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Two common beliefs

A. Besides torsion groups, we know where Ilit-
tle about possible group structures of elliptic
curves over Q.

B. We know everything we need about possible
group structures of elliptic curves over IF,, Ruck,
Schoof, VVoloch, Waterhouse, . ..

A. is certainly correct. ..

How about B.~7



What do we know about E(IF;)7

E(IFy) is of rank two:

E(]FQ) = L, x an

E.g., nk is the exponent of E(IFy).

Question: What pairs (n,k) can be realised by all
possible prime powers ¢ and curves E/IF,?

We introduce and study the set

Sn={(n,k) e NxIN : 3 prime power q and E/IF,
with E(F,) £ Z, x Z,,;;}

We are also study the subset §; C Sp defined by

Sr={(n,k) eNxN : 3 prime pand E/F,
with E(Fp) & Z, x Z,;,}



What do we know about n and k7

Hasse Bound:

#E(F,) =nk=q+1—t where [t| <2q¢1/?
q

Weil pairing

n|lqg—1

Lemma 1 Ifq is a prime power, and E/IF is such
that

E(]]:CI) = Zn X an’7
then

gq=n’k+nl+1 where |¢| < 2Vk.

Warning: These conditions are almost “if and only
if", but not quite. ..

Remark: Given an pair (n,k) we can test whether
(n,k) € Sn or (n,k) € Sr in finitely many steps.




What do we study?

One expects Sy and Sp to be reasonably *“dense”
in IN x IN, the complementary sets appear to be
rather large:

List of the pairs (n,k) & Sp with n, k < 25:

(11,1),(11,14),(13,6),(19,7),(19,10), (19, 14),
(19,15), (19, 18), (21, 18), (23, 1), (23,5), (23, 8),
(23,19), (25,5), (25, 14).

To investigate the distribution of the elements of
Sr and of §p, we introduce the sets

Se(N,K) ={(n,k) €Sx : n<N, k< K},
SH(N,K):{(n,k)eSn : n < N, kgK},

We obtain estimates for the cardinalities of these
sets in various ranges of N and K
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We consider the set of primes p such that Z, x Z,,;
can be realized as the group of points of an elliptic
curve over IFyp:

TIr(n, k) = {primes p : 3 E/F, for which

We obtain an asymptotic formula in certain ranges
of N and K for

JW(NvK) — Z Z #jﬂ'(nak)a
n<N k<K

Motivated by Lemma 1, we compare

Nem={n €N : 3 p prime and E/F;m
with E(]Fpm) = Zn X an}
and

Nem={n€N : 3 1€Z, pprime with
I| < 2vk and p™ = n’k + In + 1}.



Characterisation of cardinalities

Waterhouse (1969):

Lemma 2 Let g = p"™ be a power of a prime p
and let N =q+1—a. There is an elliptic curve
E/IFq with #E(IFq) = N if and only if |a| < 2,/q
and a satisfies one of the following:

(i) gcd(a,p) =1,

(i) m even and a = £2,/q,
(iii) m is even, p #1 (mod 3), and a = £,/q;
(iv) m is odd, p =2 or 3, and a = +pn+1)/2,
(v) m is even, p %1 (mod 4), and a = 0O;

(vi) m is odd and a = 0.



Characterisation of group structures

Riick and Voloch (1987)

Lemma 3 Let N be an integer that occurs as the
order of an elliptic curve over a finite field IF4 where
q=7p" is a power of a prime p. Write N = p*nin»,
with p{nino andny | np. (possiblyny = 1). There
iIs an elliptic curve E over IF4 such that

if and only if

1. n1 = n»o in the case (ii) of Lemma 2;

2. ni|lq — 1 in all other cases of Lemma 2.



38
Prime fields

Combining Lemmas 2 and 3 we get:

Corollary 4 If
p+1—-N[<2p
and N = nino With
ni|np and ni|p-—1
then there is an elliptic curve E/IF, with

Corollary 5 We have

p S jﬂ'(n7 k)
if and only if

p=n’k+nl+1 where |t| <2Vk.

For prime ¢ = p, Lemma 1 is an “if and only if”
statement:



Proof.

“If" . Taking N = n?k, we have
p+ 1 —N|2 = (nl+2)°=n?2+4nl+ 4
< 4nk+ 4nl+ 4 = 4p,

hence |[p+1—-N| < 2,/p. Applying Corollary 4 with
n1 = n and no, = nk, we see that there is an elliptic
curve E/IF, such that E(IFp) = Z,, x Z,;, and thus

p € jﬂ'(na k)

“Only If": Lemma 1. O
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Analytic number theory

We put

W(x;m,a)Z#{pga: . p=a (mod m)},
I_I(x;m,a)z#{quc . g=a (mod m)}

Lemma 6 For all N,K € N we have

Jr(N,K) = Z (W(n2K+n€+1;n2,n€+1)
n<N

0|<2VK
— 71(3n0% + nl;n?, nl + 1)).
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Good News: J;(N,K) is expressed via classical
functions

Bad News: We need to study primes in short
arithmetic progressions: modulus < N2, the length
= K, while unconditional results are very weak.

Good News: We need this “on average” over n:
recall Bombieri-Vinogradov

Bad News: The averaging is over square moduli,
rather than over all moduli up to a certain limit.

Good News: Baier & Zhao (2008) have exactly
this version of the Bombieri-Vinogradov theorem!
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Bombieri-Vinogradov theorem modulo squares

AS usual, we set

Y(x,m,a) = > A(n),

n<x
n=a (Mmod m)

where A(n) is the von Mangoldt function.
Baier & Zhao (2008):

Lemma 7 For fixed e >0 and C > 0, we have

T

Y om max W(x;m?,a) —

<
2/9—¢ gcd(a,m)=1 go(mz)

(logz)C

m<zx

Moduli m2 run up to almost z4/9, only a little
bit behind of z1/2 as in the Bombieri-Vinogradov
theorem.



