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Financial Bubbles

Financial bubbles have been studied extensively over the last few
years. It has been suggested to use models in which the underlying
discounted price process is a strict local martingale under the
pricing measure. Such models are known to exhibit several
anomalies.



The Dupire Equation (the standard case)

The Dupire equation is a forward equation for the call option price
C as a function of the strike price K and the time to maturity T.
If the underlying stock price process follows a local volatility
model, then the call option price satisfies

{ Cr(K.T) = LC(K, T) for (K, T) € (0,00)>?
C(K.,0) = (x — K)*,

where L is the second order differential operator

2 2
o*(K, T) 0 0
L=—""""* -  (r—qg)K=— —q.
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Here r is the interest rate, q is the continuous dividend yield, x is
the current stock price and o is a local volatility function that

grows at most linearly in the spatial variable.



Failure of Dupire's formula for bubbles

It is easy to check that the Dupire equation fails in its usual form
described above for models with bubbles if option prices are given
by risk-neutral valutation.



Main results

In the present paper we consider Dupire type equations for such
local volatility models with bubbles. In our main result, we show
that if option prices are given by risk-neutral valuation, then the
Dupire equation for call options contains extra terms.

Surprisingly, the corresponding equation for put options does not
contain these extra terms, and is therefore perhaps better suited
for calibration issues.

We show that the option price is the unique classical solution of the
Dupire equation with a bounded distance to the pay-off function.



Alternative prices

Several alternative definitions of the price of an option, for which
the discounted option prices process is merely a local martingale,
have been suggested in the literature. Examples of such alternative
prices are motivated by intermediate collateral requirements. We
formulate a Dupire type equation also for such prices.



Financial model

We let the risk free rate be a constant r > 0 and we assume that
the stock pays a continuous dividend yield g > 0. Under the risk
neutral measure, the stock price process X is modeled by

{ dX(t) = (r — @)X (1) dt + o(X(2), t) dB(2) (1)
X(0) = x,

where ¢ is a given local volatility function and B is a standard
Brownian motion. The current stock price x > 0 denotes
throughout the paper a given constant. If the boundary state zero
can be reached in finite time, then we assume that zero is an
absorbing barrier for the process X. By Ito’s formula, the process
e~ (r=a)tX(t) is a local martingale, but not necessarily a
martingale.



Hypothesis

The volatility function o : (0,00) % [0,00) — (0,00) is continuous.
Moreover, it is locally Holder(1/2) in the first variable, i.e. for any
compact set [D~1, D] x [0, D] there exists a constant C such that
lo(x,t) —o(y,t)| < C|x — y|*/? for all

(x,y,t) € [D™1,D]? x [0, D]. Furthermore, there exists a constant
A such that o(x,t) < A for x < 1.



Remark

We allow for example models in which o(x,t) grows at least like
x for large x, where n > 0. In fact, in any such model, the
process e~ "=t X(t) is a strict local martingale. Also note that,
regardless of the growth rate of o at infinity, equation (1) has a
unique solution that exists for all t > 0. Indeed, the linear bound
at infinity is usually used to avoid exploding solutions; however, in
the present context the process e ("=9tX(t) is automatically a
supermartingale and hence does not explode.



Prices as risk neutral expected values

We mainly study the discounted expected values
C(K,T):=e "TE(XX(T) - K)" (2)

and
P(K,T):=e "TE(K - X(T))" (3)

for different non-negative values of the strike price K and maturity
dates T. By construction, defining option prices as discounted
expected values implies that the corresponding discounted
derivative price processes are martingales (and not merely local
martingales). These discounted expected values coincide with the
smallest initial fortune needed to superreplicate the corresponding
option. We will refer to these expected values as the prices of call
options and put options, respectively.



Main Result

Assume that Hypothesis 1 holds. Then the call price C(K, T) is
the unique bounded classical solution of the equation

Cr=LC+gm+my for (K, T) € (0,00)2

C(K,0) = (x — K)* (4)
C(0, T)=m(T),
where m(T) = e~"TEX(T). The put price P(K, T) is a classical
solution of
Pr=LP for (K, T) € (0, 00)2
P(K,0) = (K —x)* (5)
P(0, T) = 0.

Moreover, P is the unique classical solution of (5) satisfying
(K -—e X)) " <P(K,T)<e K (6)

for all (K, T) € (0,00)2.



