Ramanujan and the ζ-function

M. Ram Murty Queen's University

$$\alpha^{-n} \left\{ \frac{1}{2} \zeta(2n+1) + \sum_{k=1}^{\infty} \frac{k^{-2n-1}}{e^{2\alpha k} - 1} \right\}$$

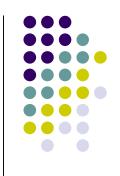
$$= (-\beta)^{-n} \left\{ \frac{1}{2} \zeta(2n+1) + \sum_{k=1}^{\infty} \frac{k^{-2n-1}}{e^{2\beta k} - 1} \right\}$$

$$- 2^{2n} \sum_{k=0}^{n+1} (-1)^k \frac{B_{2k}}{(2k)!} \frac{B_{2n+2-2k}}{(2n+2-2k)!} \alpha^{n+1-k} \beta^k$$

Euler (1707-1783)

- In 1735, Euler discovered experimentally that 1+ 1/4 + 1/9 + ... = π²/6.
- He gave a "rigorous" proof of this much later, in 1742.

Sketch of Euler's proof



- The polynomial $(1-x/r_1)(1-x/r_2)...(1-x/r_n)$ has roots equal to $r_1, r_2, ..., r_n$.
- When we expand the polynomial, the coefficient of x is $-(1/r_1 + 1/r_2 + ... + 1/r_n)$.
- A polynomial is determined by its roots.
 Knowing its roots is the same as knowing the polynomial.
- Suppose that sin πx "behaves" like a polynomial.

"Factoring" $\sin \pi x = \pi x - (\pi x)^3 / 3! \dots$

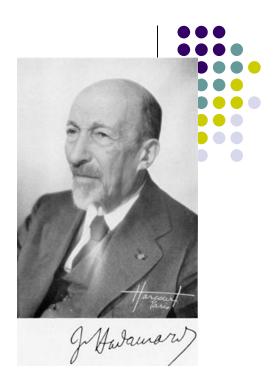


- $\sin \pi x$ has roots at x=0, ±1, ±2, ...
- Put f(x) = (sin πx)/πx. By l'Hopital's rule, f(0)=1.
- Now f(x) has roots at $x=\pm 1, \pm 2, ...$
- Perhaps f(x) = (1-x)(1+x)(1-x/2)(1+x/2)...
- That is, $f(x) = (1-x^2)(1-x^2/4)(1-x^2/9)...$
- The coefficient of x^2 on the right hand side is (1 + 1/4 + 1/9 + 1/16 + ...)

- Comparing coefficients gives
- $\Sigma_{n\geq 1} 1/n^2 = \pi^2/6$.
- Can this proof be justified?

Euler's proof can be made rigorous using Hadamard's theory of factorization of entire functions, a theory developed much later in 1892 in his doctoral thesis.

Can Euler's result be generalized? For example, can we evaluate $\Sigma_{n\geq 1}$ 1/n³ or $\Sigma_{n\geq 1}$ 1/n⁴?



Euler had difficulty with the first question but managed to show that $\Sigma_{n\geq 1}$ $1/n^4 = \pi^4/90$ and more generally that $\Sigma_{n\geq 1}$ $1/n^{2k} = \pi^{2k}$ (rational number).

Modifying Euler's proof

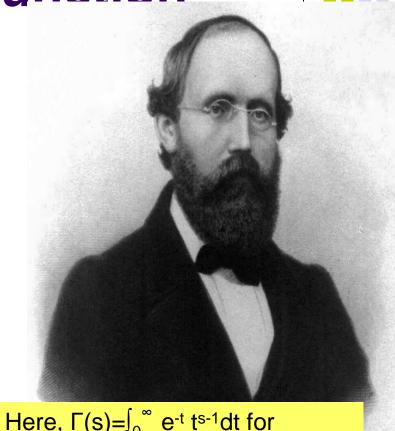
- Recall $f(x) = \frac{\sin \pi x}{\pi x} = \frac{(1-x^2)(1-x^2/4)...}{\pi x}$
- Thus $f(ix)=(\sin \pi ix)/\pi ix = (1+x^2)(1+x^2/4)...$ Here $i=\sqrt{-1}$.
- Multiplying these two together gives us:
- $(1-x^4)(1-x^4/2^4)(1-x^4/3^4)...$
- But the Taylor expansion of f(x)f(ix) is
- $(1 \pi^2 x^2/3! + \pi^4 x^4/5! ...)(1 + \pi^2 x^2/3! + \pi^4 x^4/5! + ...)$
- Computing the coefficient of x⁴ gives:
- $\Sigma_{n>1} 1/n^4 = \pi^4/90$.

