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Introduction

Two common beliefs

A. Besides torsion groups, we know where lit-

tle about possible group structures of elliptic

curves over Q.

B. We know everything we need about possible

group structures of elliptic curves over IFq, Ruck,

Schoof, Voloch, Waterhouse, . . .

A. is certainly correct. . .

How about B.?
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What do we know about E(IFq)?

E(IFq) is of rank two:

E(IFq) ∼= ZZn × ZZnk

E.g., nk is the exponent of E(IFq).

Question: What pairs (n, k) can be realised by all

possible prime powers q and curves E/IFq?

We introduce and study the set

SΠ = {(n, k) ∈ IN× IN : ∃ prime power q and E/IFq

with E(IFq) ∼= ZZn × ZZnk}

We are also study the subset Sπ ⊂ SΠ defined by

Sπ = {(n, k) ∈ IN× IN : ∃ prime p and E/IFp

with E(IFp) ∼= ZZn × ZZnk}
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What do we know about n and k?

Hasse Bound:

#E(IFq) = n2k = q + 1− t where |t| ≤ 2q1/2

Weil pairing

n | q − 1

Lemma 1 If q is a prime power, and E/IFq is such

that

E(IFq) ∼= ZZn × ZZnk,

then

q = n2k + n`+ 1 where |`| ≤ 2
√
k.

Warning: These conditions are almost “if and only

if”, but not quite. . .

Remark: Given an pair (n, k) we can test whether

(n, k) ∈ SΠ or (n, k) ∈ Sπ in finitely many steps.
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What do we study?

One expects Sπ and SΠ to be reasonably “dense”

in IN × IN, the complementary sets appear to be

rather large:

List of the pairs (n, k) 6∈ SΠ with n, k ≤ 25:

(11,1), (11,14), (13,6), (19,7), (19,10), (19,14),

(19,15), (19,18), (21,18), (23,1), (23,5), (23,8),

(23,19), (25,5), (25,14).

To investigate the distribution of the elements of

Sπ and of SΠ, we introduce the sets

Sπ(N,K) =
{

(n, k) ∈ Sπ : n ≤ N, k ≤ K
}
,

SΠ(N,K) =
{

(n, k) ∈ SΠ : n ≤ N, k ≤ K
}
,

We obtain estimates for the cardinalities of these

sets in various ranges of N and K
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We consider the set of primes p such that ZZn×ZZnk
can be realized as the group of points of an elliptic

curve over IFp:

Jπ(n, k) = {primes p : ∃ E/IFp for which

E(IFp) ∼= ZZn × ZZnk}.

We obtain an asymptotic formula in certain ranges

of N and K for

Jπ(N,K) =
∑
n≤N

∑
k≤K

#Jπ(n, k),

Motivated by Lemma 1, we compare

Nk,m = {n ∈ IN : ∃ p prime and E/IFpm

with E(IFpm) ∼= ZZn × ZZkn}.

and

Ñk,m = {n ∈ IN : ∃ l ∈ ZZ, p prime with

|l| ≤ 2
√
k and pm = n2k + ln+ 1}.
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Basic Tools

Characterisation of cardinalities

Waterhouse (1969):

Lemma 2 Let q = pm be a power of a prime p

and let N = q + 1 − a. There is an elliptic curve

E/IFq with #E(IFq) = N if and only if |a| ≤ 2
√
q

and a satisfies one of the following:

(i) gcd(a, p) = 1;

(ii) m even and a = ±2
√
q;

(iii) m is even, p 6≡ 1 (mod 3), and a = ±√q;

(iv) m is odd, p = 2 or 3, and a = ±p(n+1)/2;

(v) m is even, p 6≡ 1 (mod 4), and a = 0;

(vi) m is odd and a = 0.
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Characterisation of group structures

Rück and Voloch (1987)

Lemma 3 Let N be an integer that occurs as the

order of an elliptic curve over a finite field IFq where

q = pm is a power of a prime p. Write N = pen1n2

with p - n1n2 and n1 | n2. (possibly n1 = 1). There

is an elliptic curve E over IFq such that

E(IFq) ∼= ZZpe × ZZn1 × ZZn2

if and only if

1. n1 = n2 in the case (ii) of Lemma 2;

2. n1|q − 1 in all other cases of Lemma 2.
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Prime fields

Combining Lemmas 2 and 3 we get:

Corollary 4 If

|p+ 1−N | ≤ 2
√
p

and N = n1n2 with

n1 | n2 and n1 | p− 1

then there is an elliptic curve E/IFp with

E(IFp) ∼= ZZn1 × ZZn2.

