
Ternary Expansions of Powers of 2

Jeff Lagarias,

University of Michigan

Workshop on Discovery and Experimentation

in Number Theory

Fields Institute, Toronto

(September 25, 2009)



Topics Covered

• Part I. Erdős Problem on ternary expansions of powers of 2

• Part II. Real number generalization and a 3-Adic

generalization

• Part III. Intersections of translates of 3-adic Cantor sets
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Part I. Erdős Ternary Digit Problem

• Problem. Let (M)3 denote the integer M written in ternary

(base 3). How many powers 2n of 2 omit the digit 2 in

their ternary expansion?

•

Examples Non-examples
(20)3 = 1 (23)3 = 22
(22)3 = 11 (24)3 = 121
(28)3 = 100111 (26)3 = 2101

• Conjecture. (Erdős 1979) There are no solutions for n ≥ 9.
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Heuristic for Erdős Ternary Problem

• The ternary expansion (2n)3 has about

α0n digits

where

α0 := log3 2 =
log 2

log 3
≈ 0.63091

• Heuristic. If ternary digits were picked randomly and
independently from {0,1,2}, then the probability of
avoiding the digit 2 would be ≈

(
2
3

)α0n
.

• These probabilities decrease exponentially in n, so their sum
converges. Thus expect only finitely many n to have
expansion [2n]3 that avoids the digit 2.
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Original Erdős (et al.) Problem

• Problem When is the binomial coefficient
(

2n
n

)
squarefree?

• Known squarefree solutions:
(

2
1

)
= 2(

4

2

)
= 6

(
8

4

)
= 70

• Conjecture (Erdős, Graham, Rusza and Straus (1975))

There are no squarefree solutions for n ≥ 5.
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Original Erdős Problem-2

• Lucas’s theorem (1878) gives a criterion for a prime p to

divide a binomial coefficient
(
k
l

)
in terms of the digits in the

base p expansion of k and l.

• Lucas’s theorem shows the prime 2 always divides
(

2n
n

)
, for

n ≥ 1.

• Question: When does 22 = 4 NOT divide
(

2n
n

)
?

• Answer: This happens only when n = 2k for some k ≥ 0.
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Original Erdős et al Problem-3

• Erdős then asked: What happens for the prime 3?

• Answer: Lucas’s theorem shows 3 does not divide
(

2k+1

2k

)
if

and only if the base 3 expansion of 2k omits the digit 2.

• This observation motivated Erdős’s 1979 ternary digit

conjecture.
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Original Erdős et al Problem-4

• One needs more than the ternary digit conjecture to settle

squarefree binomial coefficient problem. One needs a

criterion for 32 = 9 to divide
(

2k+1

2k

)
!

• Sufficient condition for 32 to divide
(

2n
n

)
: at least two 2′s

in the ternary number (2n)3.

• Thus: should determine all powers (2n)3 with: at most one

2 in their ternary expansion.
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Original Erdős et al Problem-5

• Don’t bother! The squarefree binomial coefficient

conjecture is completely solved!

• This was shown for all sufficiently large n by Sarkozy

(1985). Later shown for all n ≥ 5, independently, by

Velammal (1995) and Granville and Ramaré (1996).

• However: Erdős ternary expansion conjecture is unsolved!

• Assertion: Ternary expansion conjecture appears very hard!
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Narkiewicz’s Result

• Definition. The Erdős intersection set is

N(1) := {n ≥ 1 : ternary expansion (2n)3

omits the digit 2}

• Theorem (Narkiewicz (1980)) (Count Bound) The set of
integers in the Erdős intersection set N(1) satisfies

#({n ≤ x : n ∈ N(1)}) ≤ 1.62 xα0

where α0 = log3 2 ∼ 0.63092

• This result does not exclude the set N(1) being infinite, but
shows there are not too many integers in it.
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Part II. Dynamical System Generalizations
of Erdős Ternary Digit Problem

• Approach: View the set {1,2,4, ...} as a forward orbit of the
discrete dynamical system T : x 7→ 2x.

• The forward orbit O(x0) of x0 is

O(x0) := {x0, T (x0), T (2)(x0) = T (T (x0), · · · }

Thus: O(1) = {1,2,4,8, · · · }.

• New Problem. Study the forward orbit O(λ) of an arbitrary
initial starting value λ. How big can its intersection be,
with the “Cantor set”?
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General Framework-2

• There are two different places where the dynamical system

can live:

• Model 1. Dynamical system lives on positive real numbers

R+.

