PROFINITE FIBONACCI NUMBERS
 Hendrik Lenstra

 Mathematisch Instituut
 Universiteit Leiden

The standard work
Hendrik Lenstra,
Profinite Fibonacci numbers,
Nieuw Archief voor Wiskunde
(5) 6 (2005), 297-300
(with an illustration by
Willem Jan Palenstijn)
p-adic integers

$$
\begin{aligned}
\mathbf{Z}_{p}= & \left\{\left(a_{i}\right)_{i=0}^{\infty} \in \prod_{i \geq 0} \mathbf{Z} / p^{i} \mathbf{Z}:\right. \\
& \left.\forall i \leq j: a_{i}=\left(a_{j} \bmod p^{i}\right)\right\} \\
= & \left\{\sum_{j \geq 0} c_{j} p^{j}: \forall j: c_{j} \in\{0,1, \ldots, p-1\}\right\}
\end{aligned}
$$

\mathbf{Z}_{2} is homeomorphic to the Cantor set.

Profinite integers

$$
\begin{aligned}
\hat{\mathbf{Z}}= & \left\{\left(b_{n}\right)_{n=0}^{\infty} \in \prod_{n>0} \mathbf{Z} / n \mathbf{Z}:\right. \\
& \left.\forall n \mid m: b_{n}=\left(b_{m} \bmod n\right)\right\} \\
= & \left\{\sum_{j \geq 1} c_{j} j!: \forall j: c_{j} \in\{0,1, \ldots, j\}\right\} \\
\cong & \operatorname{End}(\mathbf{Q} / \mathbf{Z})
\end{aligned}
$$

$$
\left(\ldots c_{3} c_{2} c_{1}\right)!=\sum_{j \geq 1} c_{j} j!
$$

Divisibility and congruence
For $s \in \hat{\mathbf{Z}}, b \in \mathbf{Z}_{>0}$, the following are equivalent:

- s maps to 0 in $\mathbf{Z} / b \mathbf{Z}$,
- $s \in b \hat{\mathbf{Z}}$,
- $s=b t$ for a unique $t \in \hat{\mathbf{Z}}$,
- the number formed by the first $b-1$ digits of s is divisible by b,
- (notation) $b \mid s$.

Write $s_{1} \equiv s_{2} \bmod b$ if $b \mid s_{1}-s_{2}$.

Where they occur
$\operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right) \cong \hat{\mathbf{Z}}$
$\operatorname{Gal}\left(\mathbf{Q}^{\mathrm{ab}} / \mathbf{Q}\right) \cong \hat{\mathbf{Z}}^{*}$
$\hat{\mathbf{Z}} \cong \prod_{p \text { prime }} \mathbf{Z}_{p}$ as topological rings.

The Fibonacci function

$$
F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}
$$

The Fibonacci function
$F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$
There is a unique continuous function
$\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}$ mapping each $n \in \mathbf{Z}_{\geq 0}$ to F_{n}.

The Fibonacci function
$F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$
There is a unique continuous function
$\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}$ mapping each $n \in \mathbf{Z}_{\geq 0}$ to F_{n}.
The composed function $\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}} \rightarrow \mathbf{Z}_{p}$
does not factor via $\hat{\mathbf{Z}} \rightarrow \mathbf{Z}_{p}$.

A closed principal ideal
Put

$$
I=\{s \in \hat{\mathbf{Z}}: 2 p \mid s \text { for all primes } p\} .
$$

One has

$$
\hat{\mathbf{Z}} / I \cong(\mathbf{Z} / 4 \mathbf{Z}) \times \prod_{p \text { odd prime }} \mathbf{F}_{p}
$$

and there are exact sequences

$$
\begin{gathered}
0 \rightarrow I \rightarrow \hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}} / I \rightarrow 0 \\
1 \rightarrow 1+I \rightarrow \hat{\mathbf{Z}}^{*} \rightarrow(\hat{\mathbf{Z}} / I)^{*} \rightarrow 1 .
\end{gathered}
$$