Corollary 5 We have

p ∈ Jπ(n, k)

if and only if

p = n2k + n`+ 1 where |`| ≤ 2
√
k.

For prime q = p, Lemma 1 is an “if and only if”

statement:
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Proof.

“If”: Taking N = n2k, we have

|p+ 1−N |2 = (n`+ 2)2 = n2`2 + 4n`+ 4

≤ 4n2k + 4n`+ 4 = 4p,

hence |p+1−N | ≤ 2
√
p. Applying Corollary 4 with

n1 = n and n2 = nk, we see that there is an elliptic

curve E/IFp such that E(IFp) ∼= ZZn× ZZnk, and thus

p ∈ Jπ(n, k).

“Only If”: Lemma 1. ut
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Analytic number theory

We put

π(x;m,a) = #
{
p ≤ x : p ≡ a (mod m)

}
,

Π(x;m,a) = #
{
q ≤ x : q ≡ a (mod m)

}
.

Lemma 6 For all N,K ∈ IN we have

Jπ(N,K) =
∑
n≤N
|`|≤2

√
K

(
π(n2K + n`+ 1;n2, n`+ 1)

− π(1
4n

2`2 + n`;n2, n`+ 1)
)
.
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What is next?

Good News: Jπ(N,K) is expressed via classical

functions

Bad News: We need to study primes in short

arithmetic progressions: modulus � N2, the length

� K, while unconditional results are very weak.

Good News: We need this “on average” over n:

recall Bombieri-Vinogradov

Bad News: The averaging is over square moduli,

rather than over all moduli up to a certain limit.

Good News: Baier & Zhao (2008) have exactly

this version of the Bombieri-Vinogradov theorem!
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Bombieri-Vinogradov theorem modulo squares

As usual, we set

ψ(x;m,a) =
∑
n≤x

n≡a (mod m)

Λ(n),

where Λ(n) is the von Mangoldt function.

Baier & Zhao (2008):

Lemma 7 For fixed ε > 0 and C > 0, we have

∑
m≤x2/9−ε

m max
gcd(a,m)=1

∣∣∣∣∣ψ(x;m2, a)−
x

ϕ(m2)

∣∣∣∣∣� x

(logx)C
.

Moduli m2 run up to almost x4/9, only a little

bit behind of x1/2 as in the Bombieri-Vinogradov

theorem.
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Are we done?

Not quite . . . . Things still to be taken care of:

• Switch from ψ to π

– Partial summation!

• The upper limits in π(n2K +n`+ 1;n2, n`+ 1)

and π(1
4n

2`2+n`;n2, n`+1) are “moving” with

n.

– Separate the range of summation over n,

into O(∆−1 logN) intervals [M,M + ∆M ]

– replace n2 with M2 (up to the error term of

O(M2∆)

– optimise ∆

We can deal with Jπ(N,K) for N ≤ K2/5−ε, i.e.,

for groups generated by E/Fp with a large torsion

group over IFp.
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Sets SΠ(N,K) and SΠ(N,K)

Theorem 8 For any ε > 0 and N ≤ K2/5−ε,

NK ≥#SΠ(N,K) ≥#Sπ(N,K)�
NK

logK
.

Proof. If p = 1 + n2k then

(n, (q − 1)/n2) ∈ Sπ(N,K)

⇓

#Sπ(N,K) ≥
∑
n≤N

π(n2K,n2,1)

≥
∑

N/2≤n≤N
π(n2K,n2,1)

�
1

logK

∑
N/2≤n≤N

ψ(n2K,n2,1)

�
1

logK

∑
N/2≤n≤N

ψ(N2K/4, n2,1).

The result of Baier & Zhao (2008), i.e., Lemma 7,

applies if N � (N2K)2/9−δ for some δ > 0 or N �
K2/5−ε for some ε > 0. ut
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Suppose that K is fixed

We are interested in prime powers:

q = n2k + n`+ 1 and |`| ≤ 2
√
k

Good News: Sieve methods can be used for upper

bounds

Bad News: We need explicit bounds and we have

∼ 4k1/2 progressions.

Good News: When k is fixed this should work.
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Selberg sieve:

Theorem 9 For any integer K ≥ 1 there exists a

constant A(K) such that

#SΠ(N,K) ≤ A(K)
N

logN
.