• Model 2. Dynamical system lives on the 3-adic integers Z3.
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General Framework-3

• Key Fact: (i) The ternary expansion of 2n is identical to

the 3-adic expansion of 2n.

(However the dynamical system x 7→ 2x acts differently in

the two models.)

• Key Fact: (ii) The Cantor set makes sense in both models!

It also has a dynamical systems interpretation.

It has the same size: Hausdorff dimension

α0 = log3 2 =
log 2

log 3
≈ 0.63092.
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Real Number Dynamical System-1

• Regard {1,2,4,8, ...} as a subset of the positive real
numbers.

• The (usual) ternary Cantor set Σ3 is the set of all real
numbers whose ternary expansion has digits 0 and 2 (omits
1)

• The (modified)ternary Cantor set Σ3,2̄ is the set of all
positive real numbers whose ternary expansion omits 2. It
satisfies

Σ3,2̄ =
1

2
Σ3.
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Real Number Dynamical System-2

• If λ2n belongs to the Cantor set Σ3 , then λ2n−1 belongs to

the modified Cantor set Σ3,2̄, and vice versa.

• From now on: We consider: intersections of orbits with

Σ3,2̄ (i.e., ternary expansions that omit the digit 2).
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Real Number Dynamical System-3

• The real intersection set for λ ∈ R is:

N(λ; R) := {n ≥ 1 : ([λ2n])3 omits the digit 2}

Here: [x] is “greatest integer function.”

• N(1; R) = N(1) is the Erdős intersection set.

• The real truncated exceptional set is

Et(R) := {λ > 0 : real intersection set N(λ,R) is infinite.}
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Real Number Model: Intersection set Size-1

• Theorem. (Real Model Count Bound) For all λ > 0 the real

intersection set N(λ; R) satisfies, for all sufficiently large x,

#({n ≤ x : n ∈ N(λ; R)}) ≤ 25 xα0

where α0 = log3 2 ∼ 0.63092

• The result is the same strength as that of Narkiewicz, but

applies to all initial values.

19



Real Number Model: Intersection set Size-2

• Remarks on proof: Study the O(logx) highest order ternary

digits of ([λ2n])3. Knock out all those that contain a 2.

• Set f(n) := log(λ2n)
log 3 = nα0 + log3 λ.

• Study f(n) (modulo 1), show it is close to uniformly

distributed. If so: it spends most of its time in subintervals

whose ternary expansion has a 2 in first logx digits.
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Real Number Model: Intersection set Size-3

• To establish uniform distribution:

• Use Diophantine approximation estimates to the number

α0 = log3 2. Linear forms in logarithms estimates,

(due to G. Rhin) show that

|α0 −
p

q
| ≥

c

q13.3

with c = 0.0001, for all q ≥ 1.
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Real Number Model: Hausdorff Dimension

• Theorem. (Truncated Exceptional Set Dimension)
The Hausdorff dimension of the (truncated) exceptional set
Et(R) is exactly α0 = log3 2 ≈ 0.63092.

• Corollary: There exist λ ∈ R where infinitely many of
([λ2n])3 omit the digit 2.

• Remark: The infinite sets N(λ; R) so constructed are
extremely sparse, with counting function growing like log∗ x!

(log∗ x counts the number of iterations of taking logarithm
to get x smaller than 1.)
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Hausdorff Dimension-1

• Defn. Let X ⊂ Rn. The s-dimensonal Hausdorff content of
X is:

V ols(S) := lim inf
δ→0

{
∑
i

(ri)
s}

where the infimum runs over all coverings of X with a
collection of balls having radii ri > 0, and with all ri ≤ δ.

• Defn. The Hausdorff dimension of X is

dimH(X) := inf{s ≥ 0 : V ols(X) = 0},
equivalently,

dimH(X) := sup{s ≥ 0 : V ols(X) = +∞}.
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Hausdorff Dimension-2

• The definition makes sense on any metric space.

• In the critical dimension, the Hausdorff measure V ols(X)

can be 0, finite, or +∞.

• Example. The Cantor set Σ3 (inside [0,1]) has Hausdorff

dimension log3 2 = log 2
log 3 ≈ 0.63092. It has positive finite

Hausdorff measure.
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Hausdorff Dimension-3

• Getting an Upper Bound. Find a good family of coverings.
For example, one can cover Σ3 (in [0,1]) with 2k intervals
of length 1

3k
each. using all ternary expansions of length k

with digits 0 and 2.

Taking s = (log3 2 + ε), this covering has content, as
k →∞, ∑

i

(ri)
log3 2+ε = 2k(3−k)log3 2+ε = 3−εk −→ 0.

thus dimH(Σ3) ≤ log3 2.

