaging is over square moduli, rather than over all moduli up to a certain limit.

Good News: Baier & Zhao (2008) have exactly this version of the Bombieri-Vinogradov theorem!

Bombieri-Vinogradov theorem modulo squares

As usual, we set

$$\psi(x; m, a) = \sum_{\substack{n \le x \\ n \equiv a \pmod{m}}} \Lambda(n),$$

where $\Lambda(n)$ is the von Mangoldt function.

Baier & Zhao (2008):

Lemma 7 For fixed $\varepsilon > 0$ and C > 0, we have

$$\sum_{m < x^{2/9-\varepsilon}} m \max_{\gcd(a,m)=1} \left| \psi(x; m^2, a) - \frac{x}{\varphi(m^2)} \right| \ll \frac{x}{(\log x)^C}.$$

Moduli m^2 run up to almost $x^{4/9}$, only a little bit behind of $x^{1/2}$ as in the Bombieri-Vinogradov theorem.

Are we done?

Not quite Things still to be taken care of:

- Switch from ψ to π
 - Partial summation!
- The upper limits in $\pi(n^2K+n\ell+1;n^2,n\ell+1)$ and $\pi(\frac{1}{4}n^2\ell^2+n\ell;n^2,n\ell+1)$ are "moving" with n.
 - Separate the range of summation over n, into $O(\Delta^{-1} \log N)$ intervals $[M, M + \Delta M]$
 - replace n^2 with M^2 (up to the error term of $O(M^2\Delta)$
 - optimise Δ

We can deal with $J_{\pi}(N,K)$ for $N \leq K^{2/5-\varepsilon}$, i.e., for groups generated by E/F_p with a large torsion group over \mathbb{F}_p .

Sets $S_{\Pi}(N,K)$ and $S_{\Pi}(N,K)$

Theorem 8 For any $\varepsilon > 0$ and $N \le K^{2/5-\varepsilon}$, $NK \ge \# \mathcal{S}_{\Pi}(N,K) \ge \# \mathcal{S}_{\pi}(N,K) \gg \frac{NK}{\log K}.$

Proof. If
$$p=1+n^2k$$
 then
$$(n,(q-1)/n^2)\in\mathcal{S}_\pi(N,K)$$

$$\downarrow$$

$$\#\mathcal{S}_\pi(N,K) \geq \sum_{n\leq N}\pi(n^2K,n^2,1)$$

$$\geq \sum_{N/2\leq n\leq N}\pi(n^2K,n^2,1)$$

$$\gg \frac{1}{\log K}\sum_{N/2\leq n\leq N}\psi(n^2K,n^2,1)$$

The result of *Baier & Zhao* (2008), i.e., Lemma 7, applies if $N \ll (N^2K)^{2/9-\delta}$ for some $\delta > 0$ or $N \ll K^{2/5-\varepsilon}$ for some $\varepsilon > 0$.

 $\gg \frac{1}{\log K} \sum_{N/2 \le n \le N} \psi(N^2 K/4, n^2, 1).$

Suppose that K is fixed

We are interested in prime powers:

$$q = n^2k + n\ell + 1 \quad \text{and} \quad |\ell| \le 2\sqrt{k}$$

Good News: Sieve methods can be used for upper bounds

Bad News: We need explicit bounds and we have $\sim 4k^{1/2}$ progressions.

Good News: When k is fixed this should work.

Selberg sieve:

Theorem 9 For any integer $K \ge 1$ there exists a constant A(K) such that

$$\#\mathcal{S}_{\Pi}(N,K) \leq A(K) \frac{N}{\log N}.$$

E.g., there are infinitely many pairs (n,k) which do not lie in S_{Π} . More precisely:

Corollary 10 For every k_0 , almost all $(n, k_0) \notin S_{\Pi}$.

E.g. there are infinitely many pairs (n,k) which do not lie in S_{Π} .

More precisely, for every k_0 , almost all $(n, k_0) \notin S_{\Pi}$.

Suppose that N is fixed

It is quite reasonable to believe that S_{Π} contains all pairs $(n,k) \in \mathbb{N} \times \mathbb{N}$ with $n \leq N_0$ except for at most finitely many.

This is a consequence of an analogue of the Cramer's Conjecture for primes in a fixed arithmetic progression (and is out of reach . . .).

Easier (?) Question: Let n_0 be fixed, Is it true that for almost k, $(n_0, k) \in \mathcal{S}_{\Pi}$?

Set
$$S_{\Pi}(N,K) \setminus S_{\pi}(N,K)$$

Question: Prime powers $q=p^m$ with $m\geq 2$ are very rare. Do they contribute to \mathcal{S}_{Π} ?

Yes!

$$\#(\mathcal{S}_{\Pi}(N,1)\setminus\mathcal{S}_{\pi}(N,1))\geq (1+o(1))rac{N}{12\log N}$$

Open Question: Any contribution to $\mathcal{S}_\Pi \setminus \mathcal{S}_\pi$ from $k \geq 2$?

