From covering congruences to the superflip: a distributed computing experiment

Morley Davidson, Joseph Miller (Kent State University) and Bruce Norskog (Boston)

Common methodology

Start with general-purpose software

Formulate some conjectures & plan ahead

Obtain or rewrite as specific-purpose code

(Distribute computations if necessary)

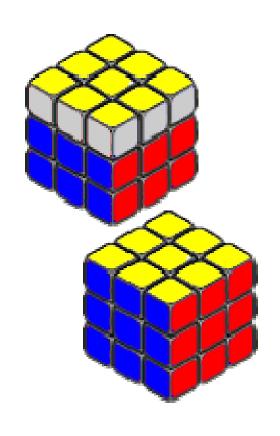
Former D.C. experiment

Partition polynomials: distribution of zeros, Mahler measure contribution on sub-arcs, exceptional zeros, factorization & discriminants, multiplicative properties of coefficients of their irreducible parts

Genesis of current experiment

- Found tables online for cubing systems such as Fridrich, Petrus, and Roux. Got interested in move-count averages...
- ...wanted to learn an advanced system such as the ZB endgame (ZBF2L appl. to Fridrich & ZBLL appl. to Fridrich and Petrus)...
- ...wanted to create a classification scheme for LL permutation equiv classes based on covering subgroups.

Fridrich System


Step 1: "Cross"

Steps 2,3,4,5 ("F2L"): First Two Layers

Step 6 ("OLL"): Orient Last Layer

Step 7 ("PLL"): Permute LL

(ZBF2L = F2L4&OELL)

Petrus System

Step 1: Form a 2×2×2

Step 2: Extend to a 2×2×3

Step 3: Orient Edges e.g.

to

Step 4: Complete a 2×3×3


Step 5: Position Corners

Step 6: Orient Corners

Step 7: Position Edges

(ZBLL = Petrus Steps 5&6&7)

Fridrich LL approach

- OLL: 216 equiv. classes, reduces to 57 mod U-turns and whole-cube rotations (mod Mrot+AUF), and to 40 mod LL (dihedral) symmetries (M+AUF).
- PLL: 288 perms, reduces to 21 mod Mrot+AUF, 14 mod M+AUF, and 13 cases mod M+inv+AUF.
- vs. LL in one step: 1212 cases mod M+inv+AUF.

Many ways to save moves

(even with color-fixed partitions, same number of steps, and single alg representatives):

Pochmann: misplacing a pair of F2L C/E pairs in diagonally-opposite slots gives shorter average PLL (while re-swapping slots).

Distributed computation (DM, spring 09): no such improvement for any other PLL "wrong slots" variant, and never for ZBLL.

Step-Greedy Petrus

Step 1: Form a 2×2×2 (8 choices; pick the cheapest)

Step 2: Extend to a 2×2×3 (3 choices)

Step 3: Orient Edges

Step 4: Complete a 2×3×3

(2 choices)

Move-count metrics

- HTM: each ¼- or ½-turn is one move;
 a.k.a. HTM.
- QTM: each ½-turn is one move.
- STM: HTM but each "slice" turn only counts as one move.

Example: R²DU' has HTM 3, QTM 4, STM 2.

Proved & Simulated Upper Bounds for Fridrich* and Petrus HTM means

	Colorfixed w/o cancels (proved)	Colorfixed w/ cancels to depth 1 (proved)	Step-Greedy w/o cancels (10000 simulations)	Step-Greedy w/ cancels to depth 1 (10000 simulations)
Fridrich*	51.63	50.58	48.9	47.7
Fridrich* w/optimal LL	43.90	42.91	41.2	40.5
Petrus	49.48	48.41	47.4	46.4
Petrus w/ optimal ZBLL	42.91	42.08	40.7	39.9

Zborowski-Bruchem endgame

	HTM mean	# algs (perms)	# mod AUF+M (w/ AUF costs)	# mod AUF+M +inv (w/ AUF costs)	Minimal # for optimal step
ZBF2L	< 8.09	1200	158	≥ 125 (varies)	≈ 1.4× (varies)
ZBLL	< 12.64	7776	270	177 (exact)	466 or 292
Total	< 20.73	Too many!	428	≥ 302	≈ 1.4× (to stay < 20.73)

Further optimization strategies & distributed computations

 Depth-first search with Fridrich* has mean around 37 moves. Get around 33 moves using Petrus steps 1 and 2, then additional square, then ZB endgame (PBBZB).

Try alternate algs (e.g., All Optimals)

Back-tracking/insertions/premoves

CUBE CODING

- CubeTools written in GAP to assemble and analyze distributed output from Jelinek's JACube and Reid's CubeExplorer.
- Auxiliary programs (Visual Basic) for distributed computations: JACubeGUI, emailer, attachment downloader, results assimilator
- C++ version of DFSAO, currently using PBBZB cube partition with premoves.

