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The p − 1 factorization method I

2232792560 − 1 has prime divisors:

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73,
79, 89, 97, 103, 109, 113, 127, 131, 137, 151, 157, 181, 191, 199,
etc.

These divisors include

70 of the 168 primes ≤ 103;

156 of the 1229 primes ≤ 104;

296 of the 9592 primes ≤ 105;

470 of the 78498 primes ≤ 106;

etc.
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The p − 1 factorization method II

An odd prime p divides 2232792560 − 1 iff order of 2 in IF∗

p

divides 232792560.

Many ways for this to happen: 232792560 has 960
divisors.

Why so many?
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The p − 1 factorization method II

An odd prime p divides 2232792560 − 1 iff order of 2 in IF∗

p

divides 232792560.

Many ways for this to happen: 232792560 has 960
divisors.

Why so many?
232792560 = lcm(1, 2, 3, 4, 5, . . . , 20) = 24 ·32 ·5·7·11·13·17·19.

This can be used to find divisors of integers n: Compute

gcd(2232792560 − 1, n)

to obtain the product of all factors pi of n s.t. the order
of 2 modulo pi divides 232792560.

Computation requires modular exponentiation; use
square-and-multiply method.
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Example
Put n = 8597231219:
227 mod n = 134217728;
254 mod n = 1342177282 mod n = 935663516;
255 mod n = 1871327032;

2110 mod n = 18713270322 mod n = 1458876811; . . . ;
2232792560−1 mod n =5626089344.

Finally, gcd(5626089344, n) = 991.

Main work: 27 squarings mod n.

Could instead have checked n’s divisibility by 2, 3, 5, . . ..
The 167th trial division would have found divisor 991.

Not clear which method is better. Dividing by small p is
faster than squaring mod n. The p− 1 method finds only
70 of the primes ≤ 1000; trial division finds all 168 primes
. . . but also needs to store them. Asymptotically better.
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Generalizations ofp − 1 method
So numbers are easy to factor if their factors pi have
smooth pi − 1.

To construct hard to factor numbers avoid such factors
– that’s it?
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Generalizations ofp − 1 method
So numbers are easy to factor if their factors pi have
smooth pi − 1.

To construct hard to factor numbers avoid such factors
– that’s it?

Not quite. William’s p + 1 method works, when pi + 1 is
smooth.

OK, avoid those, too. Anything else?
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Generalizations ofp − 1 method
So numbers are easy to factor if their factors pi have
smooth pi − 1.

To construct hard to factor numbers avoid such factors
– that’s it?

Not quite. William’s p + 1 method works, when pi + 1 is
smooth.

OK, avoid those, too. Anything else?

Lenstra’s Elliptic Curve Method (ECM) finds pi, when
any number in [pi + 1 − 2

√
pi, pi + 1 + 2

√
pi] is smooth.

No chance of avoiding this, there are many smooth
numbers in this interval (⊇ {Deuring, Lenstra, McKee}).

This interval is called the Hasse interval, the group
order of an elliptic curve over IFpi

lies in this interval.
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Overview of ECM
Principle: Take a point P on an elliptic curve E over ZZ/n
and compute [s]P for some very smooth s.

If the order of P on the curve modulo pi divides s, the
point [s]P is the neutral element.

Find a suitable gcd computation.

Can vary P and s (corresponds to varying base 2 and
the exponent in the p − 1 method).

E modulo pi has order in [pi + 1 − 2
√

pi, pi + 1 + 2
√

pi];
this may or may not be smooth but we can vary E.

Curve operations more expensive than in p − 1 method
– but can get much higher probabilities for large pi.

Can choose curves that are more likely to have smooth
order by picking some with non trivial torsion over Q .
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ECM as part of NFS
Factorization of “hard” numbers uses the Number Field
Sieve (NFS) which builds a quadratic relation

a2 ≡ b2 mod n ⇒ gcd(n, a − b) 6= 1

using factorizations of auxiliary numbers (easy to
factor).

ECM is most important “general purpose” algorithm.

Main computation: [s]P for big s on curve modulo n.

This can use a prime-by-prime strategy or work with a
signed window expansion of the scalar.

Can choose different representations of elliptic curves;
choices influenced by efficiency of computation.

Standard choice used to be Montgomery representation

y2 = x3 + Ax2 + x.
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Brief summary of Edwards curves
Published by Edwards in 2007, suggested for
cryptographic applications by Bernstein/L. in 2007.

Curve equation over field k of characteristic 0 or p:

x2 + y2 = 1 + dx2y2, d 6∈ {0, 1}.

Addition law
(x1, y1) + (x2, y2) =

(

x1y2+y1x2

1+dx1x2y1y2
, y1y2−x1x2

1−dx1x2y1y2

)

.

Neutral element is (0, 1) and −(x1, y1) = (−x1, y1).