• Getting a Lower Bound. Usually harder to show; must
consider all coverings!
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Hausdorff Dimension Theorem: Proof Idea

• (Upper Bound) By construction. One actually finds a large

Hausdorff dimension set with a fixed infinite set

r1 < r2 < r3 < ... with all (bλ2rkc)3 omitting digit 2.

• (Lower Bound) Uses a fill-in-levels argument, modifying the

covering to a standard form.
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3-adic Integer Dynamical System-1

• View the integers Z as contained in the set of 3-adic
integers Z3. The quotient field of the 3-adic integers is the
3-adic numbers Q3

• The 3-adic integers Z3 are the set of all formal expansions

β = d0 + d1 · 3 + d2 · 32 + ...

where di ∈ {0,1,2}. Call this the 3-adic expansion of β.

• Set ord3(0) := +∞ and ord3(β) := min{j : dj 6= 0}.

The 3-adic size of β ∈ Q3 is:

||β||3 = 3−ord3(β)
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3-adic Integer Dynamical System-2

• Now view {1,2,4,8, ...} as a subset of the 3-adic integers.

• The (usual) 3-adic Cantor set Σ̃ is the set of all 3-adic

integers whose 3-adic expansion omits the digit 1.

• The modified 3-adic Cantor set Σ̃3,2̄ is the set of all 3-adic

integers whose 3-adic expansion omits the digit 2.

• The Hausdorff dimension of Σ̃3,2̄ is log3 2.
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3-adic Integers versus Real Numbers-1

• The map j : Z3 → [0,1] ⊂ R that maps a 3-adic integer to

the real number whose ternary digit expansion matches the

3-adic expansion, has the properties:

• (1) This map is continuous, and almost invertible: every

number has one preimage except dyadic rationals, which

have two preimages.

• (2) It is a Lipschitz map

|j(x)− j(y)| ≤ 3||x− y||3.
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3-adic Integers versus Real Numbers-2

• The map j : Z3 → [0,1] preserves Hausdorff dimension.

• The 3-adic Cantor set maps under j to the real Cantor sets

in [0,1].
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General Framework: 3-adic Model-1

• A general 3-adic number α ∈ Qp has “Laurent expansion”:

α = b−j
1

3j
+ · · ·+ b−1 ·

1

3
+ b0 + b1 · 3 + · · · .

• The polar part of the number α is:

PP (α) := b−j3
−j + · · ·+ b−1 · 3−1.
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General Framework: 3-adic Model-2

• The 3-adic (truncated) intersection set for λ ∈ Z3 is:

N(λ; Z3) := {n ≥ 1 : The polar part

PP (λ2n/3bα0nc) omits the digit 2}

Again N(1; Z3) recovers the Erdős intersection set.

• The 3-adic truncated exceptional set is

Et(Z3) := {λ > 0 : intersection set N(λ; Z3) is infinite.}
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3-adic model: Intersection set size

• Theorem. (3-adic Model Count Bound) For all nonzero

3-adic integers λ the general intersection set N(λ; Z3)

satisfies, for all sufficiently large x,

#({n ≤ x : n ∈ N(λ; Z3)}) ≤ 2.5 xα0

where α0 = log3 2 ∼ 0.63092

• Narkiewicz’s theorem had a 3-adic proof. His proof extends

to all initial values.
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Punchline-1

• Both the real number model and the 3-adic model give
restrictions on the set of integers in the Erdős intersection
set N(1).

• The models give restrictions of roughly equal strength on
N(1), cutting the number of possible integers down to
O(xα0).

• The real number information on N(1; R) excludes 2′s in the
top O(logn) ternary digits of (2n)3. The 3-adic information
on N(1; Z3) excludes 2′s in the bottom O(logn) 3-adic
digits of (2n)3.
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Punchline-2

• Heuristic: The top O(logn) ternary digits ought to be

“independent” of the bottom O(logn) ternary digits!

• Thus: the information in the two models ought to

non-trivially combine to give a better result. But we

observe...
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Punchline-3

• Observation: No one knows how to combine the

information in the two methods to do better than either

one separately!

• Observation: No one knows how to estimate the number of

2′s in the αn−O(logn) middle ternary digits in (2n)3!

• I bring these puzzling observations to your attention!
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Part III. Complete 3-adic Exceptional Set

• We revisit the problem, imposing a stronger condition:

avoid the digit 2 on an infinite set of digits.

