ECM using Edwards curves

Tanja Lange

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
tanja@hyperelliptic.org
26.09.2009

joint work with Daniel J. Bernstein (UIC), Peter Birkner (TU/e), and Christiane Peters (TU/e)

The p-1 factorization method I

 $2^{232792560} - 1$ has prime divisors:

```
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 103, 109, 113, 127, 131, 137, 151, 157, 181, 191, 199, etc.
```

These divisors include

- 70 of the 168 primes $\leq 10^3$;
- 156 of the 1229 primes $\leq 10^4$;
- 296 of the 9592 primes $\leq 10^5$;
- 470 of the 78498 primes $\leq 10^6$;
- etc.

The p-1 factorization method II

- An odd prime p divides $2^{232792560}-1$ iff order of 2 in \mathbb{F}_p^* divides 232792560.
- Many ways for this to happen: 232792560 has 960 divisors.
- Why so many?

The p-1 factorization method II

- An odd prime p divides $2^{232792560}-1$ iff order of 2 in \mathbb{F}_p^* divides 232792560.
- Many ways for this to happen: 232792560 has 960 divisors.
- Why so many?

$$232792560 = lcm(1, 2, 3, 4, 5, \dots, 20) = 2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$
.

■ This can be used to find divisors of integers n: Compute

$$\gcd(2^{232792560} - 1, n)$$

to obtain the product of all factors p_i of n s.t. the order of 2 modulo p_i divides 232792560.

Computation requires modular exponentiation; use square-and-multiply method.

Example

```
• Put n = 8597231219:

2^{27} \mod n = 134217728;

2^{54} \mod n = 134217728^2 \mod n = 935663516;

2^{55} \mod n = 1871327032;

2^{110} \mod n = 1871327032^2 \mod n = 1458876811; ...;

2^{232792560} - 1 \mod n = 5626089344.
```

- Finally, gcd(5626089344, n) = 991.
- Main work: 27 squarings mod n.
- Could instead have checked n's divisibility by $2, 3, 5, \ldots$. The 167th trial division would have found divisor 991.
- Not clear which method is better. Dividing by small p is faster than squaring mod n. The p-1 method finds only 70 of the primes ≤ 1000 ; trial division finds all 168 primes ... but also needs to store them. Asymptotically better.

Generalizations of p-1 method

- So numbers are easy to factor if their factors p_i have smooth p_i-1 .
- To construct hard to factor numbers avoid such factors – that's it?

Generalizations of p-1 method

- So numbers are easy to factor if their factors p_i have smooth $p_i 1$.
- To construct hard to factor numbers avoid such factors – that's it?
- Not quite. William's p+1 method works, when p_i+1 is smooth.
- OK, avoid those, too. Anything else?

Generalizations of p-1 method

- So numbers are easy to factor if their factors p_i have smooth $p_i 1$.
- To construct hard to factor numbers avoid such factors – that's it?
- Not quite. William's p+1 method works, when p_i+1 is smooth.
- OK, avoid those, too. Anything else?
- **●** Lenstra's Elliptic Curve Method (ECM) finds p_i , when any number in $[p_i + 1 2\sqrt{p_i}, p_i + 1 + 2\sqrt{p_i}]$ is smooth.
- No chance of avoiding this, there are many smooth numbers in this interval (⊇ {Deuring, Lenstra, McKee}).
- ▶ This interval is called the Hasse interval, the group order of an elliptic curve over \mathbb{F}_{p_i} lies in this interval.

Overview of ECM

- ▶ Principle: Take a point P on an elliptic curve E over \mathbb{Z}/n and compute [s]P for some very smooth s.
- If the order of P on the curve modulo p_i divides s, the point [s]P is the neutral element.
- Find a suitable gcd computation.
- Can vary P and s (corresponds to varying base 2 and the exponent in the p-1 method).
- E modulo p_i has order in $[p_i + 1 2\sqrt{p_i}, p_i + 1 + 2\sqrt{p_i}]$; this may or may not be smooth but we can vary E.
- Curve operations more expensive than in p-1 method but can get much higher probabilities for large p_i .
- Can choose curves that are more likely to have smooth order by picking some with non trivial torsion over Q.

