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Common methodology

• Start with general-purpose software

• Formulate some conjectures & plan ahead

• Obtain or rewrite as specific-purpose code

• (Distribute computations if necessary)



Former D.C. experiment

Partition polynomials: distribution of zeros, 
Mahler measure contribution on sub-arcs, 
exceptional zeros, factorization & 
discriminants, multiplicative properties of 
coefficients of their irreducible parts



Genesis of current experiment

• Found tables online for cubing systems such as 
Fridrich, Petrus, and Roux. Got interested in 
move-count averages…

• …wanted to learn an advanced system such as 
the ZB endgame (ZBF2L appl. to Fridrich & ZBLL 
appl. to Fridrich and Petrus)…

• …wanted to create a classification scheme for LL 
permutation equiv classes based on covering 
subgroups. 



Fridrich System

Step 1: “Cross”

Steps 2,3,4,5 (“F2L”):

First Two Layers

Step 6 (“OLL”): Orient Last Layer

Step 7 (“PLL”): Permute LL

(ZBF2L = F2L4&OELL)



Petrus System

Step 1: Form a 2×2×2 

Step 2: Extend to a 2×2×3

Step 3: Orient Edges   e.g.              to  

Step 4: Complete a 2×3×3



Step 5: Position Corners

Step 6: Orient Corners

Step 7: Position Edges

(ZBLL = Petrus Steps 5&6&7)



Fridrich LL approach

OLL: 216 equiv. classes, reduces to 57 
mod U-turns and whole-cube rotations 
(mod Mrot+AUF), and to 40 mod LL 
(dihedral) symmetries (M+AUF).

PLL: 288 perms, reduces to 21 mod 
Mrot+AUF, 14 mod M+AUF, and 
13 cases mod M+inv+AUF. 

vs. LL in one step: 1212 cases mod 
M+inv+AUF.



Many ways to save moves
(even with color-fixed partitions, same number of 

steps, and single alg representatives):

Pochmann: misplacing a pair of F2L C/E pairs in 

diagonally-opposite slots gives shorter average 

PLL (while re-swapping slots). 

Distributed computation (DM, spring 09):

no such improvement for any other PLL

“wrong slots” variant, and never for ZBLL.



Step-Greedy Petrus

Step 1: Form a 2×2×2
(8 choices; pick the cheapest)

Step 2: Extend to a 2×2×3

(3 choices)

Step 3: Orient Edges

Step 4: Complete a 2×3×3
(2 choices)



Move-count metrics

• HTM: each ¼- or  ½-turn is one move;
a.k.a. HTM.

• QTM: each ¼-turn is one move.

• STM: HTM but each “slice” turn only 
counts as one move.

Example: R²DU’ has HTM 3, 
QTM 4,
STM 2.



Proved & Simulated Upper Bounds for

Fridrich* and Petrus HTM means
Step-Greedy

w/ cancels 
to depth 1 
(10000 
simulations) 

Step-Greedy 
w/o cancels 
(10000 
simulations) 

Colorfixed

w/ cancels 

to depth 1 
(proved)

Colorfixed
w/o 

cancels 

(proved)

47.748.950.5851.63Fridrich*

40.541.242.9143.90Fridrich* w/ 

optimal LL

39.940.742.0842.91Petrus w/ 
optimal 

ZBLL

46.447.448.4149.48Petrus



Zborowski-Bruchem endgame
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Further optimization strategies & 

distributed computations

• Depth-first search with Fridrich* has mean 
around 37 moves. Get around 33 moves 
using Petrus steps 1 and 2, then additional 
square, then ZB endgame (PBBZB).

• Try alternate algs (e.g., All Optimals)

• Back-tracking/insertions/premoves



CUBE CODING

• CubeTools written in GAP to assemble and 
analyze distributed output from Jelinek’s JACube
and Reid’s CubeExplorer.

• Auxiliary programs (Visual Basic) for distributed 
computations: JACubeGUI, emailer, attachment 
downloader, results assimilator

• C++ version of DFSAO, currently using PBBZB 
cube partition with premoves. 



DFSAO averages (simulated)

21.8 (1K sims), max 242

20.7 (1K sims), max 233

23.3 (10K sims), max 261

25.46 (100K sims)0

Solution length (FTM)Number of premoves



DFSAO superflip results

22 so far.7

225-6

21 so far.8

243-4

271-2

340

Solution lengthNumber of premoves

Mortal’s Algorithm Conjecture: All scrambles can be solved in “low-twenties” via 

DFSAO with the PBBZB partition and at most 3 premoves.



22-move “human” superflip solution

• 2x2x2:  D2 L’ F’ B’ D2 L

• +square (to 2x2x3):  L’ F2 U’ R2 F2 U L

• +square (to F2L minus slot):  R’ D2 B R2 B’

• ZBF2L:  B R2 B’ D2 B’ D2 B R2

• ZBLL:  D2

• Correction moves: U2 B U D F2



21-move “human” (?) superflip

solution

• 2x2x2:  L2 D2 F2 R F’ B’ L’

• +square (to 2x2x3):  L R2 D L’ R D2 F2

• +square (to F2L minus slot):  F’ R2 F (R)

• ZBF2L:  skip

• ZBLL:  skip

• Correction moves: (R’) U2 B R2 U’ D R’ F2



Efficient Semi-rectangular Scheme  

motivated by Subgroup Covers

• “Factorial-radix” representation based on semi-
direct product structure works well on all 7776 
ZBLL or all 62208 LL permutations…but…!

• …we only want to cover equivalence classes 
mod M+inv+AUF (ZBLL has 177, LL 1212).

• Idea: start with PLL subgroup’s classes and see 
how efficiently they extend via semidirect
product structure to cover ZBLL’s CO types.



PLL and ZBLL CP classes

• N = null CP case (2-gen ZBLL’s)
• (e?)

• R = right-swap CP

• D = diagonal-swap CP



Non-PLL CO subclases

& rotational variants (though not all)



ZBLL CO subclasses

by CP class

• N=null CP:  6 CO subclasses

• D=diag swap: same 6 CO’s

• R=right swap: 16 (for 271) or 11 CO’s



EP types for R (CP) classes 

(0 redundant)

• Those with 180-degree + R/L reflection 
symmetry have same 7 EP types as PLL 
R’s.

• All the rest have all possible 12 EP types 
(original 7 cases extended almost 
symmetrically).



PoNDeR-based covers for 

ZBLL mod MAUF and MinvAUF

• Efficient with either 271-system or 177-system; 
has only 32 classes in 177-system, each having 
either 7 or 12 EP types. In 271-system, there are 
only 6 symmetrically-placed M-redundancies 
(placeholders).

• For 177-system, drop redundant inv-
redundancies (nice surprise: they are fairly 
consistently placed)



Extension to a cover for 

LL mod MinvAUF

• PNDR 177-alg ZBLL extends naturally to 8x177-

system for LL-at-once (1416 vs. 1212) based on 

the 8 non-reduced EO cases.

• To compensate, many algs could be replaced by 

“Concatenation” and “Slice-conjugate” algs: 

• (L R D2 L' D' L D2 R' D L ')(L D' R D2 L' D R' F' 

B' D2 F B) cancels 12 moves!

• Rm(R U R’ U R U2 R’)R’m is an optimal non-

ZBLL  LL-alg.



Distributed computing search for 

Concatenation LL Algs

• 103 max-10 algs generate 62+513=574 of 
1212

• 274 max-11 algs generate 157+656=813
of 1212.