The logarithm
Theorem. There is a unique continuous group homomorphism log: $\hat{\mathbf{Z}}^{*} \rightarrow I$ such that

$$
\forall x \in I: \log (1-x)=-\sum_{i>0} x^{i} / i
$$

It satisfies:

- \log restricts to an isomorphism $1+I \rightarrow I$, with inverse exp: $x \mapsto \sum_{i \geq 0} x^{i} / i!$;
- $\hat{\mathbf{Z}}^{*} \cong(1+I) \times(\hat{\mathbf{Z}} / I)^{*}, u \mapsto(\exp \log u, u+I)$;
- $\log u=\lim _{n \rightarrow \infty}\left(u^{n!}-1\right) / n!$ for all $u \in \hat{\mathbf{Z}}^{*}$.

Exponentiation
For each $u \in \hat{\mathbf{Z}}^{*}$, there is a unique continuous group homomorphism
$\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}^{*}$ that maps 1 to u.
It maps s to

$$
u^{s}=\lim _{n \rightarrow s} u^{n}
$$

Properties:

$$
\begin{array}{ll}
(u v)^{s}=u^{s} v^{s}, & u^{s+t}=u^{s} u^{t} \\
\left(u^{s}\right)^{t}=u^{s t}, & u^{1}=u
\end{array}
$$

A dangerous identity
One has

$$
" u^{s+\epsilon}=u^{s} \cdot \exp (\epsilon \log u) "
$$

in the following restricted sense.
Theorem. For each $b \in \mathbf{Z}_{>0}$ there is an
open neighborhood V of 0 in $\hat{\mathbf{Z}}$, such that for all $u \in \hat{\mathbf{Z}}^{*}, s \in \hat{\mathbf{Z}}, \epsilon \in V, k \in \mathbf{Z}_{>0}$
one has

$$
u^{s+\epsilon} \equiv u^{s} \cdot \exp (\epsilon \log u) \bmod b^{k}
$$

Fibonacci and exponentiation
Put

$$
\hat{\mathbf{Z}}[\vartheta]=\hat{\mathbf{Z}}[X] /\left(X^{2}-X-1\right)=\hat{\mathbf{Z}} \oplus \hat{\mathbf{Z}} \vartheta
$$

where ϑ is the residue class of X, and write $\vartheta^{\prime}=1-\vartheta$.

Fibonacci and exponentiation
Put

$$
\hat{\mathbf{Z}}[\vartheta]=\hat{\mathbf{Z}}[X] /\left(X^{2}-X-1\right)=\hat{\mathbf{Z}} \oplus \hat{\mathbf{Z}} \vartheta
$$

where ϑ is the residue class of X, and write $\vartheta^{\prime}=1-\vartheta$.

Then $\left(\vartheta-\vartheta^{\prime}\right)^{2}=5$, and one has

$$
F_{s}=\left(\vartheta^{s}-\vartheta^{\prime s}\right) /\left(\vartheta-\vartheta^{\prime}\right)
$$

for all $s \in \hat{\mathbf{Z}}$.

Fibonacci fixed points
Theorem. (a) For each $a \in\{1,5\}$ and
each $b \in\{-5,-1,0,1,5\}$ there is a unique element $z=z_{a, b} \in \hat{\mathbf{Z}}$ with $F_{z}=z$ that for all $k \in \mathbf{Z}_{>0}$ satisfies

$$
z_{a, b} \equiv a \bmod 6^{k}, \quad z_{a, b} \equiv b \bmod 5^{k}
$$

(b) Every odd $z \in \hat{\mathbf{Z}}$ with $F_{z}=z$ is among the $z_{a, b}$, and the only even one is 0 .

Approximate equalities
The fixed point $z_{a, b}$ approximately inherits properties of a and b, e.g.

$$
z_{a, b}^{2}-(a+b) z_{a, b}+a b \approx 0
$$

A research problem
How many fixed points does the
k th iterate of F have on $\hat{\mathbf{Z}}$?
Is this number finite for every
$k>0$?

Fibonacci and Fermat
Exercise. \{Fibonacci numbers\}
$\cap\{$ Fermat numbers $\}=\{3,5\}$.
Solution: go mod 48.

