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Convenient to take c =1
for speed, simplicity.

Covers same set of curves
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Enumerate all affine points
(z,y) € Fp x Fp, satisfying
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Use generalized addition law
to make an addition table
for all pairs of points.

Check associativity etc.
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Pick a prime p; e.g. 47.
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Try p =47, d = 25:
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IS nonzero for most points
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Edwards addition law is

associative whenever defined.
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is nonzero for all points

(z1,y1), (z2,y2) on curve.
Addition law is a group law!
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is nonzero for most points
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Edwards addition law is

associative whenever defined.

Try p =47, d = —1:
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is nonzero for all points

(z1,y1), (z2,y2) on curve.
Addition law is a group law!
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either way d is a square. Q.E.D.
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for all non-square d: complete system of addition laws
on E equals two."
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either way d is a square. Q.E.D.
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either way d is a square. Q.E.D.
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on E equals two.” ... meaning:
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in projective coordinates

must have exceptional cases

in E(k) x E(k), where

k = algebraic closure of k.
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completeness proof “The smallest cardinality of a
for all non-square d: complete system of addition laws
on E equals two.” ... meaning:

It :c% —I—y% =1+ d:c%y%

2

" I
and z2 + 93 = 1 + dz3y3 Any addition formula

for a Welerstrass curve E

and dz1zry1yr = %1
then dm%y%(xz + y2)2

= dm%y%(x% + y% + 2zo1y?)

— dm%y%(dm%yg + 1+ 2zoy»>)

— d%%y%m%yg—I—da:%y%—|—2d:c%y%:c2y2
=1+ dm%y% + 2x1Y1 Edwards addition formula has

in projective coordinates
must have exceptional cases
in E(k) x E(k), where

k = algebraic closure of k.

= 2% + y? + 22191 = (71 £ ¥1)%. exceptional cases for E(k)
... but not for E(k).
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either way d is a square. Q.E.D.
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Any addition formula
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in projective coordinates

must have exceptional cases
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Any addition formula

for a Welerstrass curve E

in projective coordinates

must have exceptional cases

in E(k) x E(k), where

k = algebraic closure of k.

Edwards addition formula has
exceptional cases for E(k)

... but not for E(k).

We do computations in E(k).

Summary: Assume k field;
2 # 0 in k; non-square d € k.
Then {(z,y) € k X k :

z° +y° = 1+ dz?y?}
Is a commutative group with

(z1,y1) + (22, ¥2) = (23, ¥3)
defined by Edwards addition law:

Iy — T1Y2 + Y1T2
1 +dz1zoy1Yy0
Y1y — T2
Y3 =

1 —dz1z0Y1Y2

Terminology: "Edwards curves”
allow arbitrary d € k*; d = ¢*
are “original Edwards curves’;
non-square d are ‘complete.”
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Summary: Assume k field;
2 # 0 in k; non-square d € k.
Then {(z,y) € k X k :

z° +y° = 1+ dz?y?}
IS a commutative group with
(z1,y1) + (22, y2) = (23, y3)

defined by Edwards addition law:

Iy — T1Y2 + Y1T2
1 +dz1zoy1Yy0
YlY2 — T1X2
Y3 =

1 —dz1zoYy1Y2

Terminology: “"Edwards curves”
allow arbitrary d € k*; d = ¢*
are “original Edwards curves’;
non-square d are ‘complete.”

d = 0: "the clock group.”
T2 1 y2 — 1, parametrized

by (z,y) = (sin, cos).

Gauss parametrized

z° +y?> =1 —z°y° by

(z,y) = (“lemn sin”, “lem:

Abel, Jacobi “sn, cn, dn”

cover all elliptic curves,
but (sn, cn) does not
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or to (lemn sin, lemn cos).