Singular points at infinity Ω1 = (1 : 0 : 0), Ω2 = (0 : 1 : 0).
Singularities blow up over (minimally) k(

√
d) giving two

points of order 2 over Ω1 and two points of order 4 over
Ω2 (check by using birational equivalence with
Weierstrass curves).
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Relationship to elliptic curves
Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let P4 = (u4, v4) have order 4 and shift u s.t. 2P4 = (0, 0).
Then Weierstrass form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

Define d = 1 − (4u3
4/v

2
4).

The coordinates x = v4u/(u4v), y = (u − u4)/(u + u4)
satisfy

x2 + y2 = 1 + dx2y2.

Inverse map u = u4(1 + y)/(1 − y), v = v4u/(u4x).

Finitely many exceptional points. Exceptional points
have v(u + u4) = 0.

Addition on Edwards and Weierstrass corresponds.
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Exceptional points of the map
Points with v(u + u4) = 0 on Weierstrass curve map to
points at infinity on desingularization of Edwards curve.

Reminder: d = 1 − (4u3
4/v

2
4).

u = −u4 is u-coordinate of a point iff

(−u4)
3 + (v2

4/u
2
4 − 2u4)(u4)

2 + u2
4(u4)

= v2
4 − 4u3

4 = v2
4d

is a square, i. e., iff d is a square.

v = 0 corresponds to (0, 0) which maps to (0,−1) on
Edwards curve and to solutions of
u2 + (v2

4/u
2
4 − 2u4)u + u2

4 = 0. Discriminant is

(v2
4/u

2
4 − 2u4)

2 − 4u2
4 = v4

4d,

i. e., points defined over K iff d is a square.
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Pictures
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Addition and doubling over IR for d < 0.
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Twisted Edwards curves
Curve equation over field k of characteristic 0 or p:

ax2 + y2 = 1 + dx2y2, a, d 6= 0, a 6= d.

Points at infinity:
a = e2, d = 2: (±e, 0) have order 4, two points of
order 2 over Ω1 and two points of order 4 over Ω2;
subgroup isomorphic to ZZ/2 × ZZ/4.

a = e2, d 6= 2: (±e, 0) have order 4, blow-ups of Ω1, Ω2

are defined over quadratic extension field, no
k-rational points at infinity; subgroup isom. to ZZ/4.
a 6= 2, d = 2: two points of order 2 over Ω1, none
over Ω2; subgroup isom. to ZZ/2 × ZZ/2.
a 6= 2, d 6= 2, a · d = 2: two points of order 4 over Ω2,
none over Ω1; subgroup isom. to ZZ/4.
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Efficient arithmetic on Edwards curves

“Faster group operations on elliptic curves” by Hisil,
Wong, Carter Dawson, mADD = 9M, no multiplication
by curve constants.

(x1, y1) + (x2, y2) =

(

x1y1 + x2y2

x1x2 + y1y2
,
x1y1 − x2y2

x1y2 − y1x2

)

.

These addition formulas are not unified; this is no
problem for ECM where one searches for “failures” to
the addition law.

“Twisted Edwards Curves Revisited” by Hisil, Wong,
Carter Dawson, introducing extended Edwards
coordinates (X : Y : Z : T ) with T = XY/Z. Gives
ADD=9M (+1D with a for twisted) in general.
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Extended Edwards coordinates
For twisted with a = −1 even ADD=8M. Mixed versions
save 1M: mADD=7M.

Doubling is faster: 3M+4S. Per bit of s one doubling is
needed.

Can use signed sliding window method; asymptotically
decreases frequency of additions to 0.

Extended representation is not good for doubling.
should be used only for addition; so do main doublings
as 2E → E , last doubling as 2E → Ee, and Ee + Ee → E in
the scalar multiplication in stage 1. Stage 2 has mostly
additions anyway.

Complete overview of curve shapes, coordinates,
addition formulas including faster differential addition
than Montgomery at www.hyperelliptic.org/EFD.
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Design Choices
Use Edwards curves!
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Design Choices
Use Edwards curves!

Field arithmetic might make multiplications by small
integers faster; this does not generally work in
Montgomery representation of integers.

There are several multiplications by the coordinates of
the base point; there are some multiplications by a and
in inverted Edwards coordinates by d.

Can pick small height base point (x1, y1), some a and
compute d as d = (ax2

1 + y2
1 − 1)/(x2

1y
2
1). The resulting d

has small height, too. Good choices for a are 1
(Edwards) and −1 (particularly fast extended addition).

Make sure not to choose
(x1, y1) ∈ {(±1, 0), (0,±1), (±c,±c)} for any c since these
definitely have small order over Q .
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Small order points I
ECM succeeds in factoring n if [s]P = (0, 1) modulo
some divisor of n.

If over Q the base point P has small order k|s then
[s]P = (0, 1) modulo all divisors of n, no factorization.

But: it is interesting to have a large torsion subgroup
over Q to increase the smoothness probability of
ord(P ).

Some handwaving:
Modulo prime p the number of points on E is in the
Hasse interval [p + 1 − 2

√
p, p + 1 + 2

√
p].

Chance of smooth group order depends on size.
If k divides group order the unknown part gets
smaller.

ECM using Edwards curves – p. 16



Small order points II
Success rate does go up with size of torsion group.

