ECM using Edwards curves

Tanja Lange
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
tanja@hyperelliptic.org
26.09.2009
joint work with Daniel J. Bernstein (UIC), Peter Birkner (TU/e),
and Christiane Peters (TU/e)

The $p-1$ factorization method I

$2^{232792560}-1$ has prime divisors:
$3,5,7,11,13,17,19,23,29,31,37,41,43,53,61,67,71,73$, $79,89,97,103,109,113,127,131,137,151,157,181,191,199$, etc.

These divisors include

- 70 of the 168 primes $\leq 10^{3}$;
- 156 of the 1229 primes $\leq 10^{4}$;
- 296 of the 9592 primes $\leq 10^{5}$;
- 470 of the 78498 primes $\leq 10^{6}$;
- etc.

The $p-1$ factorization method II

- An odd prime p divides $2^{232792560}-1$ iff order of 2 in \mathbb{F}_{p}^{*} divides 232792560.
- Many ways for this to happen: 232792560 has 960 divisors.
- Why so many?

The $p-1$ factorization method II

- An odd prime p divides $2^{232792560}-1$ iff order of 2 in \mathbb{F}_{p}^{*} divides 232792560.
- Many ways for this to happen: 232792560 has 960 divisors.
- Why so many?
$232792560=\operatorname{lcm}(1,2,3,4,5, \ldots, 20)=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$.
- This can be used to find divisors of integers n : Compute

$$
\operatorname{gcd}\left(2^{232792560}-1, n\right)
$$

to obtain the product of all factors p_{i} of n s.t. the order of 2 modulo p_{i} divides 232792560 .

- Computation requires modular exponentiation; use square-and-multiply method.

Example

- Put $n=8597231219$:

$$
\begin{aligned}
& 2^{27} \bmod n=134217728 ; \\
& 2^{54} \bmod n=134217728^{2} \bmod n=935663516 ; \\
& 2^{55} \bmod n=1871327032 ; \\
& 2^{110} \bmod n=1871327032^{2} \bmod n=1458876811 ; \ldots ; \\
& 2^{232792560}-1 \bmod n=5626089344 .
\end{aligned}
$$

- Finally, gcd $(5626089344, n)=991$.
- Main work: 27 squarings $\bmod n$.
- Could instead have checked n 's divisibility by $2,3,5, \ldots$. The 167th trial division would have found divisor 991.
- Not clear which method is better. Dividing by small p is faster than squaring mod n. The $p-1$ method finds only 70 of the primes ≤ 1000; trial division finds all 168 primes ... but also needs to store them. Asymptotically better.

Generalizations of $p-1$ method

- So numbers are easy to factor if their factors p_{i} have smooth $p_{i}-1$.
- To construct hard to factor numbers avoid such factors - that's it?

Generalizations of $p-1$ method

- So numbers are easy to factor if their factors p_{i} have smooth $p_{i}-1$.
- To construct hard to factor numbers avoid such factors - that's it?
- Not quite. William's $p+1$ method works, when $p_{i}+1$ is smooth.
- OK, avoid those, too. Anything else?

Generalizations of $p-1$ method

- So numbers are easy to factor if their factors p_{i} have smooth $p_{i}-1$.
- To construct hard to factor numbers avoid such factors - that's it?
- Not quite. William's $p+1$ method works, when $p_{i}+1$ is smooth.
- OK, avoid those, too. Anything else?
- Lenstra's Elliptic Curve Method (ECM) finds p_{i}, when any number in $\left[p_{i}+1-2 \sqrt{p_{i}}, p_{i}+1+2 \sqrt{p_{i}}\right]$ is smooth.
- No chance of avoiding this, there are many smooth numbers in this interval (\supseteq \{Deuring, Lenstra, McKee\}).
- This interval is called the Hasse interval, the group order of an elliptic curve over $\mathbb{F}_{p_{i}}$ lies in this interval.

Overview of ECM

- Principle: Take a point P on an elliptic curve E over \mathbb{Z} / n and compute $[s] P$ for some very smooth s.
- If the order of P on the curve modulo p_{i} divides s, the point $[s] P$ is the neutral element.
- Find a suitable gcd computation.
- Can vary P and s (corresponds to varying base 2 and the exponent in the $p-1$ method).
- E modulo p_{i} has order in $\left[p_{i}+1-2 \sqrt{p_{i}}, p_{i}+1+2 \sqrt{p_{i}}\right]$; this may or may not be smooth but we can vary E.
- Curve operations more expensive than in $p-1$ method - but can get much higher probabilities for large p_{i}.
- Can choose curves that are more likely to have smooth order by picking some with non trivial torsion over \mathbb{Q}.

