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We begin with a table:

p
( p−1

2
p−1

4

)
(mod p) a b

5 2 2 1 2
13 20 7 3 2
17 70 2 1 4
29 3432 10 5 2
37 48620 2 1 6
41 184756 10 5 4
53 10400600 39 7 2
61 10 5 6
73 67 3 8
89 10 5 8
97 18 9 4

p ≡ 1 (mod 4), p = a2 + b2.
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Reformulating the table:

p
( p−1

2
p−1

4

)
(mod p) | · · · | < p

2 a b

5 2 2 2 1 2
13 20 7 −6 3 2
17 70 2 2 1 4
29 3432 10 10 5 2
37 48620 2 2 1 6
41 184756 10 10 5 4
53 10400600 39 −14 7 2
61 10 10 5 6
73 67 −6 3 8
89 10 10 5 8
97 18 18 9 4

p ≡ 1 (mod 4), p = a2 + b2.
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1. Introduction

The table is an illustration of the following celebrated result:

Theorem 1 (Gauss, 1828)

Let p ≡ 1 (mod 4) be a prime and write

p = a2 + b2, a ≡ 1 (mod 4).

Then (p−1
2

p−1
4

)
≡ 2a (mod p).

Several different proofs are known, some using “Jacobsthal
sums".
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To extend this to a congruence mod p2, we need the concept
of a Fermat quotient : For m ∈ Z, m ≥ 2, and p - m, define

qp(m) :=
mp−1 − 1

p
.

Beukers (1984) conjectured, and Chowla, Dwork & Evans
(1986) proved:

Theorem 2 (Chowla, Dwork, Evans)
Let p and a be as before. Then(p−1

2
p−1

4

)
≡

(
2a − p

2a

)(
1 + 1

2pqp(2)
)

(mod p2).

Application: Search for Wilson primes, (p − 1)! ≡ −1 (mod p2).
Can this be extended further?

John B. Cosgrave, Karl Dilcher Mod p3 analogues



To extend this to a congruence mod p2, we need the concept
of a Fermat quotient : For m ∈ Z, m ≥ 2, and p - m, define

qp(m) :=
mp−1 − 1

p
.

Beukers (1984) conjectured, and Chowla, Dwork & Evans
(1986) proved:

Theorem 2 (Chowla, Dwork, Evans)
Let p and a be as before. Then(p−1

2
p−1

4

)
≡

(
2a − p

2a

)(
1 + 1

2pqp(2)
)

(mod p2).

Application: Search for Wilson primes, (p − 1)! ≡ −1 (mod p2).
Can this be extended further?

John B. Cosgrave, Karl Dilcher Mod p3 analogues



To extend this to a congruence mod p2, we need the concept
of a Fermat quotient : For m ∈ Z, m ≥ 2, and p - m, define

qp(m) :=
mp−1 − 1

p
.

Beukers (1984) conjectured, and Chowla, Dwork & Evans
(1986) proved:

Theorem 2 (Chowla, Dwork, Evans)
Let p and a be as before. Then(p−1

2
p−1

4

)
≡

(
2a − p

2a

)(
1 + 1

2pqp(2)
)

(mod p2).

Application: Search for Wilson primes, (p − 1)! ≡ −1 (mod p2).

Can this be extended further?

John B. Cosgrave, Karl Dilcher Mod p3 analogues



To extend this to a congruence mod p2, we need the concept
of a Fermat quotient : For m ∈ Z, m ≥ 2, and p - m, define

qp(m) :=
mp−1 − 1

p
.

Beukers (1984) conjectured, and Chowla, Dwork & Evans
(1986) proved:

Theorem 2 (Chowla, Dwork, Evans)
Let p and a be as before. Then(p−1

2
p−1

4

)
≡

(
2a − p

2a

)(
1 + 1

2pqp(2)
)

(mod p2).

Application: Search for Wilson primes, (p − 1)! ≡ −1 (mod p2).
Can this be extended further?

John B. Cosgrave, Karl Dilcher Mod p3 analogues



2. Interlude: Gauss Factorials

Recall Wilson’s Theorem: p is a prime if and only if

(p − 1)! ≡ −1 (mod p).

Define the Gauss factorial

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j .

Theorem 3 (Gauss)
For any integer n ≥ 2,

(n − 1)n! ≡

{
−1 (mod n) for n = 2,4,pα, or 2pα,

1 (mod n) otherwise,

where p is an odd prime and α is a positive integer.
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Recall Gauss’ Theorem:(
p−1

2

)
!((

p−1
4

)
!
)2 ≡ 2a (mod p).

Can we have something like this for p2 in place of p, using
Gauss factorials?

Idea: Use the mod p2 extension by Chowla et al.

Main technical device: We can show that

(
p2 − 1

2

)
p
! ≡ (p − 1)!

p−1
2

(
p − 1

2

)
!

1 +
p − 1

2
p

p−1
2∑

j=1

1
j


(mod p2).
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We can derive a similar congruence for(
p2 − 1

4

)
p
! (mod p2).

Also used is the congruence

p−1
2∑

j=1

1
j
≡ −2 qp(2) (mod p),

and other similar congruences due to Emma Lehmer (1938)
and others before her.

Altogether we have, after simplifying,(
p2−1

2

)
p
!((

p2−1
4

)
p
!