13
Are we done?

Not quite .... Things still to be taken care of:

e Switch from ¢ to =«

— Partial summation!

e The upper limits in 7(n2K +nl+1;n2, nt+ 1)
and m(zn?0?4nt;n?, nf+1) are “moving” with
.

— Separate the range of summation over n,
into O(A~1log N) intervals [M, M + AM]

— replace n? with M2 (up to the error term of
O(M2A)

— optimise A

We can deal with J-(N,K) for N < K2/5-¢ je.,

for groups generated by E/F, with a large torsion
group over IFy.
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Sets SH(N,K) and SH(N,K)
Theorem 8 For any e >0 and N < K2/5—¢

NK
NK > #Sl_l(NaK) > #Sﬁ(NaK) > @

Proof. If p =1+ n?k then

(n, (g — 1)/n?) € Sx(N, K)

I
#Sx(N,K) > Y 7w(n°K,n?1)
n<N
> > r(n°K,n?,1)
N/2<n<N
1 2. 2
> Y. ¥(n°K,n%,1)
09 K o<
1 2 2
> > Y(N°K/4,n%,1).
O9 & N/o<n<n

The result of Baier & Zhao (2008), i.e., Lemma 7,
applies if N < (N2K)2/9-9 for some § >0 or N <
K?2/5—¢ for some ¢ > 0. O
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Suppose that K is fixed

We are interested in prime powers:

g=n’k+nl+1 and |4 <2Vk

Good News: Sieve methods can be used for upper
bounds

Bad News: We need explicit bounds and we have
~ 4k1/2 progressions.

Good News: When k is fixed this should work.
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Selberg sieve:

Theorem 9 For any integer K > 1 there exists a
constant A(K) such that

N

E.g., there are infinitely many pairs (n,k) which
do not lie in Sp. More precisely:

Corollary 10 For every kg, almost all (n,kg) € Sp.

E.g. there are infinitely many pairs (n, k) which do
not lie in Sp.

More precisely, for every kg, almost all (n, ko) € Sn.
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Suppose that N is fixed

It is quite reasonable to believe that Sp contains
all pairs (n,k) € N x N with n < Ng except for at
most finitely many.

This is a consequence of an analogue of the Cramer’s
Conjecture for primes in a fixed arithmetic progres-
sion (and is out of reach ...).

Easier (7?) Question: Let ng be fixed, Is it true
that for almost k&, (ng, k) € Sp7
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Set Sp(N, K) \ Sx(N, K)

Question: Prime powers g = p'™ with m > 2 are
very rare. Do they contribute to Sp”

Yes!
N
12log N

#(Sn(NV,1) \ Sx(N,1)) > (1 +0(1))

Open Question: Any contribution to Sp\ Sx from
k> 27
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Recall:
Nigm={n €N : 3 pprime and E/Fym
and
Nem={ne€N : 3 l€Z, pprime with
| < 2vk and p™ = n’k + In + 1}.
We have
Nk,m C-//\V/’k,m

Question Is the inclusion proper?

Theorem 11 We have, N1 = Nj 1.

Proof. Easy! O]
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For m = 2, the situation is more complicated. We
have:

T heorem 12 We have that

Nio = Ng 2

except possibly in the following cases:

(i) k=p?+1 and p=1 (mod 4) when
(i) k=p?+p+1and p=1 (mod 3);
(i) k= M2, M > 1.

In the cases (i) and (ii), we have Nj 2\ Ny o C {1}
while in the case (iii) we have

N __J{1}y if M is prime
M22 7 ¢ otherwise

and

NM272\NM272 OD{(px1l)/M : p=1 (mod M) is prime}.
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Proof. Uses some properties of the Pell equation.
O

Corollary 13 Suppose that k is not a perfect square.
We have the following:

No 1 (T) < logT.

Furthermore

No1(T) = n(T—=1)+n(T+1)
—#{p<TH+1 : p,p—2 are prime}

For m > 3, the situation is more complicated. ..
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Even the case £k = 1 is hard:

Conjecture 1 Let m > 4. Then the (positive)
integer solutions the three Diophantine equations:

ym=wz+L ym=x2+m+L ym:$2ﬂﬁ¥L

are respectively

{(0,1)}, {1}, {(1,1),(0,1)}.

Faltings Theorem < the set of solutions is finite.

Conjecture 2 The set of finite points with integer
coordinates of the elliptic curve:

E y3 =z’ 441
is

{(—-19,7),(18,7),(—1,£1),(0,£1)}.

Conductor 3° and it is called 243al in Cremona’s
Table. E is 243al in Cremona’s Table, it is of con-
ductor 35, and its Mordell-Weyl group generated

by (1,1).
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Special case of the Bateman and Horn Conjecture:

Conjecture 3 Suppose f(X) = X2 +aX + 1 is
irreducible over Z. Then

H{n <T . f(n) is prime}

a’—4
_ 14+ 0(1) M l1- p T
gcd(2,a) 553 p—1 log T’

where (b/p) is the Legendre symbol modulo p.
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Theorem 14 Under the Conjectures 1 and 2, we
have the following: if m = 2r is even, then
Tl/r
#NLm (T) = (m + 0(1)
If m > 3 is odd, then Ni,,(T) is empty while
N13 ={18,19}. If m = 1, then

T
N 1(T) <€ ——.
1,1(T") 09 T

Finally, assuming Conjecture 3, there exists a con-
stant o« > 0 such that
T

N1.1(T) = (a+0o(1)) 09 T
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log loglogn has been proved to go
to infinity with n, but it has never
been observed doing so ...

Carl Pomerance