ECM as part of NFS

- Factorization of "hard" numbers uses the Number Field Sieve (NFS) which builds a quadratic relation

$$
a^{2} \equiv b^{2} \bmod n \Rightarrow \operatorname{gcd}(n, a-b) \neq 1
$$

using factorizations of auxiliary numbers (easy to factor).

- ECM is most important "general purpose" algorithm.
- Main computation: $[s] P$ for big s on curve modulo n.
- This can use a prime-by-prime strategy or work with a signed window expansion of the scalar.
- Can choose different representations of elliptic curves; choices influenced by efficiency of computation.
- Standard choice used to be Montgomery representation

$$
y^{2}=x^{3}+A x^{2}+x . \quad \text { ECM using Edwards curves }-\mathrm{p} .
$$

Brief summary of Edwards curves

- Published by Edwards in 2007, suggested for cryptographic applications by Bernstein/L. in 2007.
- Curve equation over field k of characteristic 0 or p :

$$
x^{2}+y^{2}=1+d x^{2} y^{2}, d \notin\{0,1\} .
$$

- Addition law $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)$. Neutral element is $(0,1)$ and $-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$.
- Singular points at infinity $\Omega_{1}=(1: 0: 0), \Omega_{2}=(0: 1: 0)$. Singularities blow up over (minimally) $k(\sqrt{d})$ giving two points of order 2 over Ω_{1} and two points of order 4 over Ω_{2} (check by using birational equivalence with Weierstrass curves).

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_{4}=\left(u_{4}, v_{4}\right)$ have order 4 and shift u s.t. $2 P_{4}=(0,0)$. Then Weierstrass form:

$$
v^{2}=u^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u^{2}+u_{4}^{2} u .
$$

- Define $d=1-\left(4 u_{4}^{3} / v_{4}^{2}\right)$.
- The coordinates $x=v_{4} u /\left(u_{4} v\right), y=\left(u-u_{4}\right) /\left(u+u_{4}\right)$ satisfy

$$
x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

- Inverse map $u=u_{4}(1+y) /(1-y), v=v_{4} u /\left(u_{4} x\right)$.
- Finitely many exceptional points. Exceptional points have $v\left(u+u_{4}\right)=0$.
- Addition on Edwards and Weierstrass corresponds.

Exceptional points of the map

- Points with $v\left(u+u_{4}\right)=0$ on Weierstrass curve map to points at infinity on desingularization of Edwards curve.
- Reminder: $d=1-\left(4 u_{4}^{3} / v_{4}^{2}\right)$.
- $u=-u_{4}$ is u-coordinate of a point iff

$$
\begin{aligned}
& \left(-u_{4}\right)^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right)\left(u_{4}\right)^{2}+u_{4}^{2}\left(u_{4}\right) \\
= & v_{4}^{2}-4 u_{4}^{3}=v_{4}^{2} d
\end{aligned}
$$

is a square, i. e., iff d is a square.

- $v=0$ corresponds to $(0,0)$ which maps to $(0,-1)$ on Edwards curve and to solutions of $u^{2}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u+u_{4}^{2}=0$. Discriminant is

$$
\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right)^{2}-4 u_{4}^{2}=v_{4}^{4} d,
$$

i. e., points defined over K iff d is a square.

Pictures

Addition and doubling over \mathbb{R} for $d<0$.
ECM using Edwards curves - p. 1

Twisted Edwards curves

- Curve equation over field k of characteristic 0 or p :

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}, a, d \neq 0, a \neq d .
$$

- Points at infinity:
- $a=e^{2}, d=\square:(\pm e, 0)$ have order 4, two points of order 2 over Ω_{1} and two points of order 4 over Ω_{2}; subgroup isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 4$.
- $a=e^{2}, d \neq \square:(\pm e, 0)$ have order 4 , blow-ups of Ω_{1}, Ω_{2} are defined over quadratic extension field, no k-rational points at infinity; subgroup isom. to $\mathbb{Z} / 4$.
- $a \neq \square, d=\square$: two points of order 2 over Ω_{1}, none over Ω_{2}; subgroup isom. to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.
- $a \neq \square, d \neq \square, a \cdot d=\square$: two points of order 4 over Ω_{2}, none over Ω_{1}; subgroup isom. to $\mathbb{Z} / 4$.

Efficient arithmetic on Edwards curves

- "Faster group operations on elliptic curves" by Hisil, Wong, Carter Dawson, mADD = 9M, no multiplication by curve constants.

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{1}+x_{2} y_{2}}{x_{1} x_{2}+y_{1} y_{2}}, \frac{x_{1} y_{1}-x_{2} y_{2}}{x_{1} y_{2}-y_{1} x_{2}}\right) .
$$

These addition formulas are not unified; this is no problem for ECM where one searches for "failures" to the addition law.