ECM as part of NFS

Factorization of "hard" numbers uses the Number Field Sieve (NFS) which builds a quadratic relation

$$a^2 \equiv b^2 \mod n \Rightarrow \gcd(n, a - b) \neq 1$$

using factorizations of auxiliary numbers (easy to factor).

- ECM is most important "general purpose" algorithm.
- Main computation: [s]P for big s on curve modulo n.
- This can use a prime-by-prime strategy or work with a signed window expansion of the scalar.
- Can choose different representations of elliptic curves; choices influenced by efficiency of computation.
- Standard choice used to be Montgomery representation

$$y^2 = x^3 + Ax^2 + x.$$

Brief summary of Edwards curves

- Published by Edwards in 2007, suggested for cryptographic applications by Bernstein/L. in 2007.
- Curve equation over field k of characteristic 0 or p:

$$x^{2} + y^{2} = 1 + dx^{2}y^{2}, d \notin \{0, 1\}.$$

Addition law

$$(x_1,y_1)+(x_2,y_2)=\left(rac{x_1y_2+y_1x_2}{1+dx_1x_2y_1y_2},rac{y_1y_2-x_1x_2}{1-dx_1x_2y_1y_2}
ight).$$
 Neutral element is $(0,1)$ and $-(x_1,y_1)=(-x_1,y_1).$

Singular points at infinity $\Omega_1 = (1:0:0), \Omega_2 = (0:1:0)$. Singularities blow up over (minimally) $k(\sqrt{d})$ giving two points of order 2 over Ω_1 and two points of order 4 over Ω_2 (check by using birational equivalence with Weierstrass curves).

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_4 = (u_4, v_4)$ have order 4 and shift u s.t. $2P_4 = (0, 0)$. Then Weierstrass form:

$$v^2 = u^3 + (v_4^2/u_4^2 - 2u_4)u^2 + u_4^2u.$$

- Define $d = 1 (4u_4^3/v_4^2)$.
- The coordinates $x=v_4u/(u_4v),\ y=(u-u_4)/(u+u_4)$ satisfy

$$x^2 + y^2 = 1 + dx^2y^2.$$

- Inverse map $u = u_4(1+y)/(1-y), v = v_4u/(u_4x)$.
- Finitely many exceptional points. Exceptional points have $v(u + u_4) = 0$.
- Addition on Edwards and Weierstrass corresponds.

Exceptional points of the map

- Points with $v(u + u_4) = 0$ on Weierstrass curve map to points at infinity on desingularization of Edwards curve.
- Reminder: $d = 1 (4u_4^3/v_4^2)$.
- $u = -u_4$ is u-coordinate of a point iff

$$(-u_4)^3 + (v_4^2/u_4^2 - 2u_4)(u_4)^2 + u_4^2(u_4)$$

$$= v_4^2 - 4u_4^3 = v_4^2 d$$

is a square, i. e., iff d is a square.

• v=0 corresponds to (0,0) which maps to (0,-1) on Edwards curve and to solutions of $u^2+(v_4^2/u_4^2-2u_4)u+u_4^2=0$. Discriminant is

$$(v_4^2/u_4^2 - 2u_4)^2 - 4u_4^2 = v_4^4 d,$$

i. e., points defined over K iff d is a square.

Pictures

Addition and doubling over \mathbb{R} for d < 0.

Twisted Edwards curves

• Curve equation over field k of characteristic 0 or p:

$$ax^{2} + y^{2} = 1 + dx^{2}y^{2}, \ a, d \neq 0, a \neq d.$$

- Points at infinity:
 - $a=e^2, d=\square$: $(\pm e,0)$ have order 4, two points of order 2 over Ω_1 and two points of order 4 over Ω_2 ; subgroup isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/4$.
 - $a = e^2, d \neq \square$: $(\pm e, 0)$ have order 4, blow-ups of Ω_1, Ω_2 are defined over quadratic extension field, no k-rational points at infinity; subgroup isom. to $\mathbb{Z}/4$.
 - $a \neq \square, d = \square$: two points of order 2 over Ω_1 , none over Ω_2 ; subgroup isom. to $\mathbb{Z}/2 \times \mathbb{Z}/2$.
 - $a \neq \Box, d \neq \Box, a \cdot d = \Box$: two points of order 4 over Ω_2 , none over Ω_1 ; subgroup isom. to $\mathbb{Z}/4$.