• Define the complete (i.e. non-truncated) intersection set

N∗(λ; Z3) := {n ≥ 1 : the complete 3-adic expansion

(λ2n)3 omits the digit 2}
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Complete 3-adic Exceptional Set-2

• The 3-adic complete exceptional set is

E∗(Z3) := {λ > 0 : the complete intersection set

N∗(λ; Z3) is infinite.}

• The set E∗(Z3) ought to be “much smaller” than the

truncated exceptional set Et(Z3). Concievably it is just one

point {0}. If it is larger, then it must be infinite!
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Complete Exceptional Set Conjecture

• Complete Exceptional Set Conjecture.

The 3-adic complete exceptional set E∗(Z3) has

Hausdorff dimension 0.

• A similar conjecture can be made for the real complete

exceptional set, E∗(R), defined analogously.

• The 3-adic version of the conjecture is approachable, due

to nice symbolic dynamics!
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Some subproblems

• The Level k exceptional set E∗k(Z3) has those λ that have at

least k distinct powers of 2 with λ2k in the Cantor set, i.e.

E∗k(Z3) := {λ > 0 : the set N∗(λ; Z3) ≥ k.}

• Level k exceptional sets are nested by increasing k:

E∗(Z3) ⊂ · · · ⊂ E∗3(Z3) ⊂ E∗2(Z3) ⊂ E∗1(Z3)

• Goal: Study the Hausdorff dimension of E∗k(Z3); it gives an

upper bound on dimH(E∗(Z3)).
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Upper Bounds on Hausdorff Dimension

• Theorem. (Upper Bound Theorem)

(1). dimH(E∗1(Z3)) = α0 ≈ 0.63092.

(2). dimH(E∗2(Z3)) ≤ 0.5.

• Remark. There is a lower bound:

dimH(E∗2(Z3)) ≥ log3(
1 +
√

5

2
) ≈ 0.438
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Upper Bounds on Hausdorff Dimension

• Question. Could it be true that

lim
k→∞

dimH(E∗k(Z3)) = 0?

• If so, this would imply that the complete exceptional set

E∗(Z3) has Hausdorff dimension 0.
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Upper Bound Theorem: Proof Idea

• The set E∗k(Z3) is a countable union of closed sets

E∗k(Z3) =
⋃

r1<r2<...<rk

C(2r1,2r2, ...,2rk),

given by

C(2r1,2r2, ...,2rk) := {λ : (2riλ)3 omits digit 2}.

• We have

dimH(E∗k(Z3)) = sup{dimH (C(2r1,2r2, ...,2rk))}

• Proof for k = 1,2: obtain upper bounds on Hausdorff
dimension of all the sets C(2r1,2r2, ...,2rk).
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Discovery and Experimentation-1

• New Problem. For positive integers r1 < r2 < · · · < rk set

C(2r1,2r2, ...,2rk) := {λ : (2riλ)3 omits the digit 2}

Determine the Hausdorff dimension of C(2r1,2r2, ...,2rk).

• More generally, allow arbitrary positive integers

N1, N2, ..., Nk. Determine the Hausdorff dimension of:

C(N1, N2, · · · , Nk) := {λ : all (Niλ)3 omit the digit 2}
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Discovery and Experimentation-2

• The Hausdorff dimension of sets C(N1, N2, ..., Nk) can in

principle be determined exactly!

• Mainly discuss special case C(1, N), for simplicity.

• This special case already has a complicated and intricate

structure!
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Basic Structure of the answer-1

• The 3-adic expansions of members of sets C(N1, N2, ..., Nk)

are describable dynamically as having the symbolic dynamics

of a sofic shift, given as the set of allowable infinite paths

in a suitable labelled graph (finite automaton).

• The sequence of allowable paths is characterized by the

topological entropy of the dynamical system. This is the

growth rate ρ of the number of allowed label sequences of

length n. It is the maximal (Perron-Frobenius) eigenvalue ρ

of the weight matrix of the labelled graph, a non-negative

integer matrix. (Adler-Konheim-McAndrew (1965))
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Basic Structure of the answer-2

• The Hausdorff dimension of the associated ”fractal set”

C(N1, ..., Nk) is given as the base 3 logarithm of the

topological entropy of the dynamical system.

• This is log3 ρ where ρ is the Perron-Frobenius eigenvalue of

the symbol weight matrix of the labelled graph.

• Remark. These sets are “self-similar fractals” as in

Hutchinson (1981) and Mauldin-Williams (1985).

They are given as fixed points of a system of set-valued

functional equations.
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Basic Structure of the answer-3

• If some Nj ≡ 2 (mod 3) occurs, then Hausdorff dimension

C(N1, N2, ..., Nk) will be 0.