Equation (5) can formally be viewed as a pricing (Black-Scholes)
equation for a call option if we regard K as the spot price of an
underlying asset. Consequently, one solution of (5) is given by the
stochastic representation

P(K,T)=e 9TE(k(T) — x)*,
where k is the diffusion process

dk(t) = —(r — q)k(t) dt + o(k(t), T — t) dB(t) (7)
k(0) = K

absorbed at 0. Indeed, it follows from [2] that P is a classical

solution to (5). In fact, it is the smallest non-negative solution, so

P(K, T)< P(K,T). (8)



In the case of bubbles, P is typically not convex in the spatial
variable. However, it follows directly from (2) and (3) that the
functions C and P are convex in the strike price K. Accordingly,
the inequality (8) may be strict, and P does not necessarily
coincide with P for models with bubbles. Thus there is no
uniqueness of solutions to equation (5) in the class of functions of
at most linear growth. (If the volatility o satisfies a linear bound at
infinity, then P and P coincide.)



It has been suggested that the set of admissible portfolios is
restricted so that the hedging portfolio satisfies a collateral
requirement at all times before maturity. In the present setting,
this requirement means that the hedging portfolio for a call option
should be worth at least

a(e”9T=OX(t) — K)*

at each instant t € [0, T], where a € [0, 1] is some given constant.



The smallest initial value of a superreplicating portfolio satisfying
this collateral requirement is given by

CHK, T)=C(K, T)+a(xe" 9" — m(T)). (9)

Since the pay-off of a put option is bounded, it is not natural to
impose collateral conditions on the hedging portfolio in this case.
We therefore refrain from considering alternative prices for put
options. The proof of the following result directly follows from the
main theorem and (9).



Theorem

The smallest superreplicating price C*(K, T), in the presence of
collateral requirements as described above, is the unique bounded
classical solution of the equation

C} =LC*+ (1 - a)(gm+ mT) for (K, T) € (0,00)?
C*(K,0) = (x— K)*"
CY0,T)=(1—a)m(T)+ axe 9.

(10)



Remark

The price corresponding to o = 1 is the one that behaves most like
the price when there is no bubble in the underlying. For example,
note that in this case the usual Dupire equation is obtained.



Calibration

The above results may be used for calibration of models from given
option prices. The existence of a local volatility consistent with
observed option data is closely related to the problem of finding a
Markov process with the same distributional properties as a given
stochastic process. Assume that prices 6(K, T) of call options are
given (or more realistically, that C(K, T) is constructed from a
discrete set of observed prices using some suitable method of
interpolation).



If «v is specified to be 1, then define

(11)
Assuming that o satisfies Hypothesis 1, the corresponding call
option prices C1(K, T) can be calculated according to (9), or
equivalently by solving (10).

(K. T) = 2(Cr(K, T)+ (r— q)KCx(K, T) + qC(K, T))
’ Crr(K, T)



If C(K, T) is bounded and satisfies the boundary conditions
C(K,0) = (x — K)T and C(0, T) = xe~97, then by uniqueness of
bounded solutions to (10) we have C = C!. Thus we have found a
local volatility model which is consistent with the given market
data and with the given collateral requirement corresponding to

« = 1. The case of a general a # 1 can be treated similarly by
inserting observed option prices (and their derivatives) in (10), and
then solving for o.



We briefly discuss why the proof of Dupire's equation in a standard
setting where the underlying is a martingale is not directly
applicable in the strict local martingale setting. To do this, assume
for simplicity that r = g = 0, and let p(y, t) = P(X: € dy)/dy
denote the density of X (assuming that this density exists). Then

CK.T) = EX(T)=K)" = [ (v = K)ply: Ty (12)

K
= [ ee ey,
K Jy

where the last equality is justified by integration by parts since X7t
has a finite mean.



Differentiating (12) with respect to T and using the forward
equation for p, we get

Cr(K.T) = /KOO | e Dpte adzy  (13)
= SoR(K TIp(K, T) = 20%(K, T) (K, T),

provided that the out-integrated terms vanish. However, these
terms do not vanish if X is a strict local martingale since the
density in such a case does not decay rapidly at infinity, and thus
the standard argument fails to generalise.