- "Twisted Edwards Curves Revisited" by Hisil, Wong, Carter Dawson, introducing extended Edwards coordinates ($X: Y: Z: T$) with $T=X Y / Z$. Gives ADD=9M (+1D with a for twisted) in general.

Extended Edwards coordinates

- For twisted with $a=-1$ even $\mathrm{ADD}=8 \mathrm{M}$. Mixed versions save 1 M : mADD=7M.
- Doubling is faster: $3 \mathrm{M}+4 \mathrm{~S}$. Per bit of s one doubling is needed.
- Can use signed sliding window method; asymptotically decreases frequency of additions to 0 .
- Extended representation is not good for doubling. should be used only for addition; so do main doublings as $2 \mathcal{E} \rightarrow \mathcal{E}$, last doubling as $2 \mathcal{E} \rightarrow \mathcal{E}^{e}$, and $\mathcal{E}^{e}+\mathcal{E}^{e} \rightarrow \mathcal{E}$ in the scalar multiplication in stage 1 . Stage 2 has mostly additions anyway.
- Complete overview of curve shapes, coordinates, addition formulas including faster differential addition than Montgomery at www.hyperelliptic.org/EFD.

Design Choices

ECM using Edwards curves - p. 1

Design Choices

- Use Edwards curves!
- Field arithmetic might make multiplications by small integers faster; this does not generally work in Montgomery representation of integers.
- There are several multiplications by the coordinates of the base point; there are some multiplications by a and in inverted Edwards coordinates by d.
- Can pick small height base point $\left(x_{1}, y_{1}\right)$, some a and compute d as $d=\left(a x_{1}^{2}+y_{1}^{2}-1\right) /\left(x_{1}^{2} y_{1}^{2}\right)$. The resulting d has small height, too. Good choices for a are 1 (Edwards) and -1 (particularly fast extended addition).
- Make sure not to choose
$\left(x_{1}, y_{1}\right) \in\{(\pm 1,0),(0, \pm 1),(\pm c, \pm c)\}$ for any c since these definitely have small order over \mathbb{Q}.

Small order points I

- ECM succeeds in factoring n if $[s] P=(0,1)$ modulo some divisor of n.
- If over \mathbb{Q} the base point P has small order $k \mid s$ then $[s] P=(0,1)$ modulo all divisors of n, no factorization.
- But: it is interesting to have a large torsion subgroup over \mathbb{Q} to increase the smoothness probability of $\operatorname{ord}(P)$.
- Some handwaving:
- Modulo prime p the number of points on E is in the Hasse interval $[p+1-2 \sqrt{p}, p+1+2 \sqrt{p}]$.
- Chance of smooth group order depends on size.
- If k divides group order the unknown part gets smaller.

Small order points II

- Success rate does go up with size of torsion group.
- Over \mathbb{Q} there are only finitely many points of finite order.
- More precisely: Theorem of Mazur.

Let E / \mathbb{Q} be an elliptic curve. The torsion subgroup $E_{\text {tors }}(\mathbb{Q})$ of E is isomorphic to one of the following fifteen groups:

- \mathbb{Z} / m for $m \in\{1,2,3,4,5,6,7,8,9,10,12\}$,
- $\mathbb{Z} / 2 \times \mathbb{Z} / 2 m$ for $m \in\{1,2,3,4\}$.
- Search for curves with large torsion subgroup and positive rank, choose base point as a free point.
- Edwards curves have m divisible by 4. For twisted Edwards only $2 \mid m$ guaranteed.

Effect of \mathbb{Q}-torsion on cost

ECM using Edwards curves - p. 18

Edwards curves with large torsion

- Interesting(=large) choices are $\mathbb{Z} / 12$ and $\mathbb{Z} / 2 \times \mathbb{Z} / 8$. Preprint shows that $\mathbb{Z} / 2 \times \mathbb{Z} / 6$ does not work for twisted Edwards curves.
- When do curves have a point of order 8? Assume that P_{8} doubles to $(1,0)$.
- $[2]\left(x_{8}, y_{8}\right)=\left(\frac{2 x_{8} y_{8}}{x_{8}^{2}+y_{8}^{2}}, \frac{y_{8}^{2}-x_{8}^{2}}{2-\left(x_{8}^{2}+y_{8}^{2}\right.}\right)$.
- $y_{8}^{2}-x_{8}^{2}=0 \Rightarrow x_{8}= \pm y_{8} \Rightarrow x_{8}^{2}+x_{8}^{2}=1+d x_{8}^{2} x_{8}^{2}$, i.e. $d=\left(2 x_{8}^{2}-1\right) / x_{8}^{4}$.
- Also need that $d=\square$ to have first $\mathbb{Z} / 2$ component.
- For $u \notin\{0,-1,-2\}, x_{8}=\left(u^{2}+2 u+2\right) /\left(u^{2}-2\right)$ gives square $d=\left(2 x_{8}^{2}-1\right) / x_{8}^{4}$.