Efficient arithmetic on Edwards curves

"Faster group operations on elliptic curves" by Hisil, Wong, Carter Dawson, mADD = 9M, no multiplication by curve constants.

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_1 + x_2y_2}{x_1x_2 + y_1y_2}, \frac{x_1y_1 - x_2y_2}{x_1y_2 - y_1x_2}\right).$$

These addition formulas are not unified; this is no problem for ECM where one searches for "failures" to the addition law.

• "Twisted Edwards Curves Revisited" by Hisil, Wong, Carter Dawson, introducing extended Edwards coordinates (X:Y:Z:T) with T=XY/Z. Gives ADD=9M (+1D with a for twisted) in general.

Extended Edwards coordinates

- For twisted with a = -1 even ADD=8M. Mixed versions save 1M: mADD=7M.
- Doubling is faster: 3M+4S. Per bit of s one doubling is needed.
- Can use signed sliding window method; asymptotically decreases frequency of additions to 0.
- **●** Extended representation is not good for doubling. should be used only for addition; so do main doublings as $2\mathcal{E} \to \mathcal{E}$, last doubling as $2\mathcal{E} \to \mathcal{E}^e$, and $\mathcal{E}^e + \mathcal{E}^e \to \mathcal{E}$ in the scalar multiplication in stage 1. Stage 2 has mostly additions anyway.
- Complete overview of curve shapes, coordinates, addition formulas including faster differential addition than Montgomery at www.hyperelliptic.org/EFD.

Design Choices

Use Edwards curves!

Design Choices

- Use Edwards curves!
- Field arithmetic might make multiplications by small integers faster; this does not generally work in Montgomery representation of integers.
- There are several multiplications by the coordinates of the base point; there are some multiplications by a and in inverted Edwards coordinates by d.
- Can pick small height base point (x_1, y_1) , some a and compute d as $d = (ax_1^2 + y_1^2 1)/(x_1^2y_1^2)$. The resulting d has small height, too. Good choices for a are 1 (Edwards) and -1 (particularly fast extended addition).
- Make sure not to choose $(x_1, y_1) \in \{(\pm 1, 0), (0, \pm 1), (\pm c, \pm c)\}$ for any c since these definitely have small order over \mathbb{Q} .

Small order points I

- **●** ECM succeeds in factoring n if [s]P = (0,1) modulo some divisor of n.
- If over \mathbb{Q} the base point P has small order k|s then [s]P = (0,1) modulo all divisors of n, no factorization.
- But: it is interesting to have a large torsion subgroup over Q to increase the smoothness probability of ord(P).
- Some handwaving:
 - Modulo prime p the number of points on E is in the Hasse interval $[p+1-2\sqrt{p},p+1+2\sqrt{p}]$.
 - Chance of smooth group order depends on size.
 - If k divides group order the unknown part gets smaller.

Small order points II

- Success rate does go up with size of torsion group.
- Over Q there are only finitely many points of finite order.
- More precisely: Theorem of Mazur. Let E/\mathbb{Q} be an elliptic curve. The torsion subgroup $E_{\text{tors}}(\mathbb{Q})$ of E is isomorphic to one of the following fifteen groups:
 - \blacksquare **Z**/m for $m \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12\},$
 - $\mathbb{Z}/2 \times \mathbb{Z}/2m$ for $m \in \{1, 2, 3, 4\}$.
- Search for curves with large torsion subgroup and positive rank, choose base point as a free point.
- Edwards curves have m divisible by 4. For twisted Edwards only $2 \mid m$ guaranteed.

Effect of Q-torsion on cost

ECM using Edwards curves - p. 18

Edwards curves with large torsion

- Interesting(=large) choices are $\mathbb{Z}/12$ and $\mathbb{Z}/2 \times \mathbb{Z}/8$. Preprint shows that $\mathbb{Z}/2 \times \mathbb{Z}/6$ does not work for twisted Edwards curves.
- When do curves have a point of order 8? Assume that P_8 doubles to (1,0).
- $y_8^2 x_8^2 = 0 \Rightarrow x_8 = \pm y_8 \Rightarrow x_8^2 + x_8^2 = 1 + dx_8^2 x_8^2$, i.e. $d = (2x_8^2 1)/x_8^4$.
- Also need that $d = \square$ to have first $\mathbb{Z}/2$ component.
- For $u \notin \{0, -1, -2\}$, $x_8 = (u^2 + 2u + 2)/(u^2 2)$ gives square $d = (2x_8^2 1)/x_8^4$.