Algebraic and transcendental numbers

- A complex number z is called an algebraic number if it is the root of a monic polynomial with rational coefficients.
- A complex number which is not algebraic is called transcendental.
- Algebraic numbers form a countable set and so the set of transcendental numbers is uncountable.
- Numbers such as $\sqrt{3}$, $2^{1/7}$, $(1+\sqrt{5})/2$ are algebraic.
- Numbers like π and e are transcendental.
- The set of all algebraic numbers forms a field under addition and multiplication.
- In this talk, we will be interested if ζ(k) is an algebraic number or a transcendental number for natural numbers k≥2.

The Riemann zeta function

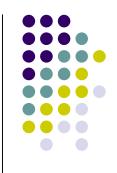
- $\zeta(s)=\Sigma_{n\geq 1}$ 1/n^s converges for Re(s)>1.
- Riemann showed how to analytically continue this function to the entire complex plane and established a functional equation.
- Put $\psi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s)$
- Then $\psi(s) = \psi(1-s)$.



Here, $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$ for Re(s)>0 and $\Gamma(s+1) = s\Gamma(s)$.

G.F.B. Riemann (1826-1866)

The Prime Number Theorem



- In the same paper, Riemann indicated but did not prove how his ζ-function can be used to prove theorems about prime numbers.
- More precisely, he indicated a program for proving the prime number theorem, originally conjectured by Gauss, that the number of primes P(x) up to x is asymptotic to x/log x as x tends to infinity.

Hadamard and de la Vallée

In 1896,
 Hadamard and
 de la Vallée
 Poussin
 (independently)
 proved the prime
 number theorem.

Zeros of the Riemann ζ-function

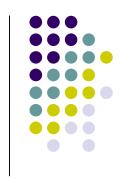
- In their proof of the prime number theorem, Hadamard and de la Vallée Poussin proved that ζ(1+it) ≠0 for all real t≠0.
- Riemann conjectured that if $\zeta(s_0)=0$ and $0<\text{Re}(s_0)<1$, then $\text{Re}(s_0)=1/2$.
- This is called the Riemann hypothesis and to this day, it is still an open problem.
- In 2004, Gourdon and Demichel checked that the first 10¹³ zeros are on the line!

Other mysteries of the ζ-function

- If the Riemann hypothesis is true, how are the zeros distributed on the line Re(s)=1/2?
- What about its growth rate on the critical line?
- It is conjectured that $|\zeta(1/2 + it)| = O(t^{\epsilon})$ for any $\epsilon > 0$. This is called the Lindelof Hypothesis.
- It is a consequence of the Riemann hypothesis.
- What about special values, like $\zeta(2)$ or $\zeta(3)$?

Euler's theorem

- $\zeta(2k) \in \pi^{2k}\mathbb{Q}$.
- Actually, Euler proved a more precise theorem.
- Define the Bernoulli numbers as the Taylor coefficients of $x/(e^x-1) = \sum_{n\geq 1} B_n x^n/n!$.
- The B_n's are rational numbers.
- Euler proved that $2\zeta(2k)=(-1)^{k-1}B_{2k}(2\pi)^{2k}/(2k)!$.
- Since π is transcendental, we see that ζ(2k) is transcendental for every k≥1.
- What about ζ(3)?



- In 1979, Roger Apery showed that ζ(3) is irrational.
- His starting point was the following remarkable formula:

$$\zeta(3) = \frac{5}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 \binom{2n}{n}}.$$

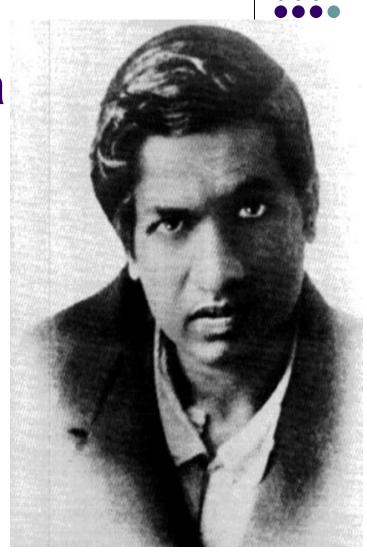
Conjectures concerning $\zeta(3)$, $\zeta(5)$, ...



