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Euler (1707-1783)

e In 1735, Euler
discovered
experimentally that 1+
Yo+ 1/9 + ... = 7?/6.

e He gave a “rigorous”
oroof of this much
ater, in 1742.




Sketch of Euler’s proof

e The polynomial (1-x/ry)(1-x/r,)... (1-x/r,) has
roots equaltory, r,, ..., r

RN

e When we expand the polynomial, the

coefficient

of xis —(1/ry + 1/r, + ... + 1/r).

e A polynomial is determined by its roots.
Knowing its roots Is the same as knowing the

polynomial.

e Supposet

polynomial.

nat sin X “behaves” like a




“Factoring” sin X = mX — T
(tx)3/3! ...

e SIn X has roots at x=0, +1, +2, ...

e Put f(x) = (sin nx)/nx. By I'Hopital’s rule,
f(0)=1.

e Now f(x) has roots at x=x1, £2, ...
e Perhaps f(x)= (1-x)(1+x)(1-x/2)(1+x/2)...
e That s, f(x) = (1-x2)(1-x2/4)(1-x2/9)...

e The coefficient of x2 on the right hand side is
-(1+21/4+1/9+1/16 + ..)



e Comparing coefficients gives
o > ., 1/n2 = n2/6.
e Can this proof be justified?

Euler's proof can be made rigorous using {7
Hadamard’s theory of factorization of entire ' W_
functions, a theory developed much later M

in 1892 in his doctoral thesis. M“W

Can Euler’s result be generalized?
For example, can we evaluate

4
s 1n3orX ., 1/n*?

Euler had difficulty with the first question but managed to show that
X »1 1/n* = 4/90 and more generally that ¥ ., 1/n%k = n?k(rational number).



Modifying Euler’s proof

e Recall f(x) = (sin nx)/ nx = (1-x?)(1-x?%/4)...

e Thus f(ix)=(sin mix)/mix = (1+x2)(1+x2/4)... Herei=\-1.
e Multiplying these two together gives us:

o (1-x1)(1-x42%)(1-x43%)...

e But the Taylor expansion of f(x)f(ix) Is

o (1- m2x2/3! +74x4/5! - ..)(1+72x2/3'+7*x*/5!+...)
e Computing the coefficient of x* gives:

e > ., 1/n* = 1#/90.



Algebraic and transcendental |ss¢
numbers

A complex number z is called an algebraic number if it is the root
of a monic polynomial with rational coefficients.

A complex number which is not algebraic is called
transcendental.

Algebraic numbers form a countable set and so the set of
transcendental numbers is uncountable.

Numbers such as V3, 27, (1+v5)/2 are algebraic.
Numbers like © and e are transcendental.

The set of all algebraic numbers forms a field under addition and
multiplication.

In this talk, we will be interested if {(k) is an algebraic number or
a transcendental number for natural numbers k=2.



The Riemann zeta function °

e ((S)=X,, 1/ns
converges for Re(s)>1.

e Riemann showed how
to analytically continue
this function to the

entire complex plane ¥ S
and established a e ‘
functional equation. 3
o re, :IO” -t $s-1 r
o Put y(s):=n"2l"(s/2){(s) Sﬁé)fésind r(es+t1)=dsfrf?s).
e Then Y(s)=w(1-s).

G.F.B. Riemann (1826-1866)



The Prime Number Theorem

¢ In the same paper, Riemann indicated but did
not prove how his ¢-function can be used to
prove theorems about prime numbers.

e More precisely, he indicated a program for
proving the prime number theorem, originally
conjectured by Gauss, that the number of
primes P(x) up to x is asymptotic to x/log x as
X tends to Iinfinity.



Hadamard and de la Vallée

Dnllccinﬁ

e In 1896,
Hadamard and
de la Vallée
Poussin
(independently)
proved the prime
number theorem.




