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Outline

» Volatility smile fitting by mixing log-normal distributions.
» Corollary: A local volatility model with mixture marginals.

» Corollary: A “local volatility” model for stock and running
maximum.

» Theorem.
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Mixing log-normal distributions

The Black-Scholes-(Merton) model assumes that the underlying
asset price has a log-normal distribution under a “risk-neutral”
(martingale) probability measure at the option expiration date T.
It has been proposed to instead assume that the distribution is a
mixture of log-normals.

'BHUPINDER, B. (1998) Implied risk-neutral probability density functions
from options prices: A central bank perspective. In Forecasting Volatility in the
Financial Markets, 137-167, Oxford.
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(martingale) probability measure at the option expiration date T.
It has been proposed to instead assume that the distribution is a
mixture of log-normals.

Why use a mixture of log-normals?

» Empirical reason: Mixture of two log-normals fits the volatility
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Mixing log-normal distributions

The Black-Scholes-(Merton) model assumes that the underlying
asset price has a log-normal distribution under a “risk-neutral”
(martingale) probability measure at the option expiration date T.
It has been proposed to instead assume that the distribution is a
mixture of log-normals.

Why use a mixture of log-normals?

» Empirical reason: Mixture of two log-normals fits the volatility
smile.!

» Computational reason: The mixture of log-normals gives
prices and Greeks (sensitivities) that are mixtures of
Black-Scholes prices and Greeks.

'BHUPINDER, B. (1998) Implied risk-neutral probability density functions
from options prices: A central bank perspective. In Forecasting Volatility in the
Financial Markets, 137-167, Oxford.
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A mixture of models is not a model.

A model describes the evolution of the underlying asset price, not
just its risk-neutral distribution at the final time T.
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A mixture of models is not a model.

A model describes the evolution of the underlying asset price, not
just its risk-neutral distribution at the final time T.

» If we don't model the evolution, we cannot build successful
trading strategies. Trading strategies generate profits and
losses over time.

» If we don't model the evolution, we cannot price
path-dependent options. The price of a path-dependent
option depends on the joint distribution of the underlying
asset at multiple time points.
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A mixture of models is not a model.

Assume
O<vi <wm.

Consider a “model” with
dSt:rstdt+UOStth, OS t < T,

where
1

1
P{O’é =wn}=_z, P{Ug =w}=_=.
2 2
We set the value of og at time zero, and then the risk-neutral
distribution of S(T) is a mixture of log-normals with volatilities

Vv/v1 and /va.
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A mixture of models is not a model.

Assume
O<vi <wm.

Consider a “model” with
dSt:rstdt+UOStth, OS t < T,

where 1 1
P{O’é =wn}=_z, P{Ug =w}=_=.
2 2
We set the value of og at time zero, and then the risk-neutral
distribution of S(T) is a mixture of log-normals with volatilities

Vv/v1 and /va.

Immediately after time zero, we can determine oy from the
observed returns, and we no longer have a mixture model.
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A local volatility model with mixture marginals.
At time 0 choose a volatility og with
1 1
]P){O'g = V]_} = 5, ]P){O'g = V2} = E
Use this volatility throughout to obtain a process S. To simplify
the presentation, we assume r = 0: dS; = 0oS; dW;.
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A local volatility model with mixture marginals.

At time 0 choose a volatility og with

1 1
]P){O'g = V]_} = 5, ]P){O'g = V2} = E
Use this volatility throughout to obtain a process S. To simplify
the presentation, we assume r = 0: dS; = 0oS; dW;.

Choose a time-partition
|_|:0:T0<T1<T2<~~-<Tn:T.
At each time T;, compute

pl(T,',S) = P{US = Vl’ST,- = S}, pQ(T,',S) = P{US = V2’ST,- = S}.
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A local volatility model with mixture marginals.
At time 0 choose a volatility og with

1 1
]P){O'g = V]_} = 5, ]P){O'g = V2} = E
Use this volatility throughout to obtain a process S. To simplify
the presentation, we assume r = 0: dS; = 0oS; dW;.

Choose a time-partition
MN:0=To<Th<To<---<Tp,=T.
At each time T;, compute
p1(Ti,s) = P{od = vi|ST. = s}, pa(T;,s) = P{og = wao|ST. = s}.