- One expects $\zeta(3)$, $\zeta(5)$, ... to be transcendental.
- In fact, one expects that π , $\zeta(3)$, $\zeta(5)$, ... to be algebraically independent.
- In 2000, Rivoal proved that infinitely many of the numbers ζ(2k+1), k≥1, are irrational.
- In 2001, Rivoal and Zudilin showed that at least one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational.
- The Q-vector space spanned by ζ(3), ζ(5),... is of infinite dimension. (Rivoal, Ball and Zudilin, 2003)

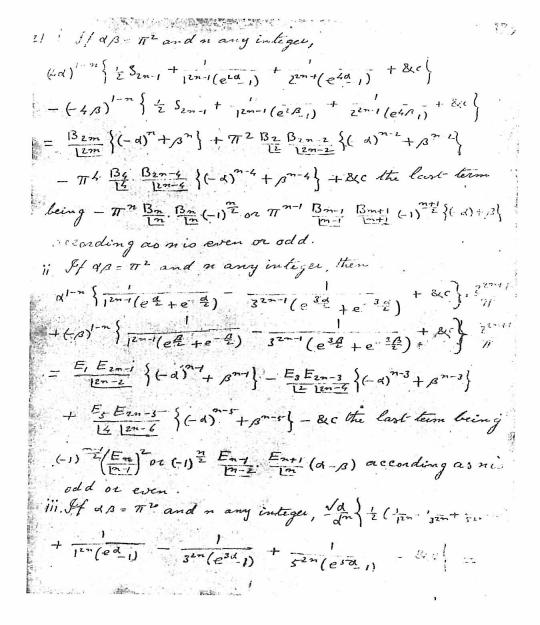
Ramanujan's formula

- Ramanujan discovered the following formula for ζ(3):
- $\zeta(3) + 2\Sigma_{n\geq 1} n^{-3} (e^{2\pi n} 1)^{-1}$ = $7\pi^3/180$.
- At least one of the two terms on the left hand side is transcendental!

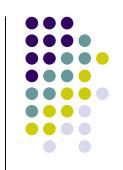


S. Ramanujan (1887-1920)

A page from Ramanujan's notebook



A more general formula of Ramanujan



$$\alpha^{-n} \left\{ \frac{1}{2} \zeta(2n+1) + \sum_{k=1}^{\infty} \frac{k^{-2n-1}}{e^{2\alpha k} - 1} \right\}$$

$$= (-\beta)^{-n} \left\{ \frac{1}{2} \zeta(2n+1) + \sum_{k=1}^{\infty} \frac{k^{-2n-1}}{e^{2\beta k} - 1} \right\}$$

$$- 2^{2n} \sum_{k=0}^{n+1} (-1)^k \frac{B_{2k}}{(2k)!} \frac{B_{2n+2-2k}}{(2n+2-2k)!} \alpha^{n+1-k} \beta^k$$

Emil Grosswald (1912-1989)

Define

$$R_{2k+1}(z) = \sum_{j=0}^{k+1} \frac{B_{2j}B_{2k+2-2j}}{(2j)!(2k+2-2j)!} z^{2k+2-2j},$$

$$\sigma_k(n) = \sum_{d|n} d^k$$

and set

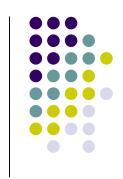
$$F_k(z) = \sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^k} e^{2\pi i n z}$$

for $\Im(z) > 0$. Then

$$F_{2k+1}(z) - z^{2k} F_{2k+1}(-1/z)$$

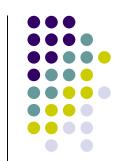
$$= \frac{1}{2} \zeta(2k+1)(z^{2k}-1) + \frac{(2\pi i)^{2k+1}}{2z} R_{2k+1}(z).$$

$F_k(z)$ for $z=i\alpha$



- $F_k(i\alpha) = \sum_{n\geq 1} \sigma_k(n) n^{-k} e^{-2\pi n\alpha} = \sum_{n\geq 1} n^{-k} (e^{2\pi n\alpha} 1)^{-1}$.
- Thus, putting z=iα in Grosswald's formula recovers Ramanujan's formula.
- The values of F_k(iα) are examples of Eichler integrals.
- However, Grosswald's formula opens up new possible expressions for ζ(2k+1).
- Indeed, if z_0 is a zero of $R_{2k+1}(z)$ and z_0 is not a (2k)-th root of unity, then we get an expression of $\zeta(2k+1)$ as a difference of two Eichler integrals.