Zeros of the Riemann ¢- T
function

e In their proof of the prime number theorem,
Hadamard and de la Vallee Poussin proved
that {(1+it) #0O for all real t#0.

e Riemann conjectured that if {(s,)=0 and
O<Re(s,)<1, then Re(s,)=1/2.

e This Is called the Riemann hypothesis and to
this day, it is still an open problem.

e I[N 2004, Gourdon and Demichel checked that
the first 1013 zeros are on the line!



Other mysteries of the (- o
function

¢ If the Riemann hypothesis is true, how are
the zeros distributed on the line Re(s)=1/27?

e What about its growth rate on the critical line?

e It Is conjectured that |(1/2 + it)|=0O(t¢) for any
€¢>0. This is called the Lindelof Hypothesis.

e |t IS a conseguence of the Riemann
hypothesis.

e \What about special values, like ¢(2) or {(3)?



Euler’s theorem

e ((2K) ¢ m2kQ.

e Actually, Euler proved a more precise theorem.

e Define the Bernoulli numbers as the Taylor
coefficients of x/(e*-1) = 2., B, X"/nl.

e The B 's are rational numbers.

e Euler proved that 2¢(2k)=(-1)*1B,, (21)?/(2K)!.

e Since = Is transcendental, we see that {(2K) Is
transcendental for every k=1.

e What about {(3)?




Apery’s Theorem :

e In 1979, Roger Apery showed that ((3) IS
Irrational.

e His starting point was the following
remarkable formula:




Conjectures concerning ¢(3), |ss

Z(5), ...

One expects ((3), {(5), ... to be transcendental.

In fact, one expects that =, {(3), {(5), ... to be
algebraically independent.

In 2000, Rivoal proved that infinitely many of the
numbers ((2k+1), k=1, are irrational.

In 2001, Rivoal and Zudilin showed that at least one
of {(5), ¢(7), €(9), ¢(11) Is irrational.

The Q-vector space spanned by {(3), {(5),... Is of
Infinite dimension. (Rivoal, Ball and Zudilin, 2003)



Ramanujan’s formula

e Ramanujan discovered
the following formula for
G(3):

o ((3) + 2%, n(e*™-1)*
= 713/180.

e At least one of the two

terms on the left hand
side Is transcendental!

S. Ramanujan (1887-1920)



A page from Ramanujan’s notebook
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A more general formula of T
Ramanujan

k=1 €

o0 k—zn—l
-"{1 2n+ 1)+ Y m_l}

o0 k—Zn—l
=(—8)" {%C(Zn + 1) + kZl 2Pk _ 1}

n+1

1) B2n+2 2k n+1—k pk
PR )(2k)'(2 2ot P




Grosswald’s generalization

and set

Emil Grosswald
(1912-1989)

for 5{z) = 0. Then

k+1

1 :
~((2k+ 1)(z* — 1) 4

BaiBakia-2  apina

< 272k +2 -2
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Ragi1(2).



F.(z) for z=la

e F (ia)=% ,, o (n)nke2ma=7%  nkezna-1)1
e Thus, putting z=Ia in Grosswald’s formula recovers
Ramanujan’s formula.

e The values of F (ia) are examples of Eichler
Integrals.

e However, Grosswald’s formula opens up new
possible expressions for {(2k+1).

e Indeed, if z, is a zero of R,,,,(z) and z, is not a (2k)-
th root of unity, then we get an expression of {(2k+1)
as a difference of two Eichler integrals.