Edwards x is sn;

Edwards y is cn/dn.
Theta view: see Edwards ¢
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2 # 0 in k; non-square d € k. T2 1 y2 — 1, parametrized
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(z1,91) + (22, y2) = (23, y3)
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(z,y) = (“lemn sin”, “lemn cos").
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or to (lemn sin, lemn cos).
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allow arbitrary d € k*; d = c? Edwards z is sn;

are “original Edwards curves’; Edwards y is cn/dn.
non-square d are “complete.” Theta view: see Edwards paper.




ry: Assume £ field;

n k; non-square d € k.
(z,y) €k xk:

z° +y° = 1+ dz?y?}
mmutative group with
) + (22, 92) = (23, y3)

by Edwards addition law:

T1Y2 + Y122
+dziToY1Y2
Y1y2 — T1T2
— dT1T2Y1Y2

ology: “Edwards curves”
rbitrary d € k*; d = ¢*
iginal Edwards curves”
uare d are “complete.”

d = 0: "the clock group.”
T2 1 y2 — 1, parametrized

by (z,y) = (sin, cos).

Gauss parametrized

z° +y?> =1—z°y° by

(z,y) = (“lemn sin”, “lemn cos").

Abel, Jacobi “sn, cn, dn”

cover all elliptic curves,
but (sn, cn) does not
specialize to (sin, cos)

or to (lemn sin, lemn cos).

Edwards z is sn;

Edwards y is cn/dn.
Theta view: see Edwards paper.

Every ¢
with a
IS birat
to an E

Unique
Conver
no nee
accider
excepti

Particu
no nee
attacke
excepti
hearing



ne k field:

quare d € k.

X k

- 1 + dz’y?)
 group with

) = (23, 93)

ds addition law:
7

Y2

L2

/1Y2

dwards curves’
ck*; d=c"

jards curves' ;
“complete.”

d = 0: "the clock group.”
T2 1 y2 — 1, parametrized

by (x,y) = (sin, cos).

Gauss parametrized

z° +y?> =1—z°y° by

(z,y) = (“lemn sin”, “lemn cos").

Abel, Jacobi “sn, cn, dn”
cover all elliptic curves,
but (sn, cn) does not
specialize to (sin, cos)

or to (lemn sin, lemn cos).

Edwards z Is sn;

Edwards y is cn/dn.
Theta view: see Edwards paper.

Every elliptic cur
with a point of o
Is birationally eq
to an Edwards ci

Unique order-2 p
Convenient for ir
no need to worry
accidentally bum
exceptional Input

Particularly nice

no need to worry
attackers manufz
exceptional Input
hearing case dist



d = 0: "the clock group.”
T2 1+ y2 — 1, parametrized
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d = 0: "the clock group.”
T2 1 y2 — 1, parametrized

by (x,y) = (sin, cos).

Gauss parametrized

z° +y?> =1—z°y° by

(z,y) = (“lemn sin”, “lemn cos").

Abel, Jacobi “sn, cn, dn”
cover all elliptic curves,
but (sn, cn) does not
specialize to (sin, cos)

or to (lemn sin, lemn cos).

Edwards z Is sn;

Edwards y is cn/dn.
Theta view: see Edwards paper.

Every elliptic curve over &
with a point of order 4
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Unique order-2 point = complete.
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no need to worry about
accidentally bumping into
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Particularly nice for cryptography:

no need to worry about
attackers manufacturing
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hearing case distinctions, etc.
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to an Edwards curve.

Unique order-2 point = complete.
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no need to worry about
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Particularly nice for cryptography:
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attackers manufacturing
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Every elliptic curve over &
with a point of order 4

Is birationally equivalent
to an Edwards curve.

Unique order-2 point = complete.

Convenient for implementors:
no need to worry about
accidentally bumping into
exceptional Inputs.

Particularly nice for cryptography:

no need to worry about
attackers manufacturing
exceptional inputs,

hearing case distinctions, etc.

What about elliptic curves
without points of order 47

What about elliptic curves
over binary fields?

Continuing project (B.—L.):
For every elliptic curve E,
find complete addition law for E

with best possible speeds.

Complete laws are useful
even if slower than Edwards!
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What about elliptic curves
over binary fields?