Zeros of Ramanujan polynomials



 Joint work with Rob Wang (NSERC Summer Research student)

$$R_1(z) = \frac{z^2 + 1}{2 \cdot 3!} \text{ (this is the trivial case)}$$

$$Roots: \pm i$$

$$R_3(z) = \frac{-z^4 + 5z^2 - 1}{6!}$$

$$Roots: \pm \sqrt{\frac{5 \pm \sqrt{21}}{2}} \text{ ($\pm 2.1889, \pm 0.4569$)}$$

$$R_5(z) = \frac{2z^6 - 7z^4 - 7z^2 + 2}{12 \cdot 7!}$$

$$Roots: \pm i, \pm \sqrt{\frac{9 \pm \sqrt{65}}{4}} \text{ ($\pm 2.0653, \pm 0.4842$)}$$

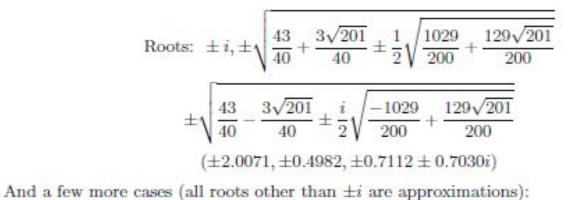
$$R_7(z) = \frac{-3z^8 + 10z^6 + 7z^4 + 10z^2 - 3}{10!}$$

$$Roots: \pm \sqrt{\frac{13 \pm \sqrt{133}}{6}, \pm \frac{1}{2} \pm \frac{\sqrt{3}}{2}i}$$

$$(\pm 2.0221, \pm 0.4945, \pm 0.5 \pm 0.8660i)$$

More numerical data

$$R_9(z) = \frac{10z^{10} - 33z^8 - 22z^6 - 22z^4 - 33z^2 + 10}{12!}$$



$$R_{11}(z) = \frac{-1382z^{12} + 4550z^{10} + 3003z^8 + 2860z^6 + 3003z^4 + 4550z^2 - 1382z^4 + 4550z^2 - 1382z^2 - 138$$

Roots: $\pm 2.0022, \pm 0.4995, \pm 0.3081 \pm 0.9513i, \pm 0.8146 \pm 0.5800i$

$$R_{13}(z) = \frac{210z^{14} - 691z^{12} - 455z^{10} - 429z^{8} - 429z^{6} - 455z^{4} - 691z^{2} + 210}{12 \cdot 15!}$$

Roots: $\pm i$, ± 2.0006 , ± 0.4998 , $\pm 0.5 \pm 0.8660i$, $\pm 0.8715 \pm 0.4904i$

$$R_{15}(z) = \frac{-10851z^{16} + 35700z^{14} + 23494z^{12} + 22100z^{10} + 21879z^{8}}{5 \cdot 18!} \\ + \frac{+22100z^{6} + 23494z^{4} + 35700z^{2} - 10851}{5 \cdot 18!}$$

Roots: $\pm 2.0002, \pm 0.5000, \pm 0.2219 \pm 0.9751i, \pm 0.9058 \pm 0.4238i, \pm 0.6247 \pm 0.7809i$

$$R_{17}(z) = \frac{438670z^{18} - 1443183z^{16} - 949620z^{14} - 892772z^{12} - 881790z^{10}}{21!} \\ -881790z^{8} - 892772z^{6} - 949620z^{4} - 1443183z^{2} + 438670} \\ -21!$$

Roots: $\pm i$, ± 2.0001 , ± 0.5000 , $\pm 0.3822 \pm 0.9241i$, $\pm 0.9279 \pm 0.3729i$, $\pm 0.7091 \pm 0.7051i$

Notice that, for each $k \ge 1$, $R_{2k+1}(z)$ seems to possess exactly 4 real roots. Furthermore, the largest of the real roots is always less than or equal to 2.2 (and it seems to be approaching 2 as k increases. On the other hand, the complex roots seem to lie exactly on the unit circle.