E.g., there are infinitely many pairs (n, k) which

do not lie in SΠ. More precisely:

Corollary 10 For every k0, almost all (n, k0) 6∈ SΠ.

E.g. there are infinitely many pairs (n, k) which do

not lie in SΠ.

More precisely, for every k0, almost all (n, k0) 6∈ SΠ.
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Suppose that N is fixed

It is quite reasonable to believe that SΠ contains

all pairs (n, k) ∈ IN × IN with n ≤ N0 except for at

most finitely many.

This is a consequence of an analogue of the Cramer’s

Conjecture for primes in a fixed arithmetic progres-

sion (and is out of reach . . . ).

Easier (?) Question: Let n0 be fixed, Is it true

that for almost k, (n0, k) ∈ SΠ?
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Set SΠ(N,K) \ Sπ(N,K)

Question: Prime powers q = pm with m ≥ 2 are

very rare. Do they contribute to SΠ?

Yes!

#(SΠ(N,1) \ Sπ(N,1)) ≥ (1 + o(1))
N

12 logN

Open Question: Any contribution to SΠ \ Sπ from

k ≥ 2?
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Sets Nk,m and Ñk,m

Recall:

Nk,m = {n ∈ IN : ∃ p prime and E/IFpm

with E(IFpm) ∼= ZZn × ZZkn}.

and

Ñk,m = {n ∈ IN : ∃ l ∈ ZZ, p prime with

|l| ≤ 2
√
k and pm = n2k + ln+ 1}.

We have

Nk,m ⊆ Ñk,m

Question Is the inclusion proper?

Theorem 11 We have, Nk,1 = Ñk,1.

Proof. Easy! ut
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For m = 2, the situation is more complicated. We

have:

Theorem 12 We have that

Nk,2 = Ñk,2
except possibly in the following cases:

(i) k = p2 + 1 and p ≡ 1 (mod 4) when

(ii) k = p2 ± p+ 1 and p ≡ 1 (mod 3);

(iii) k = M2, M > 1.

In the cases (i) and (ii), we have Ñk,2 \Nk,2 ⊆ {1}
while in the case (iii) we have

NM2,2 =

{1} if M is prime

∅ otherwise

and

ÑM2,2\NM2,2 ⊃ {(p±1)/M : p ≡ 1 (mod M) is prime}.
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Proof. Uses some properties of the Pell equation.

ut

Corollary 13 Suppose that k is not a perfect square.

We have the following:

N2,k(T )�k logT.

Furthermore

N2,1(T ) = π(T − 1) + π(T + 1)

−#{p ≤ T + 1 : p, p− 2 are prime}

For m ≥ 3, the situation is more complicated. . .
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Even the case k = 1 is hard:

Conjecture 1 Let m ≥ 4. Then the (positive)

integer solutions the three Diophantine equations:

ym = x2 + 1, ym = x2 +x+ 1, ym = x2−x+ 1.

are respectively

{(0,1)}, {(0,1)}, {(1,1), (0,1)}.

Faltings Theorem ⇐= the set of solutions is finite.

Conjecture 2 The set of finite points with integer

coordinates of the elliptic curve:

E : y3 = x2 + x+ 1

is

{(−19,7), (18,7), (−1,±1), (0,±1)}.

Conductor 35 and it is called 243a1 in Cremona’s

Table. E is 243a1 in Cremona’s Table, it is of con-

ductor 35, and its Mordell-Weyl group generated

by (1,1).
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Special case of the Bateman and Horn Conjecture:

Conjecture 3 Suppose f(X) = X2 + aX + 1 is

irreducible over ZZ. Then

#{n ≤ T : f(n) is prime}

=
1 + o(1)

gcd(2, a)

∏
p>3

1−

(
a2−4
p

)
p− 1

 · T

logT
,

where (b/p) is the Legendre symbol modulo p.
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Theorem 14 Under the Conjectures 1 and 2, we

have the following: if m = 2r is even, then

#N1,m(T ) = (m+ o(1))
T1/r

logT
.

If m > 3 is odd, then N1,m(T ) is empty while

N1,3 = {18,19}. If m = 1, then

N1,1(T )�
T

logT
.

Finally, assuming Conjecture 3, there exists a con-

stant α > 0 such that

N1,1(T ) = (α+ o(1))
T

logT
.
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Conclusion

log log logn has been proved to go
to infinity with n, but it has never
been observed doing so . . .

Carl Pomerance