Continuing project (B.—L.):
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find complete addition law for E

with best possible speeds.
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What about elliptic curves
over binary fields?

Continuing project (B.—L.):
For every elliptic curve E,
find complete addition law for E

with best possible speeds.
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What about elliptic curves
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Continuing project (B.—L.):
For every elliptic curve E,
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What about elliptic curves
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find complete ac
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Complete laws are useful

even if slower than Edwards!

2008 B.—Birkner—L.—Peters:
“twisted Edwards curves”
az? + Y% = 1+ dz?y?
cover all Montgomery curves.

Almost as fast as a = 1;
brings Edwards speed
to larger class of curves.

2008 B.—B.—Joye—L.—P.:
every elliptic curve over Fy
where 4 divides group order
is (1 or 2)-isogenous

to a twisted Edwards curve.
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“twisted Edwards curves”

az? + y° = 1 4 dzy?

cover all Montgomery curves.

Almost as fast as a = 1;
brings Edwards speed
to larger class of curves.
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every elliptic curve over Fy
where 4 divides group order
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“twisted Edwards curves’

az? + y° = 1 + dzy?

cover all Montgomery curves.

Almost as fast as a = 1;
brings Edwards speed

to larger class of curves.
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every elliptic curve over Fy,
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d, t, z1,Yy1, T2, Yo
d I1s not a square

27d # (2 — t)3;

zi+yi =214y
T5+y5 = T2+ Y,
Then 1 — 2dzqx:
dzt(z2 + yo + (1



Ia:2y2 to

(t+2)d

10t:

Completeness

T1 + o+ (t — 2)z120 +
(z1 —y1)(z2 — y2) +
_dzé(zoy1 + T2Y2 — Y1Y2)

*3 = 1 — 2dziToYr —
dzg(z2 + Y2 + (t — 2)z292)
y1 +y2 + (t — 2)y1y2 +
(y1 — z1)(y2 — z2) +

s — dyi(yoz1 + 222 — T122)

1 —2dy1yozr —
dy$(y2 + z2 + (t — 2)y2z2)

Can denominators be 07

Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;
d,t, T1,Y1, T2, Y2 € K;

d I1s not a square in k;

27d # (2 — t)3;

TT Y = T1+Y1+ET1Y) -
T5+Y5 = To+ Yo +tToyo -
Then 1 —2dz1zoYyy —
dzi(z2 + Y2 + (t — 2)z2y>



Completeness Only if d is a square!

1+ o + (t — 2)z120 + Theorem: Assume that
(z1 —y1)(z2 — ¥2) + k is a field with 2 # 0;
o = d2@Y F o2y —yiyy) | dtTLYL T2 €K
1 —2dzizoY0 — | d is not a square in k;
dzi(z2 + y2 + (t — 2)z212) 27d # (2 — t)3;
:1:% +y% = 1+ Y1 +tT1Y1 —I—da:%y%;
Y1 +y2 + (t — 2)y1y2 + :1:% +y§ — 27+ Yo +txToY +da:%y§.
(y1 — z1)(y2 — z2) + Then 1 —2dz1zoYyy —
2
Y3 = dyy (Y2Z1 + YoTo — 21%2) dz$(z2 + y2 + (t — 2)z2y2) # 0.
1 —2ay1yoz2 —

dy$(y2 + z2 + (t — 2)y2z2)

Can denominators be 07




Completeness

1+ o + (t — 2)z120 +
(z1 —y1)(z2 — y2) +
_dzé(zoy1 + T2Y2 — Y1Y2)

3= 1 — 2dziTo7Yn —
dzg(z2 + Y2 + (t — 2)z292)
y1 +y2 + (t —2)y1y2 +
(y1 — z1)(y2 — z2) +

s — dyi(yoz1 + yoz2 — T122)

1 —2dy1yoz)r —
dy$(y2 + z2 + (t — 2)y2z2)

Can denominators be 07

Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;

d,t, 1,Y1,22, Y2 € k;

d I1s not a square In k;

27d # (2 — t)3;

:1:% +y% = T1t+Y1+tT1Y1 —I—da:%y%;
x%+y§ = o+ Yo —I—tatzyg—l—dm%y%.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.