Construct a second process S™ recursively. On [Ty, T1) use the
volatility og chosen above. At each subsequent time T;, redraw the
volatility according to

P{(o7)? = vi} = (T3, ST),  P{(0)* = v} = po(T:, ST).

and use it on [T;, Tit1).
14 /39



Relationship between S and S"

» We set 00” = 09p.

» We use volatility og to generate 5;, 0 <t < T.
» We use volatility aor' to generate sSho<t< Ty
» Therefore, S; = SP for0 <t < Tj.
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Relationship between S and S"

> We set 09 = 09p.

» We use volatility og to generate 5;, 0 <t < T.
» We use volatility aor' to generate sSho<t< Ty
» Therefore, 5; = 5'_I for0<t< T;.

» At time T1, we choose a new a';'-l so that

(5T17<70) (57'1 UTI)

We use volatility O'I-;I-l to continue 5{', T <t<To.

Therefore, (S¢, 00) Z (SMoeM), Th <t < To.

v

v
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Relationship between S and S"

vV v . v. v Y

We set 09 = 0yp.

We use volatility og to generate S5;, 0 <t < T.
We use volatility aor' to generate sSho<t< Ty
Therefore, S; = Sf! for 0 < t < Ty.

At time T1, we choose a new a';'-l so that

(5T17<70) (57'1 UTI)
n

We use volatility o7, to continue 5{', T <t<To.

» Therefore, (St, 09) Z (SMoeM), Th <t < To.

n

> At time Tg, we choose a new o7, SO that

(ST2700) (5T27 )
We use volatility 05'-2 to continue St”, T, <t< T;.

Therefore, (5S¢, 00) 2 (SN oM, Th <t < Ts.
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A local volatility model with mixture marginals.

Properties of S™.
» For each t, S; and S!! have the same distribution, and so . . .
» European calls on S have the same prices as European calls
on S
» S™ has piecewise constant volatility.

> Immediately after each T;, observation of S" reveals the
volatility being used on [T}, T;y1), but not the volatilities that
will be used after time Tji1.
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A local volatility model with mixture marginals.
Take the limit. Recall
0=To<Ti<h<---<T,=T.

Let n — oo so that max; | Tj11 — T;| — 0. It can be shown that
S™ converges to a process S (“S local volatility” ) satisfying

dStY = o(t,SM)SYdW,, 0<t< T,

where

vimi(t,s) + vama(t, s)

o (ts) =Blog|Se =] = =

and 7;(t, s) is the log-normal distribution corresponding to time t
and volatility v;. This is a new argument for a known result.?

2BRr1GO, D. AND MERCURIO, F. A mixed-up smile, Risk, September 2000.
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A local volatility model with mixture marginals.

Corollary (to the theorem at the end)

Assume
dSt = O'tstth, 0 S t S T,

where o, can be an adapted, time-varying process satisfying
E fOT o2 dt < oo. Then there exists a function o(t,s) and a weak
solution to the stochastic differential equation

dSY = o(t,S)SY dW,, 0<t<T,

such that for each t > 0, the random variables S; and Sf" have the
same distribution. Furthermore, for Lebesgue-almost-every

t € [0, T], the “local volatility” function o®(t,s) is a version of
E[0?|S: =s].
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A local volatility model with mixture marginals.

» The corollary generalizes a known result?® by removing the
assumption that o; must be bounded away from zero and
bounded above. These boundedness conditions are violated in
many models, e.g., Heston stochastic volatility model.

3]. Gydngy (1986) Mimicking the one-dimensional marginal distributions of
processes having an Ito differential, Prob. Theory and Related Fields 71,
501-516.

“B. Dupire (1994) Pricing with a smile, Risk 7, 18-20.

21/39



A local volatility model with mixture marginals.

» The corollary generalizes a known result?® by removing the
assumption that o; must be bounded away from zero and
bounded above. These boundedness conditions are violated in
many models, e.g., Heston stochastic volatility model.

> If there is a transition density for SV, then one can compute
o(t,s) using a formula due to Dupire®.