Step 1: Processes close to Geometric Brownian motion

First assume that o satisfies the bounds
D7 x < |o(x,t)| < Dx (14)

for some constant D > 0 and has bounded derivatives of all orders.
By Ito’s formula, the process Y(t) := In X(t) satisfies

dY(t) = By (Y(t),t)dt + oy (Y(t),t) dB(t),

where 2( )
o(e¥,t
By(y,t) = —W‘Ff—q
and (1)
ole’, t
UY(ya t) = .

ey



The process Y is a diffusion on the real line with the drift and the
volatility possessing bounded derivatives of all orders, and the
volatility is bounded from below. Consequently, Y has a smooth
transition density

py(z, T) :=P(Y(T) € dz)/dz

which satisfies the forward equation

(PY)T = (Uj/pY)zz - (ﬁpr)Z7

and py(y, T) and its derivatives decay like o(e~!"!) for large [y]|. It
follows that also the process X has a smooth density
p(y, T) = P(X(T) € dy)/dy which satisfies

pr = (5 Py — ((r = q)yp)y-



Now, since

PIK,T) = e TE(K—X(T))" = e / (K — y)p(y, T) dy

K ry
= e’T/ / p(z, T) dzdy
0 0

by integration by parts, the put price P(K, T) is smooth on
(0,00)?.



Straightforward differentiation shows that

K ry
Prik.T) = [ ["pr(z. T dedy - P(.T)
0

e T / [ T oz, ) — (¢ = q)apz. T)). diy

—rP(K, T)
o? K

- (};T) “Tp(K, T) ~ ’T/ (r—q)yp(y, T)dy — rP(K, T)
0

K

—(72“;’7—) —rT (K T) ( q)K —rT/ (y7 T)dy

(r—gq rT/ / (z, T)dz—rP(K, T)

:02“;” “Tp(K, T) = (r — q)Ke ’T/O p(y, T) dy

—qP(K, T).



Since Px(K, T)=e""T fOK p(y, T)dy and
Pxk(K, T) = e "Tp(K, T), we find that

a?(K, T)

Pr(K.T)=—3

PKK(K7 T)_(r_q)KPK(K7 T)—qP(K, T)
(15)



Step 2: General volatilites close to zero

Step 2. Next we carry out an approximation argument to remove
the bound (14) for small values of the underlying. Thus we assume
that o, in addition to Hypothesis 1, satisfies

0<o(x,t) <D(1+x) (16)

for all (x,t) € (0,00) x [0,00), and we assume that zero is an
absorbing boundary for the corresponding solution X of (1). Let
{on}2 be a sequence of volatilities such that

> on(x,t) — o(x,t) as n — oo for all (x, t),

» each o, satisfies the bound (14) for some constant D, > 0
and has bounded derivatives of all orders,

> o, satisfies the upper bound in (16) uniformly in n, and has a

Holder norm (in the spatial variable) which is bounded on
compact subsets of (0,00)? uniformly in n.



Let X" be the solution of (1) with o replaced by o, and let P" be
defined by
P"(K,T)=e"TE(K - X"(T))".

It follows that P"(K, T) — P(K, T) as n — oo for each
(K, T) € [0,00) x [0, T]. By Step 1 above, each P, satisfies

oa(K, T)

PH(K.T) = 203

'D;%K(K¢ T)_(r_q)K’D;%(Ka T)_an(Kv T)
on (0,00)2. Since the functions P"(K, T) are locally bounded
uniformly in n, interior Schauder estimates imply that P” has
derivatives Pz, PR, and P7 that are locally bounded, uniformly in
n.



Moreover, these derivatives are locally Holder(1/2) continuous
(with respect to the parabolic distance) with Holder norms that are
bounded uniformly in n. By the Arzela-Ascoli theorem, the
sequence {P"}°°; has a subsequence {P"}? | such that P" and
its derivatives Pg, Py, and P7 converge locally uniformly to a
function P and its corresponding derivatives. Clearly, by
uniqueness of limits we have P = P. Since o, converges to o, the
limit function P satisfies (15).



Step 3: General volatilities

Now we consider the general case of a volatility o that merely
satisfies the requirements in Hypothesis 1. Let {o,}7°; be a
sequence of volatilities satisfying Hypothesis 1 with a Holder norm
that is bounded on compacts uniformly in n. Moreover, we assume
that o,(x, t) = o(x, t) for x < n and that the growth assumption
(16) holds for constants D,. Let X" be the corresponding stock
price process. Since o, coincides with o on (0, n) x [0, c0), the
random variables X"(T) converge almost surely to X(T). Thus
P"(K, T) converges to P(K, T) by bounded convergence. Another
application of the interior Schauder estimates shows that P solves
(15).