Over Q there are only finitely many points of finite order.

More precisely: Theorem of Mazur.
Let E/Q be an elliptic curve. The torsion subgroup
Etors(Q) of E is isomorphic to one of the following fifteen
groups:

ZZ/m for m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12},
ZZ/2 × ZZ/2m for m ∈ {1, 2, 3, 4}.

Search for curves with large torsion subgroup and
positive rank, choose base point as a free point.

Edwards curves have m divisible by 4. For twisted
Edwards only 2 | m guaranteed.
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Effect of Q-torsion on cost

2000

3000

4000

5000

6000

7000

8000

9000

10000

15000

10 12 14 16 20 24 28 32 40 48 56 64 80 96 112 128 160 192 224 256

1612

4

ECM using Edwards curves – p. 18



Edwards curves with large torsion

Interesting(=large) choices are ZZ/12 and ZZ/2 × ZZ/8.
Preprint shows that ZZ/2× ZZ/6 does not work for twisted
Edwards curves.

When do curves have a point of order 8? Assume that
P8 doubles to (1, 0).

[2](x8, y8) =
(

2x8y8

x2

8
+y2

8

, y2

8−x2

8

2−(x2

8
+y2

8
)

)

.

y2
8 − x2

8 = 0 ⇒ x8 = ±y8 ⇒ x2
8 + x2

8 = 1 + dx2
8x

2
8, i.e.

d = (2x2
8 − 1)/x4

8.

Also need that d = 2 to have first ZZ/2 component.

For u 6∈ {0,−1,−2}, x8 = (u2 + 2u + 2)/(u2 − 2) gives
square d = (2x2

8 − 1)/x4
8.
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Edwards curves withZZ/12

[3](x1, y1) =
(

(x2

1+y2

1)2−(2y1)
2

4(x2

1
−1)x2

1
−(x2

1
−y2

1
)2

x1,
(x2

1+y2

1)2−(2x1)
2

−4(y2

1
−1)y2

1
+(x2

1
−y2

1
)2

y1

)

.

Any Edwards curve with a point of order 3 automatically
has ZZ/12 – and cannot have more.

Use (x2
1 + y2

1)
2 − (2y1)

2 = 0 and obtain condition: curve
has this structure if there exists a y6 so that
d = (2y6 + 1)/(y3

6(y6 + 2)) and such that −(y2
6 + 2y6) is a

square.

Points of finite order are then
point (0, 1) (0,−1) (±x3, y3) (±1, 0) (±x3,−y3) (±y3,±x3)

order 1 2 3 4 6 12

Choose other point as basepoint.

ECM using Edwards curves – p. 20



Existing constructions

Two main constructions to obtain large torsion subgroup
and a base point that is in the free part.

Suyama has parameterization that guarantees ZZ/6 over
Q . Modulo any prime the group order is divisible by 4
but not so over Q .

Have translated this representation to Edwards curves.
Height of base point and coefficient does not grow too
quickly (linear family of curves).

Atkin-Morain curves have even larger torsion subgroup
ZZ/2 × ZZ/8 – easy to generate, but the height of the
coefficients grows quickly (elliptic family of curves).

We translated Atkin-Morain to Edwards form.
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How to avoid large height coefficients?
This tuning is only useful if the multiplication
implementation notices that size of the factors.

Use flexibility of twisted Edwards curves and projective
coordinates

If d = b/c, with b, c small, extend both to have c = e2

for some e and d = b′/(e2). Then the curve is
isomorphic to the twisted Edwards curve with a = e2

and d = b′ (y unchanged, new x is x/e). All values
remain small.
Instead of working with (x1, y1) = (r/t, v/w) which
modulo n would get huge work with projective
basepoint (rw : tv : rw) (or divide by gcd).

Make list of such curves and use in implementations
where the field arithmetic caters for multiplication by
words.
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How to find such curves?
Want curve with small height coefficient, base point and
rank ≥ 1.

Parametrization: for u 6∈ {0,−1,−2},
x8 = (u2 + 2u + 2)/(u2 − 2) gives square d = (2x2

8 − 1)/x4
8.

Put u = a/b and search for solutions (a, b, e, f), where
(e, f) is a point on the curve but different from all torsion
points, i.e. different from (0,±1), (±, 0) and e 6= f .

Speed up search by restricting range of u and picking
only 1 curve per isomorphism class.

Computed more than 100 curves with 12 or 16 torsion
points.
http://cr.yp.to/factorization/goodcurves.html
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The more complete story

Initial implementation was based on GMP-ECM;
replacing Montgomery curves by Edwards curves in
what’s described so far (stage 1) saves 8%.

Higher torsion improved chances by 12 %.

Do experiments to find good choices of s.

There is also a second stage which runs through many
more primes; need to balance both stages.

Following pictures show number of multiplications per
prime found for different choices of parameters for first
and second stage.

Implementation, preprint (soon to be updated), curves
at

http://eecm.cr.yp.to/
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ZZ/12
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ZZ/2 × ZZ/8
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http://eecm.cr.yp.to/
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