Mod p^{3} analogues of theorems of Gauss and Jacobi on binomial coefficients

John B. Cosgrave ${ }^{1}$, Karl Dilcher ${ }^{2}$

${ }^{1}$ Dublin, Ireland
${ }^{2}$ Dalhousie University, Halifax, Canada

The Fields Institute, September 22, 2009

We begin with a table:

p	$\binom{\frac{p-1}{2}}{\frac{p-1}{4}}$	$(\bmod p)$	a	b
5	2	2	1	2
13	20	7	3	2
17	70	2	1	4
29	3432	10	5	2
37	48620	2	1	6
41	184756	10	5	4
53	10400600	39	7	2
61		10	5	6
73		67	3	8
89		10	5	8
97		18	9	4

$$
p \equiv 1(\bmod 4), \quad p=a^{2}+b^{2}
$$

Reformulating the table:

p	$\binom{\frac{p-1}{2}}{\frac{p-1}{4}}$	$(\bmod p)$	$\|\cdots\|<\frac{p}{2}$	a	b
5	2	2	2	1	2
13	20	7	-6	3	2
17	70	2	2	1	4
29	3432	10	10	5	2
37	48620	2	2	1	6
41	184756	10	10	5	4
53	10400600	39	-14	7	2
61		10	10	5	6
73		67	-6	3	8
89		10	10	5	8
97		18	18	9	4

$$
p \equiv 1(\bmod 4), \quad p=a^{2}+b^{2}
$$

The table is an illustration of the following celebrated result:

Theorem 1 (Gauss, 1828)

Let $p \equiv 1(\bmod 4)$ be a prime and write

$$
p=a^{2}+b^{2}, \quad a \equiv 1 \quad(\bmod 4)
$$

Then

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2 a \quad(\bmod p)
$$

The table is an illustration of the following celebrated result:

Theorem 1 (Gauss, 1828)

Let $p \equiv 1(\bmod 4)$ be a prime and write

$$
p=a^{2}+b^{2}, \quad a \equiv 1 \quad(\bmod 4)
$$

Then

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2 a \quad(\bmod p)
$$

Several different proofs are known, some using "Jacobsthal sums".

To extend this to a congruence $\bmod p^{2}$, we need the concept of a Fermat quotient: For $m \in \mathbb{Z}, m \geq 2$, and $p \nmid m$, define

$$
q_{p}(m):=\frac{m^{p-1}-1}{p} .
$$

To extend this to a congruence $\bmod p^{2}$, we need the concept of a Fermat quotient: For $m \in \mathbb{Z}, m \geq 2$, and $p \nmid m$, define

$$
q_{p}(m):=\frac{m^{p-1}-1}{p} .
$$

Beukers (1984) conjectured, and Chowla, Dwork \& Evans (1986) proved:

Theorem 2 (Chowla, Dwork, Evans)

Let p and a be as before. Then

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv\left(2 a-\frac{p}{2 a}\right)\left(1+\frac{1}{2} p q_{p}(2)\right) \quad\left(\bmod p^{2}\right) .
$$

To extend this to a congruence $\bmod p^{2}$, we need the concept of a Fermat quotient: For $m \in \mathbb{Z}, m \geq 2$, and $p \nmid m$, define

$$
q_{p}(m):=\frac{m^{p-1}-1}{p} .
$$

Beukers (1984) conjectured, and Chowla, Dwork \& Evans (1986) proved:

Theorem 2 (Chowla, Dwork, Evans)

Let p and a be as before. Then

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv\left(2 a-\frac{p}{2 a}\right)\left(1+\frac{1}{2} p q_{p}(2)\right) \quad\left(\bmod p^{2}\right) .
$$

Application: Search for Wilson primes, $(p-1)!\equiv-1\left(\bmod p^{2}\right)$.

