Possible Group Structures of Elliptic Curves over Finite Fields

 Igor Shparlinski (Sydney)

 Igor Shparlinski (Sydney)
 Joint work with:

Bill Banks (Columbia-Missouri)
Francesco Pappalardi (Roma)

1

Introduction

Two common beliefs
A. Besides torsion groups, we know where little about possible group structures of elliptic curves over Q.
B. We know everything we need about possible group structures of elliptic curves over \mathbb{F}_{q}, Ruck, Schoof, Voloch, Waterhouse, ...
A. is certainly correct. . .

How about B.?

What do we know about $E\left(\mathbb{F}_{q}\right)$?
$E\left(\mathbb{F}_{q}\right)$ is of rank two:

$$
E\left(\mathbb{F}_{q}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{n k}
$$

E.g., $n k$ is the exponent of $E\left(\mathbb{F}_{q}\right)$.

Question: What pairs (n, k) can be realised by all possible prime powers q and curves E / \mathbb{F}_{q} ?

We introduce and study the set
$\mathcal{S}_{\Pi}=\left\{(n, k) \in \mathbb{N} \times \mathbb{N}: \quad \exists\right.$ prime power q and E / \mathbb{F}_{q} with $\left.E\left(\mathbb{F}_{q}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{n k}\right\}$

We are also study the subset $\mathcal{S}_{\pi} \subset \mathcal{S}_{\Pi}$ defined by $\mathcal{S}_{\pi}=\left\{(n, k) \in \mathbb{N} \times \mathbb{N}: \quad \exists\right.$ prime p and E / \mathbb{F}_{p} with $\left.E\left(\mathbb{F}_{p}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{n k}\right\}$

What do we know about n and k ?

Hasse Bound:

$$
\# E\left(\mathbb{F}_{q}\right)=n^{2} k=q+1-t \quad \text { where }|t| \leq 2 q^{1 / 2}
$$

Weil pairing

$$
n \mid q-1
$$

Lemma 1 If q is a prime power, and E / \mathbb{F}_{q} is such that

$$
E\left(\mathbb{F}_{q}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{n k}
$$

then

$$
q=n^{2} k+n \ell+1 \quad \text { where }|\ell| \leq 2 \sqrt{k} .
$$

Warning: These conditions are almost "if and only if"', but not quite...

Remark: Given an pair (n, k) we can test whether $(n, k) \in \mathcal{S}_{\Pi}$ or $(n, k) \in \mathcal{S}_{\pi}$ in finitely many steps.

What do we study?

One expects \mathcal{S}_{π} and \mathcal{S}_{Π} to be reasonably "dense" in $\mathbb{N} \times \mathbb{N}$, the complementary sets appear to be rather large:

List of the pairs $(n, k) \notin \mathcal{S}_{\Pi}$ with $n, k \leq 25$:
$(11,1),(11,14),(13,6),(19,7),(19,10),(19,14)$,
$(19,15),(19,18),(21,18),(23,1),(23,5),(23,8)$,
$(23,19),(25,5),(25,14)$.

To investigate the distribution of the elements of \mathcal{S}_{π} and of \mathcal{S}_{Π}, we introduce the sets

$$
\begin{aligned}
& \mathcal{S}_{\pi}(N, K)=\left\{(n, k) \in \mathcal{S}_{\pi}: \quad n \leq N, k \leq K\right\}, \\
& \mathcal{S}_{\Pi}(N, K)=\left\{(n, k) \in \mathcal{S}_{\Pi}: \quad n \leq N, k \leq K\right\},
\end{aligned}
$$

We obtain estimates for the cardinalities of these sets in various ranges of N and K

5
We consider the set of primes p such that $\mathbf{Z}_{n} \times \mathbf{Z}_{n k}$ can be realized as the group of points of an elliptic curve over \mathbb{F}_{p} :
$\begin{aligned} \mathcal{J}_{\pi}(n, k)=\{\text { primes } p: \quad \exists & E / \mathbb{F}_{p} \text { for which } \\ & \left.E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n k}\right\} .\end{aligned}$

