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Euler (1707-1783)

l In 1735, Euler 
discovered 
experimentally that 1+ 
¼ + 1/9 + … = p²/6.

l He gave a “rigorous”
proof of this much 
later, in 1742.



Sketch of Euler’s proof

l The polynomial  (1-x/r1)(1-x/r2)… (1-x/rn) has 
roots equal to r1, r2, …, rn.

l When we expand the polynomial, the 
coefficient of x is –(1/r1 + 1/r2 + … + 1/rn).

l A polynomial is determined by its roots.  
Knowing its roots is the same as knowing the 
polynomial.  

l Suppose that sin px “behaves” like a 
polynomial.



“Factoring” sin px = px –
(px)³/3! …

l sin px has roots at x=0, ±1, ±2, …

l Put f(x) = (sin px)/px.  By l’Hopital’s rule, 
f(0)=1.  

l Now f(x) has roots at x=±1, ±2, …

l Perhaps f(x)= (1-x)(1+x)(1-x/2)(1+x/2)…

l That is, f(x) = (1-x²)(1-x²/4)(1-x²/9)…
l The coefficient of x² on the right hand side is  

- (1 + 1/4 + 1/9 + 1/16 + …) 



l Comparing coefficients gives

l Sn≥1 1/n² = p²/6.  
l Can this proof be justified?

Euler’s proof can be made rigorous using
Hadamard’s theory of factorization of entire
functions, a theory developed much later
in 1892 in his doctoral thesis.

Can Euler’s result be generalized?
For example, can we evaluate
Sn≥1 1/n³ or Sn≥1 1/n4 ?

Euler had difficulty with the first question but managed to show that
Sn≥1 1/n4 = p4/90 and more generally that Sn≥1 1/n2k = p2k(rational number).



Modifying Euler’s proof

l Recall f(x) = (sin px)/ px = (1-x2)(1-x2/4)…

l Thus f(ix)=(sin pix)/pix = (1+x2)(1+x2/4)…
l Multiplying these two together gives us:

l (1-x4)(1-x4/24)(1-x4/34)…

l But the Taylor expansion of f(x)f(ix) is

l (1- p2x²/3! +p4x4/5! - …)(1+p²x²/3!+p4x4/5!+…)
l Computing the coefficient of x4 gives:
l Sn≥1 1/n4 = p4/90.  

Here i=√-1.



Algebraic and transcendental 
numbers

l A complex number z is called an algebraic number if it is the root 
of a monic polynomial with rational coefficients.

l A complex number which is not algebraic is called 
transcendental.  

l Algebraic numbers form a countable set and so the set of 
transcendental numbers is uncountable.  

l Numbers such as √3, 21/7, (1+√5)/2 are algebraic.
l Numbers like p and e are transcendental.
l The set of all algebraic numbers forms a field under addition and 

multiplication.
l In this talk, we will be interested if ζ(k) is an algebraic number or 

a transcendental number for natural numbers k≥2.  



The Riemann zeta function
l ζ(s)=Sn≥1 1/ns

converges for Re(s)>1.

l Riemann showed how 
to analytically continue 
this function to the 
entire complex plane 
and established a 
functional equation.

l Put ψ(s):=p-s/2Γ(s/2)ζ(s)
l Then ψ(s)=ψ(1-s).

G.F.B. Riemann (1826-1866)

Here, Γ(s)=∫0
∞ e-t ts-1dt for 

Re(s)>0 and Γ(s+1)=sΓ(s).



The Prime Number Theorem

l In the same paper, Riemann indicated but did 
not prove how his ζ-function can be used to 
prove theorems about prime numbers.

l More precisely, he indicated a program for 
proving the prime number theorem, originally 
conjectured by Gauss, that the number of 
primes P(x) up to x is asymptotic to x/log x as 
x tends to infinity.



Hadamard and de la Vallée
Poussin

l In 1896, 
Hadamard and 
de la Vallée
Poussin
(independently) 
proved the prime 
number theorem.



Zeros of the Riemann ζ-
function

l In their proof of the prime number theorem, 
Hadamard and de la Vallée Poussin proved 
that ζ(1+it) ≠0 for all real t≠0.  

l Riemann conjectured that if ζ(s0)=0 and 
0<Re(s0)<1, then Re(s0)=1/2.  

l This is called the Riemann hypothesis and to 
this day,it is still an open problem.

l In 2004, Gourdon and Demichel checked that 
the first 1013 zeros are on the line!



Other mysteries of the ζ-
function

l If the Riemann hypothesis is true, how are 
the zeros distributed on the line Re(s)=1/2?

l What about its growth rate on the critical line?

l It is conjectured that |ζ(1/2 + it)|=O(tε) for any 
ε>0.  This is called the Lindelof Hypothesis.

l It is a consequence of the Riemann 
hypothesis.  

l What about special values, like ζ(2) or ζ(3)?