)2 ≡
(p−1

2
p−1

4

)
1

1 + 1
2pqp(2)

(mod p2).
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Combining this with the theorem of Chowla, Dwork & Evans:

Theorem 4
Let p and a be as before. Then(

p2−1
2

)
p
!((

p2−1
4

)
p
!

)2 ≡ 2a − p
2a (mod p2).

While it would be quite hopeless to conjecture an extension of
the theorem of Chowla et al., this is easily possible for the
theorem above.
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3. Extensions modulo p3

By numerical experimentation we first conjectured

Theorem 5
Let p and a be as before. Then(

p3−1
2

)
p
!((

p3−1
4

)
p
!

)2 ≡ 2a − p
2a

− p2

8a3 (mod p3).

(Proof later).

Using more complicated congruences than the ones leading to
Theorem 4 (but the same ideas), and going backwards, we
obtain
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Theorem 6 (Main result)
Let p and a be as before. Then(p−1

2
p−1

4

)
≡

(
2a − p

2a
− p2

8a3

)
×

(
1 + 1

2pqp(2) + 1
8p2

(
2Ep−3 − qp(2)2

))
(mod p3).

Here Ep−3 is the Euler number defined by

2
et + e−t =

∞∑
n=0

En

n!
tn (|t | < π).

How can we prove Theorem 5?
By further experimentation we first conjectured, and then
proved the following generalization.
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Theorem 7
Let p and a be as before and let α ≥ 2 be an integer. Then(

pα−1
2

)
p
!((

pα−1
4

)
p
!

)2 ≡ 2a − 1 · p
2a

− 1 · p2

8a3 − 2 · p3

(2a)5 − 5 · p4

(2a)7

− 14 · p5

(2a)9 − . . .− Cα−2
pα−1

(2a)2α−1 (mod pα).

Here Cn := 1
n+1

(2n
n

)
is the nth Catalan number which is always

an integer.

Theorem 5 is obviously a special case of Theorem 7.
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4. Main Ingredients in the Proof

• The Jacobi sum

J(χ, ψ) =
∑

j mod p

χ(j)ψ(1 − j),

where χ and ψ are characters modulo p.

• Fix a primitive root g mod p;
let χ be a character of order 4 such that χ(g) = i .
Define integers a′, b′ by

p = a′2 +b′2, a′ ≡
(

2
p

)
(mod 4), b′ ≡ a′g(p−1)/4 (mod p).

These are uniquely defined, differ from a and b of Gauss’
theorem only (possibly) in sign.
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• Then

J(χ, χ) = (−1)
p−1

4 (a′ + ib′),

J(χ3, χ3) = (−1)
p−1

4 (a′ − ib′),

• On the other hand,

J(χ, χ) ≡ 0 (mod p),

J(χ3, χ3) =
Γp(1 − 1

2)

Γp(1 − 1
4)2

.

These are deep results, related to the “Gross-Koblitz formula"
(see, e.g., Gauss and Jacobi Sums by B. Berndt, R. Evans and
K. Williams).
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• Γp(z) is the p-adic gamma function defined by

F (n) := (−1)n
∏

0<j<n
p-j

j ,

Γp(z) = lim
n→z

F (n) (z ∈ Zp),

where n runs through any sequence of positive integers
p-adically approaching z.
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• In particular,

(−1)
p−1

4 (a′ − ib′) = J(χ3, χ3) =
Γp(1 − 1

2)

Γp(1 − 1
4)2

≡
Γp(1 + pα−1

2 )

Γp(1 + pα−1
4 )2

(mod pα)

=
F (1 + pα−1

2 )

F (1 + pα−1
4 )2

= −

(
pα−1

2

)
p
!((

pα−1
4

)
p
!

)2 .
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• Raise

(−1)
p−1

4 (a′ + ib′) = J(χ, χ) ≡ 0 (mod p)

to the power α:

(a′ + ib′)α ≡ 0 (mod pα).

• Expand the left-hand side; get binomial coefficients;

• separate real and imaginary parts;

• use the combinatorial identity (k = 0,1, . . . ,n − 1)

k∑
j=0

(−1)j

j + 1

(
2j
j

)(
n + j − k

k − j

)
=

(
n − 1 − k

k

)
;

• putting everything together, we obtain Theorem 7.
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5. A Jacobi Analogue

Let p ≡ 1 (mod 6). Then we can write

4p = r2 + 3s2, r ≡ 1 (mod 3), 3 | s,

which determines r uniquely.

In analogy to Gauss’ Theorem 1 we have

Theorem 8 (Jacobi, 1837)
Let p and r be as above. Then(2(p−1)

3
p−1

3

)
≡ −r (mod p).

This was generalized to mod p2 independently by Evans
(unpublished, 1985) and Yeung (1989):
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Theorem 9 (Evans; Yeung)
Let p and r be as above. Then(2(p−1)

3
p−1

3

)
≡ −r +

p
r

(mod p2).

With methods similar to those in the first part of this talk, we
proved

Theorem 10
Let p and r be as above. Then(2(p−1)

3
p−1

3

)
≡

(
−r +

p
r

+
p2

r3

) (
1 +

1
6

p2Bp−2(
1
3)

)
(mod p3).

Here Bn(x) is the nth Bernoulli polynomial.
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Thank you
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