3]. Gydngy (1986) Mimicking the one-dimensional marginal distributions of
processes having an Ito differential, Prob. Theory and Related Fields 71,
501-516.

“B. Dupire (1994) Pricing with a smile, Risk 7, 18-20.



Disclaimer

Under the assumptions in the Corollary, the equation
dSY = o(t, S)SE dW,

can have more than one solution. We have examples of this built
around o(t, s) taking the value zero. We do not yet have a general
theorem that guarantees uniqueness of the solution to the
stochastic differential equation.
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Nonuniqueness
Let Xo = 0 and dX(t) = o+ dW;, where

ot = I(l,oo)(t)l{W1>O}-

The solution is
Xe = I(1,oo)(t)/{W1>0}(Wt - Wl)-
We have o(t,x) =0for0 <t <1, and for t > 1,

]_7 IfX 07
02(t,X) = E[Uﬂxt =x] = { 0, ifx 7: 0.
Both Xt(l) =0 and
XE)(8) = g0y (B)(We — WA)

are solutions of dX/¥ = o(t, XV)dW;. The weak solution we want
is X(1) with probability 3 and X(?) with probability 3.
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Beyond local volatility.

What about path dependent options?

The price of a knock-out call is
B(0, So; °) = E[(ST — K) T l{my<my) s

where
M+ = max_S,.
0<u<T
From the reflection principle for Brownian motion, we have an
explicit formula for B(0, So; %) when the volatility of S is a
constant o.

25 /39



Beyond local volatility.

At time 0 choose a volatility og with

1 1
P{od =v} ==, P{od=w}=r~.
2 2
Use this volatility throughout to obtain a process S. Then the
knock-out call price is

1 1
EB(O’ So; V1) + EB(O’ So; V2).

This is nice analytic formula, but it is based on a nonsensical
dynamic model.

26
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Beyond local volatility.

We could instead use the local volatility model

deV — O'(t, SfV)va de
where
o*(t,s) = E[o3|S: = 5] = vimi(t,s) + vama(t, s)
m1(t,s) + ma(t, s)

and m;(t,s) is the log-normal distribution corresponding to time ¢t
and squared volatility v;.

» For each t > 0, the random variable Sf" has the same
distribution as the random variable S;.

» But the paths of the process S* do not have the same
distribution as the paths of the process S.
» In particular,

1 1
E[(SY¥ - K)+/{M§V§B}] # EB(O’ So;vi) + EB(O’ So; v2).
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Beyond local volatility.
At time 0 choose a volatility og with
1
5
Use this volatility throughout to obtain a process S. Define
Mt = maxogugt Su.

1
P{og =wvi} = 5 P{og = v} =
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Beyond local volatility.
At time 0 choose a volatility og with
1
5
Use this volatility throughout to obtain a process S. Define
M; = maxo<y<t Sy. Choose a time-partition

M:0=To<Thi<Ta<---<Tp=T.

1
P{og =wvi} = 5 P{og = v} =

At each time T;, compute

pk(Tiasa m) = P{O-(% = Vk|ST,- =5, MT, = m}7 k = 172
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Beyond local volatility.
At time 0 choose a volatility og with
1
5
Use this volatility throughout to obtain a process S. Define
M; = maxo<y<t Sy. Choose a time-partition

M:0=To<Thi<Ta<---<Tp=T.

1
P{og =wvi} = 5 P{og = v} =

At each time T;, compute
pi(Ti,s,m) =P{o§g = w|ST, = s, M1, =m}, k=1,2.

Construct a second process S recursively. On [To, T1) use the
volatility g chosen above. At each subsequent time T;, redraw the
volatility according to

P{(cT.)? = vi} = pu(Ti, ST MT), k=12,

and use it on [T;, T;11), where Mg'-i = maxp<u<T. S}
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Beyond local volatility.
Properties of (S™, M™).
» For each t, (S;, M;) and (SI', MI") have the same distribution,
and so . . .
» Barrier options on S have the same prices as barrier options
on S" i.e., they are a mixture of Black-Scholes prices.
» S™ has piecewise constant volatility.