>teness

1+ T+ (t — 2):81:132 -+

1 — y1)(z2 — y2) +

z4(Toy1 + T2Y2 — Y192)

— 2dT1ToY7 —
z4(z2 + Y2 + (t — 2)z2y2)

1+ Y2+ (t—2)y1y2 +
1 — z1)(y2 — 2) +
yi(yoz1 + yozo — T120)

— 2dy1Y2Tr —
y2(y2 + T2 + (t — 2)yoz2)

nominators be Q7?7

Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;

d,t, z1,Y1, 22, Y2 € k;

d I1s not a square in k;

27d # (2 — t)3;

:z:% +y% = T1+Y1+tT1Y] +da:%y%;
m§+y§ = T2+ Y2 +txToYo +d$%y§.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # 0.

By £ <+ y symmetry
also 1 — 2dyiyrxo —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof:
1 — 2d:
dz$(z:



t—2)z120 +

) — Y2) +
- T2Y2 — Y192)
Y2 —

2+ (t — 2)zoy2)

t —2)y1y2 +
jp — T2) +
- Y2T2 — T1TD)

L) —
> + (T — 2)yox2)

s be 07

Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;

d,t, T1,Y1, T2, Y2 € K;

d I1s not a square In k;

27d # (2 — t)3;

:1:% +y% = T1+Y1+tT1Y] —I—da:%y%;
x%+y§ = Ip+ Yo —I—tatzyg—l—dm%y%.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose
1 —2dz1z0oYy —
da:%(:cz + yo + (1



192)

)z21y2)

1Z2)

)y222)

Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;

d,t, T1,Y1, T2, Y2 € K;

d I1s not a square in k;

27d # (2 — t)3;

:z:% +y% = T1+Y1+tT1Y] +da:%y%;
m§+y§ = T2+ Y2 +txT2Yo +d$%y§.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # 0.

By £ <+ y symmetry
also 1 — 2dyjyrxo —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose that
1 — 2dz1ToY> —
dz? (T2 + yo + (t — 2)z21



Only if d is a square!

Theorem: Assume that
k is a field with 2 # 0;
d,t, T1,Y1, T2, Y2 € K;
d I1s not a square In k;

27d # (2 — t)3;
2

:1:% +y% = 1 +Y1+tT1Y1 —I—da:%yl;

2

:E% + y% — Ty + Yo +txoys + da:%'yz .

Then 1 —2dz1zoYyy —
dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose that
1 —2dz1z0oYy —
da:%(:cz +yo + (t — 2)zoyp) = 0.



Only if d is a square!

Theorem: Assume that
k is a field with 2 # 0;
d,t, T1,Y1, T2, Y2 € K;
d I1s not a square In k;

27d # (2 — t)3;
2

:1:% +y% = 1 +Y1+tT1Y1 —I—da:%yl;

2

:E% + y% — Ty + Yo +txoys + da:%'yz .

Then 1 —2dz1zoYyy —
dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose that
1 —2dz1z0oYy —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.



Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;

d,t, T1,Y1, T2, Y2 € K;

d I1s not a square In k;

27d # (2 — t)3;

:1:% +y% = T1t+Y1+tT1Y] —I—da:%y%;
x%+y§ = Ip+ Yo —I—tatzyg—l—dm%y%.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose that
1 —2dz1z0oYy —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that
(1 — dz12292)? = dzf(z2 — Y2)°.



Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;
d,t,T1,91, %2, Y2 € k;

d I1s not a square In k;

27d # (2 — t)3;

:1:% +y% = T1t+Y1+tT1Y] —I—da:%y%;
x%+y§ = Ip+ Yo —I—tatzyg—l—dm%y%.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose that
1 —2dz1z0oYy —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that
(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square
SO :c%(a:z — yg)2 =0
and (1 — d:clasgyg)z = 0.