To extend this to a congruence $\bmod p^{2}$, we need the concept of a Fermat quotient: For $m \in \mathbb{Z}, m \geq 2$, and $p \nmid m$, define

$$
q_{p}(m):=\frac{m^{p-1}-1}{p}
$$

Beukers (1984) conjectured, and Chowla, Dwork \& Evans (1986) proved:

Theorem 2 (Chowla, Dwork, Evans)

Let p and a be as before. Then

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv\left(2 a-\frac{p}{2 a}\right)\left(1+\frac{1}{2} p q_{p}(2)\right) \quad\left(\bmod p^{2}\right) .
$$

Application: Search for Wilson primes, $(p-1)!\equiv-1\left(\bmod p^{2}\right)$. Can this be extended further?

2. Interlude: Gauss Factorials

Recall Wilson's Theorem: p is a prime if and only if

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

2. Interlude: Gauss Factorials

Recall Wilson's Theorem: p is a prime if and only if

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

Define the Gauss factorial

$$
N_{n}!=\prod_{\substack{1 \leq j \leq N \\ \operatorname{gcd}(j, n)=1}} j
$$

2. Interlude: Gauss Factorials

Recall Wilson's Theorem: p is a prime if and only if

$$
(p-1)!\equiv-1 \quad(\bmod p) .
$$

Define the Gauss factorial

$$
N_{n}!=\prod_{\substack{1 \leq j \leq N \\ \operatorname{gcd}(j, n)=1}} j .
$$

Theorem 3 (Gauss)

For any integer $n \geq 2$,

$$
(n-1)_{n}!\equiv\left\{\begin{array}{lll}
-1 & (\bmod n) & \text { for } n=2,4, p^{\alpha}, \text { or } 2 p^{\alpha}, \\
1 & (\bmod n) & \text { otherwise },
\end{array}\right.
$$

where p is an odd prime and α is a positive integer.

Recall Gauss' Theorem:

$$
\frac{\left(\frac{p-1}{2}\right)!}{\left(\left(\frac{p-1}{4}\right)!\right)^{2}} \equiv 2 a \quad(\bmod p) .
$$

Recall Gauss' Theorem:

$$
\frac{\left(\frac{p-1}{2}\right)!}{\left(\left(\frac{p-1}{4}\right)!\right)^{2}} \equiv 2 a \quad(\bmod p)
$$

Can we have something like this for p^{2} in place of p, using Gauss factorials?

Recall Gauss' Theorem:

$$
\frac{\left(\frac{p-1}{2}\right)!}{\left(\left(\frac{p-1}{4}\right)!\right)^{2}} \equiv 2 a \quad(\bmod p)
$$

Can we have something like this for p^{2} in place of p, using Gauss factorials?

Idea: Use the $\bmod p^{2}$ extension by Chowla et al.

Recall Gauss' Theorem:

$$
\frac{\left(\frac{p-1}{2}\right)!}{\left(\left(\frac{p-1}{4}\right)!\right)^{2}} \equiv 2 a \quad(\bmod p)
$$

Can we have something like this for p^{2} in place of p, using Gauss factorials?

Idea: Use the $\bmod p^{2}$ extension by Chowla et al.
Main technical device: We can show that

$$
\begin{array}{r}
\left(\frac{p^{2}-1}{2}\right)_{p}!\equiv(p-1)!^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!\left(1+\frac{p-1}{2} p \sum_{j=1}^{\frac{p-1}{2}} \frac{1}{j}\right) \\
\left(\bmod p^{2}\right)
\end{array}
$$

We can derive a similar congruence for

$$
\left(\frac{p^{2}-1}{4}\right)_{p}!\left(\bmod p^{2}\right) .
$$

We can derive a similar congruence for

$$
\left(\frac{p^{2}-1}{4}\right)_{p}!\left(\bmod p^{2}\right)
$$

Also used is the congruence

$$
\sum_{j=1}^{\frac{p-1}{2}} \frac{1}{j} \equiv-2 q_{p}(2) \quad(\bmod p),
$$

and other similar congruences due to Emma Lehmer (1938) and others before her.