Edwards curves with $\mathbb{Z} / 12$

$$
[3]\left(x_{1}, y_{1}\right)=\left(\frac{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}-\left(2 y_{1}\right)^{2}}{4\left(x_{1}^{2}-1\right) x_{1}^{2}-\left(x_{1}^{2}-y_{1}^{2}\right)^{2}} x_{1}, \frac{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}-\left(2 x_{1}\right)^{2}}{-4\left(y_{1}^{2}-1\right) y_{1}^{2}+\left(x_{1}^{2}-y_{1}^{2}\right)^{2}} y_{1}\right)
$$

- Any Edwards curve with a point of order 3 automatically has $\mathbb{Z} / 12$ - and cannot have more.
- Use $\left(x_{1}^{2}+y_{1}^{2}\right)^{2}-\left(2 y_{1}\right)^{2}=0$ and obtain condition: curve has this structure if there exists a y_{6} so that $d=\left(2 y_{6}+1\right) /\left(y_{6}^{3}\left(y_{6}+2\right)\right)$ and such that $-\left(y_{6}^{2}+2 y_{6}\right)$ is a square.
- Points of finite order are then

point	$(0,1)$	$(0,-1)$	$\left(\pm x_{3}, y_{3}\right)$	$(\pm 1,0)$	$\left(\pm x_{3},-y_{3}\right)$	$\left(\pm y_{3}, \pm x_{3}\right)$
order	1	2	3	4	6	12

Choose other point as basepoint.

Existing constructions

- Two main constructions to obtain large torsion subgroup and a base point that is in the free part.
- Suyama has parameterization that guarantees $\mathbb{Z} / 6$ over \mathbb{Q}. Modulo any prime the group order is divisible by 4 but not so over \mathbb{Q}.
- Have translated this representation to Edwards curves. Height of base point and coefficient does not grow too quickly (linear family of curves).
- Atkin-Morain curves have even larger torsion subgroup $\mathbb{Z} / 2 \times \mathbb{Z} / 8$ - easy to generate, but the height of the coefficients grows quickly (elliptic family of curves).
- We translated Atkin-Morain to Edwards form.

How to avoid large height coefficients?

- This tuning is only useful if the multiplication implementation notices that size of the factors.
- Use flexibility of twisted Edwards curves and projective coordinates
- If $d=b / c$, with b, c small, extend both to have $c=e^{2}$ for some e and $d=b^{\prime} /\left(e^{2}\right)$. Then the curve is isomorphic to the twisted Edwards curve with $a=e^{2}$ and $d=b^{\prime}$ (y unchanged, new x is x / e). All values remain small.
- Instead of working with $\left(x_{1}, y_{1}\right)=(r / t, v / w)$ which modulo n would get huge work with projective basepoint ($r w: t v: r w$) (or divide by gcd).
- Make list of such curves and use in implementations where the field arithmetic caters for multiplication by words.

How to find such curves?

- Want curve with small height coefficient, base point and rank ≥ 1.
- Parametrization: for $u \notin\{0,-1,-2\}$, $x_{8}=\left(u^{2}+2 u+2\right) /\left(u^{2}-2\right)$ gives square $d=\left(2 x_{8}^{2}-1\right) / x_{8}^{4}$.
- Put $u=a / b$ and search for solutions (a, b, e, f), where (e, f) is a point on the curve but different from all torsion points, i.e. different from $(0, \pm 1),(\pm, 0)$ and $e \neq f$.
- Speed up search by restricting range of u and picking only 1 curve per isomorphism class.
- Computed more than 100 curves with 12 or 16 torsion points.
http://cr.yp.to/factorization/goodcurves.htm

The more complete story

- Initial implementation was based on GMP-ECM; replacing Montgomery curves by Edwards curves in what's described so far (stage 1) saves 8%.
- Higher torsion improved chances by 12%.
- Do experiments to find good choices of s.
- There is also a second stage which runs through many more primes; need to balance both stages.
- Following pictures show number of multiplications per prime found for different choices of parameters for first and second stage.
- Implementation, preprint (soon to be updated), curves at
http://eecm.cr.yp.to/

$\mathbb{Z} / 4$

$\mathbb{Z} / 12$

$\mathbb{Z} / 2 \times \mathbb{Z} / 8$

http://eecm.cr.yp.to/

ECM using Edwards curves - p. 2ε