We obtain an asymptotic formula in certain ranges of N and K for

$$
J_{\pi}(N, K)=\sum_{n \leq N} \sum_{k \leq K} \# \mathcal{J}_{\pi}(n, k)
$$

Motivated by Lemma 1, we compare
$\mathcal{N}_{k, m}=\left\{n \in \mathbb{N}: \exists p\right.$ prime and $E / \mathbb{F}_{p^{m}}$ with $\left.E\left(\mathbb{F}_{p^{m}}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{k n}\right\}$.
and

$$
\begin{aligned}
\widetilde{\mathcal{N}}_{k, m}=\{n \in \mathbb{N}: \quad \exists & l \in \mathbb{Z}, p \text { prime with } \\
& \left.|l| \leq 2 \sqrt{k} \text { and } p^{m}=n^{2} k+l n+1\right\}
\end{aligned}
$$

Basic Tools

Characterisation of cardinalities

Waterhouse (1969):

Lemma 2 Let $q=p^{m}$ be a power of a prime p and let $N=q+1-a$. There is an elliptic curve E / \mathbb{F}_{q} with $\# E\left(\mathbb{F}_{q}\right)=N$ if and only if $|a| \leq 2 \sqrt{q}$ and a satisfies one of the following:
(i) $\operatorname{gcd}(a, p)=1$;
(ii) m even and $a= \pm 2 \sqrt{q}$;
(iii) m is even, $p \not \equiv 1(\bmod 3)$, and $a= \pm \sqrt{q}$;
(iv) m is odd, $p=2$ or 3 , and $a= \pm p^{(n+1) / 2}$;
(v) m is even, $p \not \equiv 1(\bmod 4)$, and $a=0$;
(vi) m is odd and $a=0$.

7

Characterisation of group structures

Rück and Voloch (1987)

Lemma 3 Let N be an integer that occurs as the order of an elliptic curve over a finite field \mathbb{F}_{q} where $q=p^{m}$ is a power of a prime p. Write $N=p^{e} n_{1} n_{2}$ with $p \nmid n_{1} n_{2}$ and $n_{1} \mid n_{2}$. (possibly $n_{1}=1$). There is an elliptic curve E over \mathbb{F}_{q} such that

$$
E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{p^{e}} \times \mathbf{Z}_{n_{1}} \times \mathbf{Z}_{n_{2}}
$$

if and only if

1. $n_{1}=n_{2}$ in the case (ii) of Lemma 2;
2. $n_{1} \mid q-1$ in all other cases of Lemma 2.

8
Prime fields

Combining Lemmas 2 and 3 we get:

Corollary 4 If

$$
|p+1-N| \leq 2 \sqrt{p}
$$

and $N=n_{1} n_{2}$ with

$$
n_{1} \mid n_{2} \quad \text { and } \quad n_{1} \mid p-1
$$

then there is an elliptic curve E / \mathbb{F}_{p} with

$$
E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}
$$

Corollary 5 We have

$$
p \in \mathcal{J}_{\pi}(n, k)
$$

if and only if

$$
p=n^{2} k+n \ell+1 \quad \text { where }|\ell| \leq 2 \sqrt{k}
$$

For prime $q=p$, Lemma 1 is an "if and only if" statement:

9

Proof.

"If": Taking $N=n^{2} k$, we have

$$
\begin{aligned}
|p+1-N|^{2} & =(n \ell+2)^{2}=n^{2} \ell^{2}+4 n \ell+4 \\
& \leq 4 n^{2} k+4 n \ell+4=4 p
\end{aligned}
$$

hence $|p+1-N| \leq 2 \sqrt{p}$. Applying Corollary 4 with $n_{1}=n$ and $n_{2}=n k$, we see that there is an elliptic curve E / \mathbb{F}_{p} such that $E\left(\mathbb{F}_{p}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{n k}$, and thus $p \in \mathcal{J}_{\pi}(n, k)$.
"Only If": Lemma 1.