Zeros of Ramanujan

polynomials

e Joint work with Rob Wang (NSERC Summer

Research student)

Ry (z)

Roots: =+ 11..'
| o

Roots: 1, %/ — Z (+2.0653, +0.4842)

.H;': s

x4 + 1

- el )
Al [this 1s the trivial case)

Roots: +1

Hslz)

|II o '_t ".,-E- y e
: (42,1880, +0.4560)

.8 _ wod =2, .
2z — V2" — Tzt 4 2

Rs(z) =

10+ LT 6

—32% + 1027 + 724 + 1022 — 3
101

=

Roote 44/ 132V 1 V3
T ll'.' = 2 _-_2 " TE

(£2.0221, 20.4945, 0.5 £ 0.8660 )




More numerical data

1020 — 332° — 222% — 222 — 3327 + 10

Hg':'.“'l 9

i :
e | 43 3201 1 (1020 120+/201
ootsEl o1, f— 4+ —— = —4 | 3

N a0 2V 2m 500

=

!.1:1 3VI0T , i [-1020 120201
130 40 2\ 200 200

(£2.0071, =0.4982, +0.7112 + 0.7030z)

And a few more cases {all roots other than 4x are approximations):



1382212 4 4550210 4 30032F 4 28602° 4+ 30032? + 455022 — 1382 oo

Ry (z) = IR 000
o o0
Roots: -+ 2.0022, £0.4095, £0.3081 £ 0.9513i, £0.8146 4 0.5800i : o

210z — 912" — 455210 — 42028 — 42029 — 455=% — 6012% + 210
12 - 151
Roots: =+ 1, 22,0006, :0.49958, +0.5 & 0.8660z, =0.8715 £ 0.4904:

Hlslii] =

—10851='% + 35700z + 23404212 + 22100="" + 2187025
5 - 181
+22100=2% + 2349424 + 3570022 — 10851
5 - 18]
Roots: £+ 2.0002, £0.5000, £0.2219 £ 0.9751:, :0.9058 = 0.4238;, +-0.6247 + 0.7800:

Hys{z) =

_ 4386702'% — 14431832"% — 040620 — BO27722'F — B81T00z"
- 21!
— 881700z — 80277225 — 0409620=2* — 144318322 + 438670
311
Roots: =+, £2.0001, +0.5000, +£0.3822 + 0.0241i, +0.9279 + 0.3720:, +0.7001 + 0.70514

R;',T'[E:]

Notice that, for each k > 1, Hogsq(2) seems to possess exactly 4 real roots. Furthermore,
the largest of the real roots is always less than or equal to 2.2 (and it seems to be ap-
proaching 2 as k increases. On the other hand, the complex roots seem to lie exactly on
the unit circle.



Theorem on zeros of T
Ramanujan polynomials

e Theorem (R. Murty & R. Wang) All the zeros
of the Ramanujan polynomials lie in the disk
|z| < 2.2. The real zeros of R, ,,(z) are four
In number and approach 2, -2, Y2, - %2, as k
tends to infinity. When kis even, R, .,(z) has
z=%i as zeros. When 3|k, R,,,,(z) has z=p, p?
as zeros (here, p Is a primitive cube root of
unity).

e Conjecture: All the non-real zeros of R, ,,(2)
lie on the unit circle.



Some transcendence results | &:¢
Ez) =1+ g:-:r&_ji:n]eﬂ“i’“, Yy = [_ljlik.-"i—ﬂ%_

Then for any odd & > 1, we have

E'-"-..:lj: 3 ’ il
Fe) — gy [ 1Bra(r) = mal(r — 2,

]

Report on some joint work with S. Gun and P. Rath

Theorem 1. Let k be non-negative. With at most 2k + 3 erceptions, the
number Fapq(a)—a**Fap,1(—1/a) is transcendental for every algebraic o € H.
In other words, there are at most 2k + 3 algebraic numbers « € H such that
Fopoi(a) and Fapq(—1/a) are both algebraic.