Edwards curves with $\mathbb{Z}/12$

$$[3](x_1, y_1) = \left(\frac{(x_1^2 + y_1^2)^2 - (2y_1)^2}{4(x_1^2 - 1)x_1^2 - (x_1^2 - y_1^2)^2} x_1, \frac{(x_1^2 + y_1^2)^2 - (2x_1)^2}{-4(y_1^2 - 1)y_1^2 + (x_1^2 - y_1^2)^2} y_1\right).$$

- Any Edwards curve with a point of order 3 automatically has $\mathbb{Z}/12$ and cannot have more.
- Use $(x_1^2 + y_1^2)^2 (2y_1)^2 = 0$ and obtain condition: curve has this structure if there exists a y_6 so that $d = (2y_6 + 1)/(y_6^3(y_6 + 2))$ and such that $-(y_6^2 + 2y_6)$ is a square.
- Points of finite order are then

point	(0,1)	(0,-1)	$(\pm x_3, y_3)$	$(\pm 1, 0)$	$(\pm x_3, -y_3)$	$(\pm y_3, \pm x_3)$
order	1	2	3	4	6	12

Choose other point as basepoint.

Existing constructions

- Two main constructions to obtain large torsion subgroup and a base point that is in the free part.
- Suyama has parameterization that guarantees $\mathbb{Z}/6$ over \mathbb{Q} . Modulo any prime the group order is divisible by 4 but not so over \mathbb{Q} .
- Have translated this representation to Edwards curves. Height of base point and coefficient does not grow too quickly (linear family of curves).
- Atkin-Morain curves have even larger torsion subgroup $\mathbb{Z}/2 \times \mathbb{Z}/8$ easy to generate, but the height of the coefficients grows quickly (elliptic family of curves).
- We translated Atkin-Morain to Edwards form.

How to avoid large height coefficients?

- This tuning is only useful if the multiplication implementation notices that size of the factors.
- Use flexibility of twisted Edwards curves and projective coordinates
 - If d = b/c, with b, c small, extend both to have $c = e^2$ for some e and $d = b'/(e^2)$. Then the curve is isomorphic to the twisted Edwards curve with $a = e^2$ and d = b' (y unchanged, new x is x/e). All values remain small.
 - Instead of working with $(x_1, y_1) = (r/t, v/w)$ which modulo n would get huge work with projective basepoint (rw: tv: rw) (or divide by gcd).
- Make list of such curves and use in implementations where the field arithmetic caters for multiplication by words.

ECM using Edwards curves - p. 22

How to find such curves?

- Want curve with small height coefficient, base point and rank > 1.
- ▶ Parametrization: for $u \notin \{0, -1, -2\}$, $x_8 = (u^2 + 2u + 2)/(u^2 2)$ gives square $d = (2x_8^2 1)/x_8^4$.
- Put u=a/b and search for solutions (a,b,e,f), where (e,f) is a point on the curve but different from all torsion points, i.e. different from $(0,\pm 1), (\pm,0)$ and $e \neq f$.
- Speed up search by restricting range of u and picking only 1 curve per isomorphism class.
- Computed more than 100 curves with 12 or 16 torsion points.

http://cr.yp.to/factorization/goodcurves.htm

The more complete story

- Initial implementation was based on GMP-ECM; replacing Montgomery curves by Edwards curves in what's described so far (stage 1) saves 8%.
- Higher torsion improved chances by 12 %.
- Do experiments to find good choices of s.
- There is also a second stage which runs through many more primes; need to balance both stages.
- Following pictures show number of multiplications per prime found for different choices of parameters for first and second stage.
- Implementation, preprint (soon to be updated), curves at

http://eecm.cr.yp.to/

$\mathbb{Z}/4$

ECM using Edwards curves - p. 25

$\mathbb{Z}/12$

ECM using Edwards curves - p. 26

$\mathbb{Z}/2 \times \mathbb{Z}/8$

ECM using Edwards curves - p. 27

http://eecm.cr.yp.to/