10

Analytic number theory

We put

$$
\begin{aligned}
\pi(x ; m, a) & =\#\{p \leq x: p \equiv a \quad(\bmod m)\}, \\
\Pi(x ; m, a) & =\#\{q \leq x: q \equiv a \quad(\bmod m)\} .
\end{aligned}
$$

Lemma 6 For all $N, K \in \mathbb{N}$ we have

$$
\begin{aligned}
J_{\pi}(N, K)= & \sum_{\substack{n \leq N \\
|\ell| \leq 2 \sqrt{K}}}\left(\pi\left(n^{2} K+n \ell+1 ; n^{2}, n \ell+1\right)\right. \\
& \left.-\pi\left(\frac{1}{4} n^{2} \ell^{2}+n \ell ; n^{2}, n \ell+1\right)\right) .
\end{aligned}
$$

11

What is next?

Good News: $J_{\pi}(N, K)$ is expressed via classical functions

Bad News: We need to study primes in short arithmetic progressions: modulus $\asymp N^{2}$, the length $\asymp K$, while unconditional results are very weak.

Good News: We need this "on average" over n : recall Bombieri-Vinogradov

Bad News: The averaging is over square moduli, rather than over all moduli up to a certain limit.

Good News: Baier \& Zhao (2008) have exactly this version of the Bombieri-Vinogradov theorem!

12

Bombieri-Vinogradov theorem modulo squares

As usual, we set

$$
\psi(x ; m, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod m)}} \wedge(n),
$$

where $\Lambda(n)$ is the von Mangoldt function.

Baier \& Zhao (2008):
Lemma 7 For fixed $\varepsilon>0$ and $C>0$, we have
$\sum_{m \leq x^{2 / 9-\varepsilon}} m \max _{\operatorname{gcd}(a, m)=1}\left|\psi\left(x ; m^{2}, a\right)-\frac{x}{\varphi\left(m^{2}\right)}\right| \ll \frac{x}{(\log x)^{C}}$.

Moduli m^{2} run up to almost $x^{4 / 9}$, only a little bit behind of $x^{1 / 2}$ as in the Bombieri-Vinogradov theorem.

13
Are we done?

Not quite Things still to be taken care of:

- Switch from ψ to π
- Partial summation!
- The upper limits in $\pi\left(n^{2} K+n \ell+1 ; n^{2}, n \ell+1\right)$ and $\pi\left(\frac{1}{4} n^{2} \ell^{2}+n \ell ; n^{2}, n \ell+1\right)$ are "moving" with n.
- Separate the range of summation over n, into $O\left(\Delta^{-1} \log N\right)$ intervals $[M, M+\Delta M]$
- replace n^{2} with M^{2} (up to the error term of $O\left(M^{2} \Delta\right)$
- optimise Δ

We can deal with $J_{\pi}(N, K)$ for $N \leq K^{2 / 5-\varepsilon}$, i.e., for groups generated by E / F_{p} with a large torsion group over \mathbb{F}_{p}.

14
Sets $\mathcal{S}_{\Pi}(N, K)$ and $\mathcal{S}_{\Pi}(N, K)$

Theorem 8 For any $\varepsilon>0$ and $N \leq K^{2 / 5-\varepsilon, ~}$

$$
N K \geq \# \mathcal{S}_{\Pi}(N, K) \geq \# \mathcal{S}_{\pi}(N, K) \gg \frac{N K}{\log K}
$$

Proof. If $p=1+n^{2} k$ then

$$
\left(n,(q-1) / n^{2}\right) \in \mathcal{S}_{\pi}(N, K)
$$

\Downarrow
$\# \mathcal{S}_{\pi}(N, K) \geq \sum_{n \leq N} \pi\left(n^{2} K, n^{2}, 1\right)$

$$
\begin{aligned}
& \geq \sum_{N / 2 \leq n \leq N} \pi\left(n^{2} K, n^{2}, 1\right) \\
& \gg \frac{1}{\log K} \sum_{N / 2 \leq n \leq N} \psi\left(n^{2} K, n^{2}, 1\right) \\
& \gg \frac{1}{\log K} \sum_{N / 2 \leq n \leq N} \psi\left(N^{2} K / 4, n^{2}, 1\right)
\end{aligned}
$$

