
From covering congruences to
the superflip: a distributed
computing experiment

Morley Davidson, Joseph Miller
(Kent State University)

and Bruce Norskog (Boston)

Common methodology

• Start with general-purpose software

• Formulate some conjectures & plan ahead

• Obtain or rewrite as specific-purpose code

• (Distribute computations if necessary)

Former D.C. experiment

Partition polynomials: distribution of zeros,
Mahler measure contribution on sub-arcs,
exceptional zeros, factorization &
discriminants, multiplicative properties of
coefficients of their irreducible parts

Genesis of current experiment

• Found tables online for cubing systems such as
Fridrich, Petrus, and Roux. Got interested in
move-count averages…

• …wanted to learn an advanced system such as
the ZB endgame (ZBF2L appl. to Fridrich & ZBLL
appl. to Fridrich and Petrus)…

• …wanted to create a classification scheme for LL
permutation equiv classes based on covering
subgroups.

Fridrich System

Step 1: “Cross”

Steps 2,3,4,5 (“F2L”):

First Two Layers

Step 6 (“OLL”): Orient Last Layer

Step 7 (“PLL”): Permute LL

(ZBF2L = F2L4&OELL)

Petrus System

Step 1: Form a 2×2×2

Step 2: Extend to a 2×2×3

Step 3: Orient Edges e.g. to

Step 4: Complete a 2×3×3

Step 5: Position Corners

Step 6: Orient Corners

Step 7: Position Edges

(ZBLL = Petrus Steps 5&6&7)

Fridrich LL approach

OLL: 216 equiv. classes, reduces to 57
mod U-turns and whole-cube rotations
(mod Mrot+AUF), and to 40 mod LL
(dihedral) symmetries (M+AUF).

PLL: 288 perms, reduces to 21 mod
Mrot+AUF, 14 mod M+AUF, and
13 cases mod M+inv+AUF.

vs. LL in one step: 1212 cases mod
M+inv+AUF.

Many ways to save moves
(even with color-fixed partitions, same number of

steps, and single alg representatives):

Pochmann: misplacing a pair of F2L C/E pairs in

diagonally-opposite slots gives shorter average

PLL (while re-swapping slots).

Distributed computation (DM, spring 09):

no such improvement for any other PLL

“wrong slots” variant, and never for ZBLL.

Step-Greedy Petrus

Step 1: Form a 2×2×2
(8 choices; pick the cheapest)

Step 2: Extend to a 2×2×3

(3 choices)

Step 3: Orient Edges

Step 4: Complete a 2×3×3
(2 choices)

Move-count metrics

• HTM: each ¼- or ½-turn is one move;
a.k.a. HTM.

• QTM: each ¼-turn is one move.

• STM: HTM but each “slice” turn only
counts as one move.

Example: R²DU’ has HTM 3,
QTM 4,
STM 2.

Proved & Simulated Upper Bounds for

Fridrich* and Petrus HTM means
Step-Greedy

w/ cancels
to depth 1
(10000
simulations)

Step-Greedy
w/o cancels
(10000
simulations)

Colorfixed

w/ cancels

to depth 1
(proved)

Colorfixed
w/o

cancels

(proved)

47.748.950.5851.63Fridrich*

40.541.242.9143.90Fridrich* w/

optimal LL

39.940.742.0842.91Petrus w/
optimal

ZBLL

46.447.448.4149.48Petrus

Zborowski-Bruchem endgame

≈ 1.4×

(to stay
< 20.73)

≥ 302428Too

many!

< 20.73Total

466

or 292

177

(exact)

2707776< 12.64ZBLL

≈ 1.4×

(varies)

≥ 125

(varies)

1581200< 8.09ZBF2L

Minimal

for

optimal

step

mod

AUF+M

+inv
(w/ AUF

costs)

mod

AUF+M
(w/ AUF

costs)

algs
(perms)

HTM

mean

Further optimization strategies &

distributed computations

• Depth-first search with Fridrich* has mean
around 37 moves. Get around 33 moves
using Petrus steps 1 and 2, then additional
square, then ZB endgame (PBBZB).