We can derive a similar congruence for

$$
\left(\frac{p^{2}-1}{4}\right)_{p}!\left(\bmod p^{2}\right)
$$

Also used is the congruence

$$
\sum_{j=1}^{\frac{p-1}{2}} \frac{1}{j} \equiv-2 q_{p}(2) \quad(\bmod p),
$$

and other similar congruences due to Emma Lehmer (1938) and others before her.

Altogether we have, after simplifying,

$$
\frac{\left(\frac{p^{2}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{2}-1}{4}\right)_{p}!\right)^{2}} \equiv\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \frac{1}{1+\frac{1}{2} p q_{p}(2)} \quad\left(\bmod p^{2}\right) .
$$

Combining this with the theorem of Chowla, Dwork \& Evans:
Theorem 4
Let p and a be as before. Then

$$
\frac{\left(\frac{p^{2}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{2}-1}{4}\right)_{p}!\right)^{2}} \equiv 2 a-\frac{p}{2 a} \quad\left(\bmod p^{2}\right)
$$

Combining this with the theorem of Chowla, Dwork \& Evans:

Theorem 4

Let p and a be as before. Then

$$
\frac{\left(\frac{p^{2}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{2}-1}{4}\right)_{p}!\right)^{2}} \equiv 2 a-\frac{p}{2 a} \quad\left(\bmod p^{2}\right) .
$$

While it would be quite hopeless to conjecture an extension of the theorem of Chowla et al., this is easily possible for the theorem above.

3. Extensions modulo p^{3}

By numerical experimentation we first conjectured
Theorem 5
Let p and a be as before. Then

$$
\frac{\left(\frac{p^{3}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{3}-1}{4}\right)_{p}!\right)^{2}} \equiv 2 a-\frac{p}{2 a}-\frac{p^{2}}{8 a^{3}} \quad\left(\bmod p^{3}\right) .
$$

(Proof later).

3. Extensions modulo p^{3}

By numerical experimentation we first conjectured

Theorem 5

Let p and a be as before. Then

$$
\frac{\left(\frac{p^{3}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{3}-1}{4}\right)_{p}!\right)^{2}} \equiv 2 a-\frac{p}{2 a}-\frac{p^{2}}{8 a^{3}} \quad\left(\bmod p^{3}\right)
$$

(Proof later).
Using more complicated congruences than the ones leading to Theorem 4 (but the same ideas), and going backwards, we obtain

Theorem 6 (Main result)

Let p and a be as before. Then

$$
\begin{aligned}
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv & \left(2 a-\frac{p}{2 a}-\frac{p^{2}}{8 a^{3}}\right) \\
& \times\left(1+\frac{1}{2} p q_{p}(2)+\frac{1}{8} p^{2}\left(2 E_{p-3}-q_{p}(2)^{2}\right)\right)\left(\bmod p^{3}\right) .
\end{aligned}
$$

Theorem 6 (Main result)

Let p and a be as before. Then

$$
\begin{aligned}
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv & \left(2 a-\frac{p}{2 a}-\frac{p^{2}}{8 a^{3}}\right) \\
& \times\left(1+\frac{1}{2} p q_{p}(2)+\frac{1}{8} p^{2}\left(2 E_{p-3}-q_{p}(2)^{2}\right)\right)\left(\bmod p^{3}\right) .
\end{aligned}
$$

Here E_{p-3} is the Euler number defined by

$$
\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} t^{n} \quad(|t|<\pi) .
$$

Theorem 6 (Main result)

Let p and a be as before. Then

$$
\begin{aligned}
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv & \left(2 a-\frac{p}{2 a}-\frac{p^{2}}{8 a^{3}}\right) \\
& \times\left(1+\frac{1}{2} p q_{p}(2)+\frac{1}{8} p^{2}\left(2 E_{p-3}-q_{p}(2)^{2}\right)\right)\left(\bmod p^{3}\right) .
\end{aligned}
$$

Here E_{p-3} is the Euler number defined by

$$
\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} t^{n} \quad(|t|<\pi) .
$$

How can we prove Theorem 5?