The result of Bier \& Zhao (2008), i.e., Lemma 7, applies if $N \ll\left(N^{2} K\right)^{2 / 9-\delta}$ for some $\delta>0$ or $N \ll$ $K^{2 / 5-\varepsilon}$ for some $\varepsilon>0$.

15

Suppose that K is fixed

We are interested in prime powers:

$$
q=n^{2} k+n \ell+1 \quad \text { and } \quad|\ell| \leq 2 \sqrt{k}
$$

Good News: Sieve methods can be used for upper bounds

Bad News: We need explicit bounds and we have $\sim 4 k^{1 / 2}$ progressions.

Good News: When k is fixed this should work.

16

Selberg sieve:

Theorem 9 For any integer $K \geq 1$ there exists a constant $A(K)$ such that

$$
\# \mathcal{S}_{\Pi}(N, K) \leq A(K) \frac{N}{\log N}
$$

E.g., there are infinitely many pairs (n, k) which do not lie in \mathcal{S}_{Π}. More precisely:

Corollary 10 For every k_{0}, almost all $\left(n, k_{0}\right) \notin \mathcal{S}_{\Pi}$.
E.g. there are infinitely many pairs (n, k) which do not lie in \mathcal{S}_{Π}.

More precisely, for every k_{0}, almost all $\left(n, k_{0}\right) \notin \mathcal{S}_{\Pi}$.

17

Suppose that N is fixed

It is quite reasonable to believe that \mathcal{S}_{\square} contains all pairs $(n, k) \in \mathbb{N} \times \mathbb{N}$ with $n \leq N_{0}$ except for at most finitely many.

This is a consequence of an analogue of the Cramer's Conjecture for primes in a fixed arithmetic progression (and is out of reach ...).

Easier (?) Question: Let n_{0} be fixed, Is it true that for almost $k,\left(n_{0}, k\right) \in \mathcal{S}_{\Pi}$?

18

Set $\mathcal{S}_{\Pi}(N, K) \backslash \mathcal{S}_{\pi}(N, K)$

Question: Prime powers $q=p^{m}$ with $m \geq 2$ are very rare. Do they contribute to $\mathcal{S}_{\boldsymbol{\Pi}}$?

Yes!

$$
\#\left(\mathcal{S}_{\Pi}(N, 1) \backslash \mathcal{S}_{\pi}(N, 1)\right) \geq(1+o(1)) \frac{N}{12 \log N}
$$

Open Question: Any contribution to $\mathcal{S}_{\boldsymbol{\Pi}} \backslash \mathcal{S}_{\pi}$ from $k \geq 2$?

19

Sets $\mathcal{N}_{k, m}$ and $\widetilde{\mathcal{N}}_{k, m}$

Recall:

$$
\begin{aligned}
\mathcal{N}_{k, m}=\{n \in \mathbb{N}: \quad \exists & p \text { prime and } E / \mathbb{F}_{p^{m}} \\
& \text { with } \left.E\left(\mathbb{F}_{p^{m}}\right) \cong \mathbf{Z}_{n} \times \mathbf{Z}_{k n}\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{\mathcal{N}}_{k, m}=\{n \in \mathbb{N}: \quad \exists & l \in \mathbf{Z}, p \text { prime with } \\
& \left.|l| \leq 2 \sqrt{k} \text { and } p^{m}=n^{2} k+\ln +1\right\} .
\end{aligned}
$$

We have

$$
\mathcal{N}_{k, m} \subseteq \widetilde{\mathcal{N}}_{k, m}
$$

Question Is the inclusion proper?
Theorem 11 We have, $\mathcal{N}_{k, 1}=\widetilde{\mathcal{N}}_{k, 1}$.
Proof. Easy!