DFSAO averages (simulated)

Number of premoves	Solution length (FTM)
0	25.46 (100K sims)
1	23.3 (10K sims), max 26
2	21.8 (1K sims), max 24
3	20.7 (1K sims), max 23

DFSAO superflip results

Number of premoves	Solution length
0	34
1-2	27
3-4	24
5-6	22
7	22 so far.
8	21 so far.

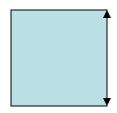
Mortal's Algorithm Conjecture: All scrambles can be solved in "low-twenties" via DFSAO with the PBBZB partition and at most 3 premoves.

22-move "human" superflip solution

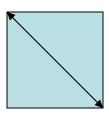
- 2x2x2: D2 L' F' B' D2 L
- +square (to 2x2x3): L' F2 U' R2 F2 U L
- +square (to F2L minus slot): R' D2 B R2 B'
- ZBF2L: B R2 B' D2 B' D2 B R2
- ZBLL: D2

Correction moves: U2 B U D F2

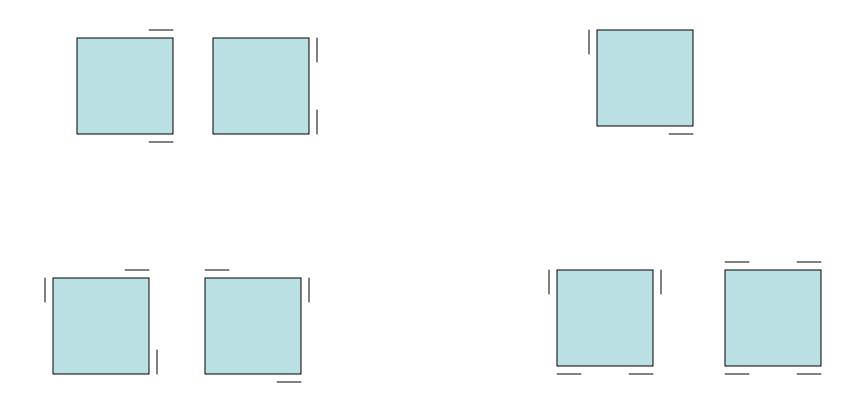
21-move "human" (?) superflip solution


- 2x2x2: L2 D2 F2 R F' B' L'
- +square (to 2x2x3): L R2 D L' R D2 F2
- +square (to F2L minus slot): F' R2 F (R)
- ZBF2L: skip
- ZBLL: skip
- Correction moves: (R') U2 B R2 U' D R' F2

Efficient Semi-rectangular Scheme motivated by Subgroup Covers


- "Factorial-radix" representation based on semidirect product structure works well on all 7776 ZBLL or all 62208 LL permutations...but...!
- ...we only want to cover equivalence classes mod M+inv+AUF (ZBLL has 177, LL 1212).
- Idea: start with PLL subgroup's classes and see how efficiently they extend via semidirect product structure to cover ZBLL's CO types.

PLL and ZBLL CP classes


- N = null CP case (2-gen ZBLL's)
- (e?)
- R = right-swap CP

D = diagonal-swap CP

Non-PLL CO subclases

& rotational variants (though not all)

ZBLL CO subclasses by CP class

N=null CP: 6 CO subclasses

D=diag swap: same 6 CO's

R=right swap: 16 (for 271) or 11 CO's

EP types for R (CP) classes (0 redundant)

 Those with 180-degree + R/L reflection symmetry have same 7 EP types as PLL R's.

 All the rest have all possible 12 EP types (original 7 cases extended almost symmetrically).

PoNDeR-based covers for ZBLL mod MAUF and MinvAUF

- Efficient with either 271-system or 177-system; has only 32 classes in 177-system, each having either 7 or 12 EP types. In 271-system, there are only 6 symmetrically-placed M-redundancies (placeholders).
- For 177-system, drop redundant invredundancies (nice surprise: they are fairly consistently placed)

Extension to a cover for LL mod MinvAUF

- PNDR 177-alg ZBLL extends naturally to 8x177system for LL-at-once (1416 vs. 1212) based on the 8 non-reduced EO cases.
- To compensate, many algs could be replaced by "Concatenation" and "Slice-conjugate" algs:
- (L R D2 L' D' L D2 R' D L ')(L D' R D2 L' D R' F'
 B' D2 F B) cancels 12 moves!
- Rm(R U R' U R U2 R')R'm is an optimal non-ZBLL LL-alg.

Distributed computing search for Concatenation LL Algs

 103 max-10 algs generate 62+513=574 of 1212

 274 max-11 algs generate 157+656=813 of 1212.