Only if d is a square!

Theorem: Assume that

k is a field with 2 # 0;
d,t,T1,91, %2, Y2 € k;

d I1s not a square In k;

27d # (2 — t)3;

:1:% +y% = T1t+Y1+tT1Y] —I—da:%y%;
x%+y§ = Ip+ Yo —I—tatzyg—l—dm%y%.
Then 1 —2dz1zoYyy —

dz{(z2 + y2 + (t — 2)z2y2) # O.

By £ <+ y symmetry
also 1 — 2dyjyrxr —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

Proof: Suppose that
1 —2dz1z0oYy —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that
(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square
SO :c%(a:z — yg)2 =0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoYy».



d Is a square!

m: Assume that
1eld with 2 # 0;

Y1, 2, Y2 € k;
t a square In k;

(2 —t)°;

— 1 +Y1+tT1Yq +da:1y1 ,
=T+ Y2 +txoy2 + da:2y2 .
— 2dT1T0Yy —

+ Y2+ (¢ — 2)z212) # 0.
> Y symmetry

- 2dy1Y222 —
+ 22 + (¢ — 2)yoz2) # 0.

Proof: Suppose that
1 — 2dz1ToY> —
da:%(a:z + yo + (t — 2)zoyn) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square

SO a:%(:cg — yg)2 =0

and (1 — d$1$2y2)2 = 0.

Hence o0 = yo and 1 = dz1z7Yy».

Curve «
1+y%
1/z1 +



1arel

e that

2 + 0;
c k;
In k:

| +tz1Yy —I—da:%y%;
) +1ToY»o +da:%y§.
Y2 —

— 2)z2y2) # 0.

etry
D
— 2)y2z2) # 0.

Proof: Suppose that
1 —2dz1z0Yy —
da:%(:cz +yo + (¢t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square
so z2(z2 — y2)* = 0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoy>.

Curve equationy
1+ y7 /21 =
1/xq +y1(1/:c%-



-dziYi;

2

Proof: Suppose that
1 —2dz1ToYr —
da:%(a:z +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that
2

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square

SO a:%(:cg — yg)2 =0

and (1 — d$1$2y2)2 = 0.

Hence o0 = yo and 1 = dz1z7Yy».

Curve equationy times 1/x
1 +yi/z] =
1/z1 + yl(l/a:% +t/x1) +



Proof: Suppose that
1 —2dz1z0Yo —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square
so z2(z2 — y2)* = 0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoYy>».

Curve equation; times 1/x%:
1+ y% /x4 =
1/z1 +y1(1/zF +t/z1) + dy?.



Proof: Suppose that
1 —2dz1z0Yo —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square

so z2(z2 — y2)* = 0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoYy>».

Curve equation; times 1/x%:
1+ y% /x4 =

1/z1 +y1(1/zF +t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1:v2 =

dz5 + dy1(dzs + z5t) + dy?.




Proof: Suppose that
1 —2dz1z0Yo —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square

so z2(z2 — y2)* = 0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoYy>».

Curve equation; times 1/x%:
1+ y% /x4 =

1/z1 +y1(1/zF +t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1:v2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2:1:% — 2> + t:z:% + d:z:g:
(1 - dy125)* = d(z2 — y1)*.



Proof: Suppose that
1 —2dz1z0Yo —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square

so z2(z2 — y2)* = 0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoYy>».

Curve equation; times 1/x%:
1+ y% /x4 =

1/z1 +y1(1/zF +t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1:v2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2:1:% — 2> + t:z:% + d:z:g:

(1 - dy125)* = d(z2 — y1)*.

Thus o =vy; and 1 = dyla:%.
Hence 1 = da:g.



Proof: Suppose that
1 —2dz1z0Yo —
da:%(:cz +yo + (t — 2)zoyp) = 0.

Note that z; # 0.

Use curve equations to see that

(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d I1s non-square

so z2(z2 — y2)* = 0
and (1 — d:clasgyg)z = 0.