> Immediately after each T;, observation of S" reveals the
volatility being used on [T;, T;;+1), but not the volatilities that
will be used after time Tj1.
Let n — oo so that max; | Tj11 — T;| — 0. It can be shown that
S™ converges to a process S'V satisfying

dSt¥ = o(t, S, M) S{Y dWs,

where
o?(t,s,m) = E[aé’St =s,M; = m}.
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Beyond local volatility.

Corollary (to the theorem at the end)

Assume
dSt = O'tStth, 0 S t é Ta

where oy can be an adapted, time-varying process satisfying
E [, 02 dt < co. Define
M £ max S,.
0<u<t
Then there exists a function o(t,s, m) and a weak solution to the
stochastic differential equation
dSt = o(t, S, M)SEY dw,

where

ME 2 max SLv,
o<u<t

such that for each t > 0, the pair of random variables (S{', MtV)
has the same distribution as the pair (S¢, M;).
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The theorem at the end.

Let CY denote the space of continuous functions from [0, cc) to
RY.
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The theorem at the end.

Let C? denote the space of continuous functions from [0, 00) to
R

Define three operators mapping C? x [0, 00) to C9:
> Shift operator: ©(x, t) £ x(t 4+ ),
» Stopping operator: V(x,t) = x(t A -),
» Difference operator: A(x,t) = x(t + -) — x(t).
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The theorem at the end.

Let C? denote the space of continuous functions from [0, 00) to
RY.
Define three operators mapping C? x [0, 00) to C9:

> Shift operator: ©(x, t) £ x(t 4+ ),

» Stopping operator: V(x,t) = x(t A -),

» Difference operator: A(x,t) = x(t + -) — x(t).

We say ®: C¢Y — C? is an updating function if
> Initiation: ®o(x) = x(0),
» Non-anticipativity: V(®(x),t) = V(d)(V(x, t)), t),
> “Markov" property: ©(®(x), t) = ®(P¢(x) + A(x, t)).
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Theorem (Brunick®)

Given . .
Xt—xo+/ usd5+/ o dWs, t>0,
0 0

where E [ (||us|| + l|osol ||) ds < oo for all t > 0. Let Z = &(X).
For Lebesgue-almost-every t, there are versions

i(t, Ze) = Elpd Z),  5(t, Z0)5" (t, Zt) = Elowa{ |Z4],
and a weak solution
X = X +/ i(s, 2,) ds—i—/ 5(s, 2,) dWs,
0 0

o~

Z = o(X),

such that Z s Z; for every t > 0.

®G. Brunick (2008) A weak existence result with application to the financial
engineer’s calibration problem, Ph.D. dissertation, Carnegie Mellon University.
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Extended partition [1

Canonical space CY.

Canonical filtration {F;}+>o0.

>
>
» 0=Tyg < T1 <--- < T, asequence of finite stopping times.
» {Gi}"_;, a collection of o-fields with G; C Fr, for every i.

>

Tivi—TiegiVv U(A(X, T,'))
i1 2 Givo(V(AKX, T, Ti))

Giv1 C Hiy1
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Concatenation of measures

Theorem
Let P be a probability measure on C?. Then there exists a unique
measure P®" on C9 such that

>
PEMA] = P[A] VA € H;,Vi,

PN[B|Fr] = P[BIG] VB € Hi1,Vi,

i.e., every P-version of P[B|G/] is a P®-version of P*"[B|Fr].
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Convergence

vV v .v.Y

Construct a sequece [1, of extended partitions with ||[1,|| — 0.

Define C = (X).
Under P, X and XXT — C are local martingales.

Show that under each P®™ X and XXT — C are local
martingales.

» Recall the assumption that E||Cr|| < oo.
» Show that E®M||Cy|| = E||Cr||. Use this to conclude that

the collection of probability measures {P®Mn} _ s tight.®
Tightness implies convergence along a subsequence. Call the
limiting measure P>,

Show that C; = [} (u, ®,(X))7 (1, ®u(X)) " du,

where G(t,s) = E®[o0] |®:(X) = s].

R. Rebolledo, La méthode des martingales appliquée 3 I'étude de la
convergence en loi de processus, Mémoires de la Société Mathématique de
France 62, 1-125, 1979.
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