• Try alternate algs (e.g., All Optimals)

• Back-tracking/insertions/premoves

CUBE CODING

• CubeTools written in GAP to assemble and
analyze distributed output from Jelinek’s JACube
and Reid’s CubeExplorer.

• Auxiliary programs (Visual Basic) for distributed
computations: JACubeGUI, emailer, attachment
downloader, results assimilator

• C++ version of DFSAO, currently using PBBZB
cube partition with premoves.

DFSAO averages (simulated)

21.8 (1K sims), max 242

20.7 (1K sims), max 233

23.3 (10K sims), max 261

25.46 (100K sims)0

Solution length (FTM)Number of premoves

DFSAO superflip results

22 so far.7

225-6

21 so far.8

243-4

271-2

340

Solution lengthNumber of premoves

Mortal’s Algorithm Conjecture: All scrambles can be solved in “low-twenties” via

DFSAO with the PBBZB partition and at most 3 premoves.

22-move “human” superflip solution

• 2x2x2: D2 L’ F’ B’ D2 L

• +square (to 2x2x3): L’ F2 U’ R2 F2 U L

• +square (to F2L minus slot): R’ D2 B R2 B’

• ZBF2L: B R2 B’ D2 B’ D2 B R2

• ZBLL: D2

• Correction moves: U2 B U D F2

21-move “human” (?) superflip

solution

• 2x2x2: L2 D2 F2 R F’ B’ L’

• +square (to 2x2x3): L R2 D L’ R D2 F2

• +square (to F2L minus slot): F’ R2 F (R)

• ZBF2L: skip

• ZBLL: skip

• Correction moves: (R’) U2 B R2 U’ D R’ F2

Efficient Semi-rectangular Scheme

motivated by Subgroup Covers

• “Factorial-radix” representation based on semi-
direct product structure works well on all 7776
ZBLL or all 62208 LL permutations…but…!

• …we only want to cover equivalence classes
mod M+inv+AUF (ZBLL has 177, LL 1212).

• Idea: start with PLL subgroup’s classes and see
how efficiently they extend via semidirect
product structure to cover ZBLL’s CO types.

PLL and ZBLL CP classes

• N = null CP case (2-gen ZBLL’s)
• (e?)

• R = right-swap CP

• D = diagonal-swap CP

Non-PLL CO subclases

& rotational variants (though not all)

ZBLL CO subclasses

by CP class

• N=null CP: 6 CO subclasses

• D=diag swap: same 6 CO’s

• R=right swap: 16 (for 271) or 11 CO’s

EP types for R (CP) classes

(0 redundant)

• Those with 180-degree + R/L reflection
symmetry have same 7 EP types as PLL
R’s.

• All the rest have all possible 12 EP types
(original 7 cases extended almost
symmetrically).

PoNDeR-based covers for

ZBLL mod MAUF and MinvAUF

• Efficient with either 271-system or 177-system;
has only 32 classes in 177-system, each having
either 7 or 12 EP types. In 271-system, there are
only 6 symmetrically-placed M-redundancies
(placeholders).

• For 177-system, drop redundant inv-
redundancies (nice surprise: they are fairly
consistently placed)

Extension to a cover for

LL mod MinvAUF

• PNDR 177-alg ZBLL extends naturally to 8x177-

system for LL-at-once (1416 vs. 1212) based on

the 8 non-reduced EO cases.

• To compensate, many algs could be replaced by

“Concatenation” and “Slice-conjugate” algs:

• (L R D2 L' D' L D2 R' D L ')(L D' R D2 L' D R' F'

B' D2 F B) cancels 12 moves!

• Rm(R U R’ U R U2 R’)R’m is an optimal non-

ZBLL LL-alg.

Distributed computing search for

Concatenation LL Algs

• 103 max-10 algs generate 62+513=574 of
1212

• 274 max-11 algs generate 157+656=813
of 1212.