For $m=2$, the situation is more complicated. We have:

Theorem 12 We have that

$$
\mathcal{N}_{k, 2}=\widetilde{\mathcal{N}}_{k, 2}
$$

except possibly in the following cases:
(i) $k=p^{2}+1$ and $p \equiv 1(\bmod 4)$ when
(ii) $k=p^{2} \pm p+1$ and $p \equiv 1(\bmod 3)$;
(iii) $k=M^{2}, M>1$.

In the cases (i) and (ii), we have $\widetilde{\mathcal{N}}_{k, 2} \backslash \mathcal{N}_{k, 2} \subseteq\{1\}$ while in the case (iii) we have

$$
\mathcal{N}_{M^{2}, 2}= \begin{cases}\{1\} & \text { if } M \text { is prime } \\ \emptyset & \text { otherwise }\end{cases}
$$

and
$\widetilde{\mathcal{N}}_{M^{2}, 2} \backslash \mathcal{N}_{M^{2}, 2} \supset\{(p \pm 1) / M: p \equiv 1 \quad(\bmod M)$ is prime $\}$.

21

Proof. Uses some properties of the Pell equation.

Corollary 13 Suppose that k is not a perfect square. We have the following:

$$
\mathcal{N}_{2, k}(T)<_{k} \log T
$$

Furthermore
$\mathcal{N}_{2,1}(T)=\pi(T-1)+\pi(T+1)$
$-\#\{p \leq T+1: p, p-2$ are prime $\}$

For $m \geq 3$, the situation is more complicated...

Even the case $k=1$ is hard:

Conjecture 1 Let $m \geq 4$. Then the (positive) integer solutions the three Diophantine equations:
$y^{m}=x^{2}+1, \quad y^{m}=x^{2}+x+1, \quad y^{m}=x^{2}-x+1$. are respectively

$$
\{(0,1)\}, \quad\{(0,1)\}, \quad\{(1,1),(0,1)\} .
$$

Faltings Theorem \Longleftarrow the set of solutions is finite.

Conjecture 2 The set of finite points with integer coordinates of the elliptic curve:

$$
E: \quad y^{3}=x^{2}+x+1
$$

is

$$
\{(-19,7),(18,7),(-1, \pm 1),(0, \pm 1)\}
$$

Conductor 3^{5} and it is called $243 a 1$ in Cremona's Table. E is $243 a 1$ in Cremona's Table, it is of conductor 3^{5}, and its Mordell-Weyl group generated by $(1,1)$.

23

Special case of the Bateman and Horn Conjecture:

Conjecture 3 Suppose $f(X)=X^{2}+a X+1$ is irreducible over \mathbf{Z}. Then
$\#\{n \leq T: f(n)$ is prime $\}$

$$
=\frac{1+o(1)}{\operatorname{gcd}(2, a)} \prod_{p>3}\left(1-\frac{\left(\frac{a^{2}-4}{p}\right)}{p-1}\right) \cdot \frac{T}{\log T},
$$

where (b / p) is the Legendre symbol modulo p.

24

Theorem 14 Under the Conjectures 1 and 2, we have the following: if $m=2 r$ is even, then

$$
\# \mathcal{N}_{1, m}(T)=(m+o(1)) \frac{T^{1 / r}}{\log T}
$$

If $m>3$ is odd, then $\mathcal{N}_{1, m}(T)$ is empty while $\mathcal{N}_{1,3}=\{18,19\}$. If $m=1$, then

$$
\mathcal{N}_{1,1}(T) \ll \frac{T}{\log T}
$$

Finally, assuming Conjecture 3, there exists a constant $\alpha>0$ such that

$$
\mathcal{N}_{1,1}(T)=(\alpha+o(1)) \frac{T}{\log T}
$$

25

Conclusion

$\log \log \log n$ has been proved to go to infinity with n, but it has never been observed doing so ...

Carl Pomerance