Theorem 6 (Main result)

Let p and a be as before. Then

$$
\begin{aligned}
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv & \left(2 a-\frac{p}{2 a}-\frac{p^{2}}{8 a^{3}}\right) \\
& \times\left(1+\frac{1}{2} p q_{p}(2)+\frac{1}{8} p^{2}\left(2 E_{p-3}-q_{p}(2)^{2}\right)\right)\left(\bmod p^{3}\right) .
\end{aligned}
$$

Here E_{p-3} is the Euler number defined by

$$
\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} t^{n} \quad(|t|<\pi) .
$$

How can we prove Theorem 5?
By further experimentation we first conjectured, and then proved the following generalization.

Theorem 7

Let p and a be as before and let $\alpha \geq 2$ be an integer. Then

$$
\begin{aligned}
\frac{\left(\frac{p^{\alpha}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{\alpha}-1}{4}\right)_{p}!\right)^{2}} \equiv & 2 a-1 \cdot \frac{p}{2 a}-1 \cdot \frac{p^{2}}{8 a^{3}}-2 \cdot \frac{p^{3}}{(2 a)^{5}}-5 \cdot \frac{p^{4}}{(2 a)^{7}} \\
& -14 \cdot \frac{p^{5}}{(2 a)^{9}}-\ldots-C_{\alpha-2} \frac{p^{\alpha-1}}{(2 a)^{2 \alpha-1}}\left(\bmod p^{\alpha}\right)
\end{aligned}
$$

Theorem 7

Let p and a be as before and let $\alpha \geq 2$ be an integer. Then

$$
\begin{aligned}
\frac{\left(\frac{p^{\alpha}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{\alpha}-1}{4}\right)_{p}!\right)^{2}} \equiv & 2 a-1 \cdot \frac{p}{2 a}-1 \cdot \frac{p^{2}}{8 a^{3}}-2 \cdot \frac{p^{3}}{(2 a)^{5}}-5 \cdot \frac{p^{4}}{(2 a)^{7}} \\
& -14 \cdot \frac{p^{5}}{(2 a)^{9}}-\ldots-C_{\alpha-2} \frac{p^{\alpha-1}}{(2 a)^{2 \alpha-1}}\left(\bmod p^{\alpha}\right)
\end{aligned}
$$

Here $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$ is the nth Catalan number which is always an integer.

Theorem 7

Let p and a be as before and let $\alpha \geq 2$ be an integer. Then

$$
\begin{aligned}
\frac{\left(\frac{p^{\alpha}-1}{2}\right)_{p}!}{\left(\left(\frac{p^{\alpha}-1}{4}\right)_{p}!\right)^{2}} \equiv & 2 a-1 \cdot \frac{p}{2 a}-1 \cdot \frac{p^{2}}{8 a^{3}}-2 \cdot \frac{p^{3}}{(2 a)^{5}}-5 \cdot \frac{p^{4}}{(2 a)^{7}} \\
& -14 \cdot \frac{p^{5}}{(2 a)^{9}}-\ldots-C_{\alpha-2} \frac{p^{\alpha-1}}{(2 a)^{2 \alpha-1}}\left(\bmod p^{\alpha}\right)
\end{aligned}
$$

Here $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$ is the nth Catalan number which is always an integer.

Theorem 5 is obviously a special case of Theorem 7.

4. Main Ingredients in the Proof

- The Jacobi sum

$$
J(\chi, \psi)=\sum_{j \bmod p} \chi(j) \psi(1-j)
$$

where χ and ψ are characters modulo p.

4. Main Ingredients in the Proof

- The Jacobi sum

$$
J(\chi, \psi)=\sum_{j \bmod p} \chi(j) \psi(1-j)
$$

where χ and ψ are characters modulo p.

- Fix a primitive root $g \bmod p$; let χ be a character of order 4 such that $\chi(g)=i$.

4. Main Ingredients in the Proof

- The Jacobi sum

$$
J(\chi, \psi)=\sum_{j \bmod p} \chi(j) \psi(1-j)
$$

where χ and ψ are characters modulo p.