Theorem on zeros of Ramanujan polynomials

- Theorem (R. Murty & R. Wang) All the zeros of the Ramanujan polynomials lie in the disk |z| < 2.2. The real zeros of $R_{2k+1}(z)$ are four in number and approach 2, -2, $\frac{1}{2}$, $\frac{1}{2}$, as k tends to infinity. When k is even, $R_{2k+1}(z)$ has $z=\pm i$ as zeros. When 3|k, $R_{2k+1}(z)$ has $z=\rho$, ρ^2 as zeros (here, ρ is a primitive cube root of unity).
- Conjecture: All the non-real zeros of R_{2k+1}(z) lie on the unit circle.

Some transcendence results

$$E_k(z) = \gamma_k + \sum_{n=1}^{\infty} \sigma_{k-1}(n)e^{2\pi i n z}, \qquad \gamma_k = (-1)^{(k/2-1)} \frac{B_k}{4k}.$$

Then for any odd k > 1, we have

$$F_k(z) = \frac{(2\pi i)^k}{(k-1)!} \int_{i\infty}^z [E_{k+1}(\tau) - \gamma_{k+1}] (\tau - z)^{k-1} d\tau,$$

Report on some joint work with S. Gun and P. Rath

Theorem 1. Let k be non-negative. With at most 2k + 3 exceptions, the number $F_{2k+1}(\alpha) - \alpha^{2k} F_{2k+1}(-1/\alpha)$ is transcendental for every algebraic $\alpha \in \mathbb{H}$. In other words, there are at most 2k + 3 algebraic numbers $\alpha \in \mathbb{H}$ such that $F_{2k+1}(\alpha)$ and $F_{2k+1}(-1/\alpha)$ are both algebraic.

A general theorem of Grosswald (1973)

for $s \in \mathbb{C}$, let

$$\Delta(s) = \prod_{\nu=1}^{M} \Gamma(\alpha_{\nu} s + \beta_{\nu}), \quad \alpha_{\nu} > 0, \ \beta_{\nu} \in \mathbb{C}$$

Suppose a Dirichlet series

$$\phi(s) = \sum_{n=1}^{\infty} a(n)e^{-\lambda_k s}$$

is convergent for $\Im(s) = \sigma \ge \sigma_0 > 0$ and define for $s \in \mathbb{C}$

$$\Phi(s) = \phi(s)\Delta(s)P(s),$$

where P(s) is a rational function. Suppose that

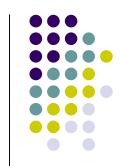
$$\Phi(s) = (-1)^{\delta} \Phi(r - s)$$

with $\delta = 0$ or $\delta = 1$. For $z \in \mathbb{H}$, let

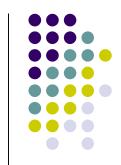
$$F(z) = \frac{1}{2\pi i} \int_{(\sigma_2)} \Phi(s) (z/i)^{-s} ds,$$

where $\sigma_2 = \sigma_0 + \epsilon$ and $\int_{(\sigma_2)} = \lim_{T \to \infty} \int_{\sigma - iT}^{\sigma + iT}$. Also define for $u \in \mathbb{C}$ and $\sigma_2 = \sigma_0 + \epsilon$, $\sigma_1 = r - \sigma_2$,

$$S(u) = \sum_{\sigma_1 \le \sigma \le \sigma_2} \text{Res} \{\Phi(s) | u^s\}.$$



Generalized period polynomials



Then Grosswald ([15], page 116) proved that

$$F(-1/z) - (-1)^{\delta}(z/i)^r F(z) = S(z/i)$$

which in particular shows that

(4)
$$2iF'(i) + rF(i) = -\sum_{\sigma_1 \le \sigma \le \sigma_2} \text{Res} \{s\Phi(s)\} \text{ if } \delta = 0,$$

(5)
$$2F(i) = \sum_{\sigma_1 \le \sigma \le \sigma_2} \text{Res} \{\Phi(s)\} \text{ if } \delta = 1.$$

If we apply this lemma to the series $\phi(s) = \zeta(s)\zeta(s+2k+1)$ which satisfies the functional equation

$$\Phi(s) = (-1)^k \Phi(-2k - s),$$

with

$$\Phi(s) = (2\pi)^{-s}\Gamma(s)\phi(s),$$

we deduce Ramanujan's formula, or more precisely, (3) of which (1) is a special case.