A general theorem of
Grosswald (1973)

for = € L. let

Als) =[] TNows+8.), o >0 8,€C

Suppose a Dhnchlet series

]

P =) E afn)e s

n=1
15 convergent for 5¥(s) = o = og > [} and define for s £ C
®(s) = ¢(s)A(s) Pls),
where P(s) 15 a rational function. Suppose that
P(s) = (—1)"®(r — s)

withd=0o0rd=1. For z € H. let

1 : GEE L
lr[':.'l T d:'[.‘i_:' [.3_."!-.:' : ds,
—-'ﬁ!' I:n-ﬂ:l
- +iT
where o9 og + € and Jr[m_, imp .o [0 . Also define for u € C and
Jioa) 3

gy on + E. 0y T — a3,

S(u)= Y Res{d(s) v}.

oy ooy




Generalized period sels

polynomials :

Then Grosswald ([15|, page 116) proved that
F{—1/z) — (-1 z/i)"F(z) = 8(z/i)
which in particular shows that

(4) 2F'(i)+rF(@E) = — Y Res{sb(s)} ifd=0,

el R e e

(5) IF(i) 3" Res{d(s)} =1

o] oo

If we apply this lemma to the senes ¢(s) = {(s){({s + 2k + 1) which satishes
the functional equation

B(s) = (—1)"B(—2k — 5,
with
db({s) = (2x) " I'(=)p(s),

we deduce Ramanujan’s formula, or more precisely, (3) of which (1) 15 a special
case.



The modular case

As noted earher, the modular analogue of Ramanujan’s formula had been
worked out by many authors, the most notable bemng Weil |11|. Razar |23 and
Weil |31]| derive the following result. Let

==
J|-|-L_L':I . E :& F_Errin.:_."."-
'\.F- T Tl -
n=0

gl::j I Z bnfﬂri:r:f.’h_
n={

and

. I
bl =Y 2=
T
n=1

If k 1= a positive integer and -« a complex number such that

f(z) =yz*g(—1/2),
then

k-2

R R
B  Pla) -t iy =3 19 (9—) )

= ! A




Some results on
transcendence

| i

e Joint work with S. Gun and P. Rath

Let f be a normalized Hecke eigenform of level N. Following the theory of
FEichler, Shimura and Manin, we know that there are two “periods”, w, and
w_ such that L(f, j) € wemQ. It is perhaps true that the numbers T, w,, w_
are algebraically independent.

Theorem 2. Let [ be a normalized Hecke eigenform of weight k and level
N. Suppose that w,w,,w_ are as above and elgebraically independent. Then,
there are at most k algebraic values of z in the upper half plane such that

f'(z) =72 1M (-1/2)

is algebraic.



The case k=2 e

e In this case, the right hand side is constant
and equal to @(1)(A/2mi).

e The left hand side Is

. 3 E—T
Tirl ) — ¥VE g | — l1/z=
gy gy —(k=1) oc
0+ e P
where & kE—1)! (_‘-Lj 2, iy




An application of a theorem of HE

Bertrand e

Proposition 6.1. Let f(z) be a normalized Hecke eigenform of weight 2 on
[0l V). Let 7 be a rational number or an element of the upper half-plane such
that the modular invarant j(7) is algebraic. Then, any determination of the

integral
z
?ﬁé[ flz)d=
o e =

is either zero or transcendental.

An application of this theorem to our setting leads to the following corollary.

Let f be a normalized Hecke eigenform of weight 2 on I',(N). Then L(f,1)/= is
either zero or transcendental.



A more general theorem

e Theorem (S. Gun, R. Murty & P. Rath) Letf
be a normalized Hecke eigenform of weight k
on [,(N). ForoinTl4(N), the function f*(z) —
(flo)*(z) can take on at most k+3 algebraic
values as z ranges over algebraic numbers in
the upper half-plane.



Summary

e The Ramanujan-Grosswald formula gives the value
of {(2k+1) as an algebraic linear combination of g2k*1
and the sum of two Eichler integrals evaluated at
algebraic points in the upper half-plane.

e If our conjecture concerning the location of zeros of
the Ramanujan polynomials is correct, and if in
addition, these zeros are not 2k-th roots of unity, as
numerical evidence seems to suggest, then one can
deduce that {(2k+1) is the sum of two Eichler
Integrals evaluated at certain algebraic numbers
lying on the unit circle.