- Fix a primitive root $g \bmod p$; let χ be a character of order 4 such that $\chi(g)=i$.
Define integers a^{\prime}, b^{\prime} by
$p=a^{\prime 2}+b^{\prime 2}, \quad a^{\prime} \equiv\left(\frac{2}{p}\right)(\bmod 4), \quad b^{\prime} \equiv a^{\prime} g^{(p-1) / 4} \quad(\bmod p)$.

4. Main Ingredients in the Proof

- The Jacobi sum

$$
J(\chi, \psi)=\sum_{j \bmod p} \chi(j) \psi(1-j)
$$

where χ and ψ are characters modulo p.

- Fix a primitive root $g \bmod p$; let χ be a character of order 4 such that $\chi(g)=i$.
Define integers a^{\prime}, b^{\prime} by

$$
p=a^{\prime 2}+b^{\prime 2}, \quad a^{\prime} \equiv\left(\frac{2}{p}\right)(\bmod 4), \quad b^{\prime} \equiv a^{\prime} g^{(p-1) / 4} \quad(\bmod p)
$$

These are uniquely defined, differ from a and b of Gauss' theorem only (possibly) in sign.

- Then

$$
\begin{aligned}
J(\chi, \chi) & =(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right), \\
J\left(\chi^{3}, \chi^{3}\right) & =(-1)^{\frac{p-1}{4}}\left(a^{\prime}-i b^{\prime}\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
J(\chi, \chi) & =(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right), \\
J\left(\chi^{3}, \chi^{3}\right) & =(-1)^{\frac{p-1}{4}}\left(a^{\prime}-i b^{\prime}\right),
\end{aligned}
$$

- On the other hand,

$$
\begin{aligned}
J(\chi, \chi) & \equiv 0(\bmod p) \\
J\left(\chi^{3}, \chi^{3}\right) & =\frac{\Gamma_{p}\left(1-\frac{1}{2}\right)}{\Gamma_{p}\left(1-\frac{1}{4}\right)^{2}} .
\end{aligned}
$$

These are deep results, related to the "Gross-Koblitz formula" (see, e.g., Gauss and Jacobi Sums by B. Berndt, R. Evans and K. Williams).

- $\Gamma_{p}(z)$ is the p-adic gamma function defined by

$$
\begin{aligned}
F(n) & :=(-1)^{n} \prod_{\substack{0<j \nless n \\
p \nmid j}} j, \\
\Gamma_{p}(z) & =\lim _{n \rightarrow z} F(n) \quad\left(z \in \mathbb{Z}_{p}\right),
\end{aligned}
$$

where n runs through any sequence of positive integers p-adically approaching z.

- In particular,

$$
\begin{aligned}
(-1)^{\frac{\rho-1}{4}}\left(a^{\prime}-i b^{\prime}\right) & =J\left(\chi^{3}, \chi^{3}\right)=\frac{\Gamma_{p}\left(1-\frac{1}{2}\right)}{\Gamma_{p}\left(1-\frac{1}{4}\right)^{2}} \\
& \equiv \frac{\Gamma_{p}\left(1+\frac{\rho^{\alpha}-1}{}-1\right.}{\Gamma_{p}\left(1+\frac{\rho^{\alpha}-1}{\alpha}\right)^{2}}\left(\bmod p^{\alpha}\right) \\
& =\frac{F\left(1+\frac{\rho^{\alpha}-1}{\alpha}\right)}{F\left(1+\frac{\rho^{\alpha}-1}{\alpha}\right)^{2}} \\
& =-\frac{\left(\frac{\rho^{\alpha}-1}{2}\right)_{p}!}{\left(\left(\frac{\rho^{\alpha}-1}{4}\right)_{p}!\right)^{2}} .
\end{aligned}
$$

- Raise

$$
(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right)=J(\chi, \chi) \equiv 0 \quad(\bmod p)
$$

to the power α :

- Raise

$$
(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right)=J(\chi, \chi) \equiv 0 \quad(\bmod p)
$$

to the power α :

$$
\left(a^{\prime}+i b^{\prime}\right)^{\alpha} \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