Hence o0 = yo and 1 = dz1zoYy>».

Curve equation; times 1/x%:
1+ y% /x4 =

1/z1 +y1(1/zF +t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1:v2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2:1:% — 2> + t:z:% + d:z:g:
(1 - dy125)* = d(z2 — y1)*.

Thus o =vy; and 1 = dyla:%.
Hence 1 = da:g.

Now 2:1:% = 2To + t:c% + 9
so 3 = (2—t)zp so 27d = (2—t)3.
Contradiction.



Suppose that
L1T2Y2 —
+ 92+ (¢ — 2)z212) = 0.

1at 1 # 0.

rve equations to see that

r122y2)? = dz?(z2 — y2)?.

othesis d Is non-square

£y — y2)2 =0
— d$1x2y2)2 = 0.

o = Yo and 1 = dz1zoYy>.

Curve equation; times 1/z%:
1+ y2 /2% =

1/z1 + y1(1/z9 + t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1m2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2a:% — 2o + ta:% + da:g:

(1 - dy125)* = d(z2 — y1)*.

Thus o =vy; and 1 = dyla:%.
Hence 1 = d:cg.

Now 2:1:% = 2To + ta:% + 9

s0 3 = (2—t)xy so 27d = (2—1)>.

Contradiction.

What's

Make t
Prove
are cov
using

Make t
Find fc

Latest
Have c
for twis
azx’ -+

wnen a

Close |
and co



that

— 2)zoyr) = 0.

).

ons to see that

= dz4(zp — y2)?.

IS non-square

Curve equation; times 1/z%:
1+ y% /2% =

1/z1 +y1(1/zF +t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1:v2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2:1:% — 2> + t:z:% + d:z:g:

(1 - dy125)* = d(z2 — y1)*.

Thus o =y; and 1 = dyla:%.
Hence 1 = da:g.

Now 2:1:% = 2Ty + t:c% + 9

s0 3 = (2—t)xy so 27d = (2—1)>.

Contradiction.

What's next?

Make the mathel
Prove that all cu
are covered; shot
using Weil and r

Make the compu
Find faster comg

Latest news, B.—
Have complete a
for twisted Hessi.
az’ +y3+1="
when a 1S non-cL

Close in speed tc
and covers differ



1L2Y2-

Curve equation; times 1/z%:
1+ y2 /2% =

1/z1 + y1(1/z9 + t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1m2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2:1:% — 2o + ta:% + da:g:

(1 - dy125)* = d(z2 — y1)*.

Thus o =y; and 1 = dyla:%.
Hence 1 = da:g.

Now 2:1:% = 2To + ta:% + 9

so 3 = (2—t)zy so 27d = (2—t)3.

Contradiction.

What's next?

Make the mathematicians
Prove that all curves

are covered; should be eas
using Weil and rational pai

Make the computer happy:
Find faster complete laws.

Latest news, B.—Kohel-L.:
Have complete addition lay
for twisted Hessian curves
az> +vy> + 1 = 3dzy
when a is non-cube.

Close in speed to Edwards
and covers different curves



Curve equation; times 1/z%:
1+ y% /2% =

1/z1 +y1(1/zF +t/z1) + dy?.
Substitute 1/x1 = d:c%:

1 d2y1:v2 =

dz5 + dy1(dzs + z5t) + dy?.

Substitute 2:1:% — 2> + t:z:% + d:z:g:

(1 - dy125)* = d(z2 — y1)*.

Thus o =vy; and 1 = dyla:%.
Hence 1 = da:g.

Now 2:1:% = 2To + t:c% + 9

so 3 = (2—t)zp so 27d = (2—t)3.

Contradiction.

What's next?

Make the mathematicians happy:
Prove that all curves

are covered; should be easy
using Weil and rational param.

Make the computer happy:
Find faster complete laws.

Latest news, B.—Kohel-L.:
Have complete addition law
for twisted Hessian curves
az> + y3 + 1 = 3dzy

when a Is non-cube.

Close in speed to Edwards
and covers different curves.