Sets $\mathcal{N}_{k,m}$ and $\widetilde{\mathcal{N}}_{k,m}$

Recall:

$$\mathcal{N}_{k,m}=\{n\in\mathbb{N}\ :\ \exists\ p \ \mathrm{prime}\ \mathrm{and}\ E/\mathbb{F}_{p^m}$$
 with $E(\mathbb{F}_{p^m})\cong \mathbf{Z}_n\times \mathbf{Z}_{kn}\}.$

and

$$\widetilde{\mathcal{N}}_{k,m}=\{n\in\mathbb{N}\ :\ \exists\ l\in\mathbf{Z},\ p\ \text{prime with}\ |l|\leq 2\sqrt{k}\ \text{and}\ p^m=n^2k+ln+1\}.$$

We have

$$\mathcal{N}_{k,m} \subseteq \widetilde{\mathcal{N}}_{k,m}$$

Question Is the inclusion proper?

Theorem 11 We have, $\mathcal{N}_{k,1} = \widetilde{\mathcal{N}}_{k,1}$.

Proof. Easy!

For m=2, the situation is more complicated. We have:

Theorem 12 We have that

$$\mathcal{N}_{k,2} = \widetilde{\mathcal{N}}_{k,2}$$

except possibly in the following cases:

(i)
$$k = p^2 + 1$$
 and $p \equiv 1 \pmod{4}$ when

(ii)
$$k = p^2 \pm p + 1$$
 and $p \equiv 1 \pmod{3}$;

(iii)
$$k = M^2$$
, $M > 1$.

In the cases (i) and (ii), we have $\widetilde{\mathcal{N}}_{k,2} \setminus \mathcal{N}_{k,2} \subseteq \{1\}$ while in the case (iii) we have

$$\mathcal{N}_{M^2,2} = \begin{cases} \{1\} & \textit{if } M \textit{ is prime} \\ \emptyset & \textit{otherwise} \end{cases}$$

and

$$\widetilde{\mathcal{N}}_{M^2,2} \backslash \mathcal{N}_{M^2,2} \supset \{(p\pm 1)/M : p \equiv 1 \pmod{M} \text{ is prime}\}.$$

Proof. Uses some properties of the Pell equation.

Corollary 13 Suppose that k is not a perfect square. We have the following:

$$\mathcal{N}_{2,k}(T) \ll_k \log T$$
.

Furthermore

$$\mathcal{N}_{2,1}(T) = \pi(T-1) + \pi(T+1) - \#\{p \le T+1 : p, p-2 \text{ are prime}\}\$$

For $m \geq 3$, the situation is more complicated...

Even the case k = 1 is hard:

Conjecture 1 Let $m \geq 4$. Then the (positive) integer solutions the three Diophantine equations:

$$y^{m} = x^{2} + 1$$
, $y^{m} = x^{2} + x + 1$, $y^{m} = x^{2} - x + 1$.
are respectively

$$\{(0,1)\}, \{(0,1)\}, \{(1,1),(0,1)\}.$$

Faltings Theorem \Leftarrow the set of solutions is finite.

Conjecture 2 The set of finite points with integer coordinates of the elliptic curve:

$$E: y^3 = x^2 + x + 1$$

is

$$\{(-19,7),(18,7),(-1,\pm 1),(0,\pm 1)\}.$$

Conductor 3^5 and it is called 243a1 in Cremona's Table. E is 243a1 in Cremona's Table, it is of conductor 3^5 , and its Mordell-Weyl group generated by (1,1).

Special case of the Bateman and Horn Conjecture:

Conjecture 3 Suppose $f(X) = X^2 + aX + 1$ is irreducible over **Z**. Then

$$\#\{n \le T : f(n) \text{ is prime}\}$$

$$= \frac{1+o(1)}{\gcd(2,a)} \prod_{p>3} \left(1 - \frac{\left(\frac{a^2-4}{p}\right)}{p-1}\right) \cdot \frac{T}{\log T},$$

where (b/p) is the Legendre symbol modulo p.

Theorem 14 Under the Conjectures 1 and 2, we have the following: if m = 2r is even, then

$$\#\mathcal{N}_{1,m}(T) = (m + o(1)) \frac{T^{1/r}}{\log T}.$$

If m>3 is odd, then $\mathcal{N}_{1,m}(T)$ is empty while $\mathcal{N}_{1,3}=\{18,19\}$. If m=1, then

$$\mathcal{N}_{1,1}(T) \ll \frac{T}{\log T}.$$

Finally, assuming Conjecture 3, there exists a constant $\alpha > 0$ such that

$$\mathcal{N}_{1,1}(T) = (\alpha + o(1)) \frac{T}{\log T}.$$

Conclusion

 $\log \log \log n$ has been proved to go to infinity with n, but it has never been observed doing so . . .

Carl Pomerance