Euler’s theorem
l ζ(2k) ² p2kQ.  

l Actually, Euler proved a more precise theorem.

l Define the Bernoulli numbers as the Taylor 
coefficients of x/(ex-1) = Sn≥1 Bnxn/n!.  

l The Bn’s are rational numbers.

l Euler proved that 2ζ(2k)=(-1)k-1B2k(2p)2k/(2k)!.

l Since p is transcendental, we see that ζ(2k) is 
transcendental for every k≥1.  

l What about ζ(3)?



Apery’s Theorem

l In 1979, Roger Apery showed that ζ(3) is 
irrational.  

l His starting point was the following 
remarkable formula:



Conjectures concerning ζ(3), 
ζ(5), …

l One expects ζ(3), ζ(5), … to be transcendental.  

l In fact, one expects that p, ζ(3), ζ(5), … to be 
algebraically independent.  

l In 2000, Rivoal proved that infinitely many of the 
numbers ζ(2k+1), k≥1, are irrational.

l In 2001, Rivoal and Zudilin showed that at least one 
of ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

l The Q-vector space spanned by ζ(3), ζ(5),… is of 
infinite dimension.  (Rivoal, Ball and Zudilin, 2003)



Ramanujan’s formula
l Ramanujan discovered 

the following formula for 
ζ(3):

l ζ(3) + 2Sn≥1 n-3(e2pn-1)-1 

= 7p3/180.
l At least one of the two 

terms on the left hand 
side is transcendental!

S. Ramanujan (1887-1920)



A page from Ramanujan’s notebook



A more general formula of 
Ramanujan



Grosswald’s generalization

l Define

Emil Grosswald
(1912-1989)



Fk(z) for z=iα

l Fk(iα) = Sn≥1 σk(n)n-ke-2pnα = Sn≥1 n-k(e2pnα -1)-1.
l Thus, putting z=iα in Grosswald’s formula recovers 

Ramanujan’s formula.  

l The values of Fk(iα) are examples of Eichler
integrals.

l However, Grosswald’s formula opens up new 
possible expressions for ζ(2k+1).

l Indeed, if z0 is a zero of R2k+1(z) and z0 is not a (2k)-
th root of unity, then we get an expression of ζ(2k+1) 
as a difference of two Eichler integrals.



Zeros of Ramanujan
polynomials
l Joint work with Rob Wang (NSERC Summer 

Research student)



More numerical data





Theorem on zeros of 
Ramanujan polynomials

l Theorem (R. Murty & R. Wang)  All the zeros 
of the Ramanujan polynomials lie in the disk 
|z| < 2.2.  The real zeros of R2k+1(z) are four 
in number and approach 2, -2, ½, - ½ , as k 
tends to infinity.  When k is even, R2k+1(z) has 
z=±i as zeros.  When 3|k, R2k+1(z) has z=ρ, ρ²
as zeros (here, ρ is a primitive cube root of 
unity).  

l Conjecture:  All the non-real zeros of R2k+1(z) 
lie on the unit circle.  



Some transcendence results

Report on some joint work with S. Gun and P. Rath



A general theorem of 
Grosswald (1973)



Generalized period 
polynomials



The modular case



Some results on 
transcendence

l Joint work with S. Gun and P. Rath



The case k=2

l In this case, the right hand side is constant 
and equal to φ(1)(λ/2pi).  

l The left hand side is 

where



An application of a theorem of 
Bertrand

An application of this theorem to our setting leads to the following corollary.

Let f be a normalized Hecke eigenform of weight 2 on Γ0(N).  Then L(f,1)/p is 
either zero or transcendental.   



A more general theorem

l Theorem (S. Gun, R. Murty & P. Rath)  Let f 
be a normalized Hecke eigenform of weight k 
on Γ0(N).  For σ in Γ0(N), the function f*(z) –
(f|σ)*(z) can take on at most k+3 algebraic 
values as z ranges over algebraic numbers in 
the upper half-plane.  



Summary

l The Ramanujan-Grosswald formula gives the value 
of ζ(2k+1) as an algebraic linear combination of p2k+1

and the sum of two Eichler integrals evaluated at 
algebraic points in the upper half-plane.  

l If our conjecture concerning the location of zeros of 
the Ramanujan polynomials is correct, and if in 
addition, these zeros are not 2k-th roots of unity, as 
numerical evidence seems to suggest, then one can 
deduce that ζ(2k+1) is the sum of two Eichler
integrals evaluated at certain algebraic numbers 
lying on the unit circle.