- Raise

$$
(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right)=J(\chi, \chi) \equiv 0 \quad(\bmod p)
$$

to the power α :

$$
\left(a^{\prime}+i b^{\prime}\right)^{\alpha} \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

- Expand the left-hand side; get binomial coefficients;
- Raise

$$
(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right)=J(\chi, \chi) \equiv 0 \quad(\bmod p)
$$

to the power α :

$$
\left(a^{\prime}+i b^{\prime}\right)^{\alpha} \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

- Expand the left-hand side; get binomial coefficients;
- separate real and imaginary parts;
- Raise

$$
(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right)=J(\chi, \chi) \equiv 0 \quad(\bmod p)
$$

to the power α :

$$
\left(a^{\prime}+i b^{\prime}\right)^{\alpha} \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

- Expand the left-hand side; get binomial coefficients;
- separate real and imaginary parts;
- use the combinatorial identity $(k=0,1, \ldots, n-1)$

$$
\sum_{j=0}^{k} \frac{(-1)^{j}}{j+1}\binom{2 j}{j}\binom{n+j-k}{k-j}=\binom{n-1-k}{k}
$$

- Raise

$$
(-1)^{\frac{p-1}{4}}\left(a^{\prime}+i b^{\prime}\right)=J(\chi, \chi) \equiv 0 \quad(\bmod p)
$$

to the power α :

$$
\left(a^{\prime}+i b^{\prime}\right)^{\alpha} \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

- Expand the left-hand side; get binomial coefficients;
- separate real and imaginary parts;
- use the combinatorial identity $(k=0,1, \ldots, n-1)$

$$
\sum_{j=0}^{k} \frac{(-1)^{j}}{j+1}\binom{2 j}{j}\binom{n+j-k}{k-j}=\binom{n-1-k}{k}
$$

- putting everything together, we obtain Theorem 7.

5. A Jacobi Analogue

Let $p \equiv 1(\bmod 6)$. Then we can write

$$
4 p=r^{2}+3 s^{2}, \quad r \equiv 1 \quad(\bmod 3), \quad 3 \mid s
$$

which determines r uniquely.

5. A Jacobi Analogue

Let $p \equiv 1(\bmod 6)$. Then we can write

$$
4 p=r^{2}+3 s^{2}, \quad r \equiv 1 \quad(\bmod 3), \quad 3 \mid s
$$

which determines r uniquely.
In analogy to Gauss' Theorem 1 we have
Theorem 8 (Jacobi, 1837)
Let p and r be as above. Then

$$
\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv-r \quad(\bmod p)
$$

5. A Jacobi Analogue

Let $p \equiv 1(\bmod 6)$. Then we can write

$$
4 p=r^{2}+3 s^{2}, \quad r \equiv 1 \quad(\bmod 3), \quad 3 \mid s
$$

which determines r uniquely.
In analogy to Gauss' Theorem 1 we have
Theorem 8 (Jacobi, 1837)
Let p and r be as above. Then

$$
\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv-r \quad(\bmod p)
$$

This was generalized to $\bmod p^{2}$ independently by Evans (unpublished, 1985) and Yeung (1989):

Theorem 9 (Evans; Yeung)
Let p and r be as above. Then

$$
\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv-r+\frac{p}{r} \quad\left(\bmod p^{2}\right)
$$

Theorem 9 (Evans; Yeung)

Let p and r be as above. Then

$$
\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv-r+\frac{p}{r} \quad\left(\bmod p^{2}\right)
$$

With methods similar to those in the first part of this talk, we proved

Theorem 10

Let p and r be as above. Then

$$
\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv\left(-r+\frac{p}{r}+\frac{p^{2}}{r^{3}}\right)\left(1+\frac{1}{6} p^{2} B_{p-2}\left(\frac{1}{3}\right)\right) \quad\left(\bmod p^{3}\right)
$$

Here $B_{n}(x)$ is the nth Bernoulli polynomial.

Thank you