Remark

The boundedness of the pay-off function y — (K — y)* of a put
option is essential in the argument for the convergence of P" to P
used in Step 3. Note that the corresponding call prices C" do not
converge to C in general. Indeed, C"(K, T) > (x — K)*, whereas
C(K, T) may be strictly smaller than (x — K)* for certain values
of K and T. Also note that dominated convergence cannot be
applied to prove C" — C since the random variable

X5 :=sup, X"(T) is not necessarily integrable.



Step 4: Boundary behaviour

Since e~ (r=9)X(t) is a supermartingale, it follows from Jensen's
inequality that

P(K,T) = e TE(K-X(T))t >e (K —-EX(T))*"
> (e7"TK —xe 9T)*,

On the other hand, we clearly have P(K, T) < e~"T K. It follows
that P is continuous up to the boundary K = 0 and that

P(0, T) = 0. Moreover, since the paths of X are continuous, we
have that X(T) — x as T | 0. Therefore, another application of
bounded convergence shows that P(K, T) is continuous up to the
initial boundary T =0, and P(K,0) = (K — x)™. This finishes the
proof that the put option price P is a classical solution of (5) that
satisfies (6).



Step 5: Uniqueness in appropriate classes
Next we apply maximum principle techniques to prove that P is
the unique classical solution of (5) that satisfies (6). To do that,
assume that P! and P? both satisfy (5) and (6). Then
F(K,T):= PYK, T)—P?(K, T) is a bounded classical solution of

Fr(K,T)=LF(K,T) for (K, T) € (0,00)>
F(0,T)=0
F(K,0) = 0.

Define
h(K)=1+K,

and note that
hr—Lh=rK+q > 0.

For € > 0, define
F(K,T)=F(K,T)+eh(K),

let [ :={(K, T) €[0,00) x [0, T]: F¢ < 0} for some T > 0, and
assume that [ # ().



Since F is bounded and F(0, T) = 0, the set I" is contained in
(D71, D) x [0, T] for some constant D > 0. Thus, by
compactness, the infimum

To:=inf{T >0: (K, T) €T for some K € (0,00)}

is attained at some point (Kp, To), and F¢(Kp, To) = 0 by
continuity. Since F¢(K,0) = eh(K) > 0, we have Ty > 0.
Therefore, at the point (Kp, Tp) we have

F7(Ko, To) — LF*(Ko, To) = e(ht — Lh)(Ko, To) > 0.



On the other hand, by the definition of Ty and Ky, the function
K — F¢(K, Tp) has a local minimum at K = Kp. Consequently,
the function F€ satisfies F© =0, F. =0, Fg,c > 0and F§ <0 at
the point (Ko, To). Consequently,

F$(Ko, To) — LF(Ko, To) < 0.

This contradiction shows that ' = (), so £ >0 on (0,00) x [0, T].
Since € > 0 and T are arbitrary, it follows that 0 < F = Pl — p2,

Interchanging the role of P! and P? yields the reverse inequality,
ie. Pl = P2



The case of call options

Step 6. Finally, we treat the call option price C using a put-call
parity relation. Taking expected values in the equality

(X(T) = K)" = (K= X(T))" = K+X(T)
we find that

C(K, T)=P(K, T)— e "TK 4+ m(T). (17)



Therefore,

Cr(K,T) = Pr(K,T)+re"""K+ my(T)

_ Uz(i;’T)PKK(K, T) ~ (r — q)KPk(K. T) — qP(K.T)
—i—re*rTK—FmT(T)
— UZUZ’”CKK(K, T)—(r—q)KCk(K, T) —qC(K, T)

+qm(T) + mr(T),

where we used (17), Px = Cx + e~'T and Pxx = Ckk. The fact
that C satisfies the given boundary conditions also follows from
the put-call parity (17) and the boundary behaviour of P. Finally,
the proof of the uniqueness of the solutions to equation (5) within
the given class also shows uniqueness of solutions with a bounded
difference to e~ "7 K. This translates directly to uniqueness for
equation (4) for bounded functions. This finishes the proof of our
result.
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