• If one replaces Nj with 3kNj then the Hausdorff dimension

does not change.

• Can therefore reduce to case: All Nj ≡ 1 (mod 3).
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Graph: N = 22 = 4

0

1

0

10
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Associated Matrix N = 4

• Weight matrix is:

state 0 state 1

state 0 [ 1 1 ]
state 1 [ 0 1 ]

• This is Fibonacci shift. Perron-Frobenius eigenvalue is:

ρ =
1 +
√

5

2
= 1.6180...

• Hausdorff Dimension = log3 ρ ≈ 0.438.
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Graph: N = 7 = (21)3

0
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0

1

1

1 0

0
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Associated Matrix N = 7

• Weight matrix is:

state 0 state 2 state 10 state 1

state 0 [ 1 1 0 0 ]
state 2 [ 0 0 1 0 ]
state 10 [ 0 0 1 1 ]
state 1 [ 1 0 0 0 ]

• Perron-Frobenius eigenvalue is : ρ = 1+
√

5
2 = 1.6180...

• Hausdorff Dimension = log3 ρ ≈ 0.438.
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Graphs for N = (10k1)3

• Theorem. (“Fibonacci Graphs”)
For N = (10k1)3, (i.e. N = 3k+1 + 1)

dimH(C(1, N)) := dimH(Σ3,2̄∩
1

N
Σ3,2̄) = log3(

1 +
√

5

2
) ≈ 0.438

• Remark. The finite graph associated to N = 3k+1 + 1
has 2k states! The symbolic dynamics depend on k!

• The eigenvector for the maximal eigenvalue
(Perron-Frobenius eigenvalue) of the adjacency matrix of
this graph is explicitly describable. It has a self-similar
structure, and has all entries in Q(

√
5).
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Graphs for N = (20k1)3

• Empirical Results. Take N = 2 · 3k+1 + 1 = (20k1)3. For
1 ≤ k ≤ 4, the graphs have exactly two strongly connected
components.

• There is an outer component with about k states, whose
Hausdorff dimension goes rapidly to 0 as k increases. (This
is provable for all k ≥ 1).

• There is also an strongly connected inner component, which
appears to have exponentially many states, and whose
Hausdorff dimension monotonically increases for small k,
and eventually exceeds that of the outer component.
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Graph: N = 19 = (201)3

56



Graph for N = 139 = (12011)3

• This value N=139 is a value of N ≡ 1 (mod 3) where the

associated set has Hausdorff dimension 0.

• The corresponding graph has 5 strongly connected

components; each one separately has Perron-Frobenius

eigenvalue 1, giving Hausdorff dimension 0!
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General Graphs-Some Properties of C(1, N)

• The states in the graph can be labelled with integers k
satisfying 0 ≤ k ≤ bN6 c (if entering edge label is 0) and
bN3 c ≤ k ≤ b

N
2 c (if entering edge label is 1).

• The paths in the graph starting from given state k describe
the symbolic dynamics of numbers in the intersection of
shifted multiplicatively translated 3-adic Cantor sets

Ck := Σ3,2̄ ∩
1

N

(
Σ3,2̄ + k

)
.

• The Hausdorff dimension of “shifted intersection set” is the
maximal Hausdorff dimension of a strongly connected
component of graph reachable from the state k.
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Lower Bound for Hausdorff Dimension

• Theorem. (Lower Bound Theorem) For any any k ≥ 1 there
exist

N1 < N2 < · · · < Nk, all Ni ≡ 1 (mod 3)

such that

dimH(C(N1, N2, ..., Nk)) := dimH(
k⋂
i=1

1

Ni
Σ3,2̄) ≥ 0.35.

Thus: the maximal Hausdorff dimension of intersection of
translates is uniformly bounded away from zero.

• Proof. Take suitable Ni of the form 3j + 1 for various large
j. One can show the Hausdorff dimension of intersection
remains large (large overlap of symbolic dynamics).
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Conclusions: Part III

• (1) The graphs for C(1, N) exhibit a complicated structure

depending on an irregular way on the ternary digits of N .

Their Hausdorff dimensions vary irregularly.

• (2) It might still be true that

αk := sup
r1<r2<···<rk

dimH (C(2r1, ...2rk))

has αk → 0 as k →∞. But ...

• (3) Lower bound theorem suggests: analyzing the special

case where all Ni = 2ri may not be easy!
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Paul Erdős says:

“As far as I can see there is no method at our disposal to

attack this conjecture.”

(Ref. P. Erdős, Some unconventional problems in number

theory, Math. Mag. 52 (1979), 67–70.)
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