The modular case

As noted earlier, the modular analogue of Ramanujan's formula had been worked out by many authors, the most notable being Weil [31]. Razar [23] and Weil [31] derive the following result. Let

$$f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z/\lambda},$$

$$g(z) = \sum_{n=0}^{\infty} b_n e^{2\pi i n z/\lambda},$$

$$f^*(z) = \frac{a_0 z^{k-1}}{(k-1)!} + \left(\frac{2\pi i}{\lambda}\right)^{-(k-1)} \sum_{n=1}^{\infty} \frac{a_n}{n^{k-1}} e^{2\pi i n z/\lambda},$$

$$g^*(z) = \frac{b_0 z^{k-1}}{(k-1)!} + \left(\frac{2\pi i}{\lambda}\right)^{-(k-1)} \sum_{n=1}^{\infty} \frac{b_n}{n^{k-1}} e^{2\pi i n z/\lambda},$$

and

$$\phi(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

If k is a positive integer and γ a complex number such that

$$f(z) = \gamma z^{-k} g(-1/z),$$

then

(6)
$$f^*(z) - \gamma z^{k-2} g^*(-1/z) = \sum_{j=0}^{k-2} \frac{\phi(k-1-j)}{j!} \left(\frac{2\pi i}{\lambda}\right)^{-(k-1-j)} z^j$$
.

Some results on transcendence

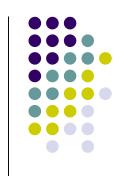
Joint work with S. Gun and P. Rath

Let f be a normalized Hecke eigenform of level N. Following the theory of Eichler, Shimura and Manin, we know that there are two "periods", ω_+ and ω_- such that $L(f,j) \in \omega_{\pm}\pi^j\overline{\mathbb{Q}}$. It is perhaps true that the numbers $\pi, \omega_+, \omega_$ are algebraically independent.

Theorem 2. Let f be a normalized Hecke eigenform of weight k and level N. Suppose that π, ω_+, ω_- are as above and algebraically independent. Then, there are at most k algebraic values of z in the upper half plane such that

$$f^*(z) - \gamma z^{k-2} f^*(-1/z)$$

is algebraic.



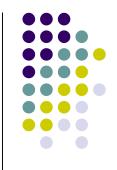
- In this case, the right hand side is constant and equal to $\phi(1)(\lambda/2\pi i)$.
- The left hand side is

$$f^*(z) - \gamma z^{k-2}g^*(-1/z)$$

where
$$f^*(z) = \frac{a_0 z^{k-1}}{(k-1)!} + \left(\frac{2\pi i}{\lambda}\right)^{-(k-1)} \sum_{n=1}^{\infty} \frac{a_n}{n^{k-1}} e^{2\pi i n z/\lambda},$$

$$g^*(z) = \frac{b_0 z^{k-1}}{(k-1)!} + \left(\frac{2\pi i}{\lambda}\right)^{-(k-1)} \sum_{i=1}^{\infty} \frac{b_n}{n^{k-1}} e^{2\pi i n z/\lambda},$$

An application of a theorem of Bertrand



Proposition 6.1. Let f(z) be a normalized Hecke eigenform of weight 2 on $\Gamma_0(N)$. Let τ be a rational number or an element of the upper half-plane such that the modular invariant $j(\tau)$ is algebraic. Then, any determination of the integral

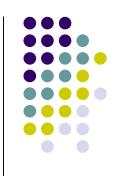
$$2\pi i \int_{i\infty}^{\tau} f(z)dz$$

is either zero or transcendental.

An application of this theorem to our setting leads to the following corollary.

Let f be a normalized Hecke eigenform of weight 2 on $\Gamma_0(N)$. Then L(f,1)/ π is either zero or transcendental.

A more general theorem



Theorem (S. Gun, R. Murty & P. Rath) Let f be a normalized Hecke eigenform of weight k on Γ₀(N). For σ in Γ₀(N), the function f*(z) – (f|σ)*(z) can take on at most k+3 algebraic values as z ranges over algebraic numbers in the upper half-plane.

- The Ramanujan-Grosswald formula gives the value of $\zeta(2k+1)$ as an algebraic linear combination of π^{2k+1} and the sum of two Eichler integrals evaluated at algebraic points in the upper half-plane.
- If our conjecture concerning the location of zeros of the Ramanujan polynomials is correct, and if in addition, these zeros are not 2k-th roots of unity, as numerical evidence seems to suggest, then one can deduce that ζ(2k+1) is the sum of two Eichler integrals evaluated at certain algebraic numbers lying on the unit circle.