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Outline

I Volatility smile fitting by mixing log-normal distributions.

I Corollary: A local volatility model with mixture marginals.

I Corollary: A “local volatility” model for stock and running
maximum.

I Theorem.
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Mixing log-normal distributions

The Black-Scholes-(Merton) model assumes that the underlying
asset price has a log-normal distribution under a “risk-neutral”
(martingale) probability measure at the option expiration date T .
It has been proposed to instead assume that the distribution is a
mixture of log-normals.

Why use a mixture of log-normals?

I Empirical reason: Mixture of two log-normals fits the volatility
smile.1

I Computational reason: The mixture of log-normals gives
prices and Greeks (sensitivities) that are mixtures of
Black-Scholes prices and Greeks.

1Bhupinder, B. (1998) Implied risk-neutral probability density functions
from options prices: A central bank perspective. In Forecasting Volatility in the
Financial Markets, 137–167, Oxford.
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A mixture of models is not a model.

A model describes the evolution of the underlying asset price, not
just its risk-neutral distribution at the final time T .

I If we don’t model the evolution, we cannot build successful
trading strategies. Trading strategies generate profits and
losses over time.

I If we don’t model the evolution, we cannot price
path-dependent options. The price of a path-dependent
option depends on the joint distribution of the underlying
asset at multiple time points.
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A mixture of models is not a model.

Assume
0 < v1 < v2.

Consider a “model” with

dSt = rSt dt + σ0St dWt , 0 ≤ t ≤ T ,

where

P{σ2
0 = v1} =

1

2
, P{σ2

0 = v2} =
1

2
.

We set the value of σ0 at time zero, and then the risk-neutral
distribution of S(T ) is a mixture of log-normals with volatilities√

v1 and
√

v2.

Immediately after time zero, we can determine σ0 from the
observed returns, and we no longer have a mixture model.
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A local volatility model with mixture marginals.
At time 0 choose a volatility σ0 with

P{σ2
0 = v1} =

1

2
, P{σ2

0 = v2} =
1

2
.

Use this volatility throughout to obtain a process S . To simplify
the presentation, we assume r = 0: dSt = σ0St dWt .

Choose a time-partition

Π : 0 = T0 < T1 < T2 < · · · < Tn = T .

At each time Ti , compute

p1(Ti , s) = P{σ2
0 = v1|STi

= s}, p2(Ti , s) = P{σ2
0 = v2|STi

= s}.
Construct a second process SΠ recursively. On [T0,T1) use the
volatility σ0 chosen above. At each subsequent time Ti , redraw the
volatility according to

P{(σΠ
Ti

)2 = v1} = p1(Ti ,S
Π
Ti

), P{(σΠ
Ti

)2 = v2} = p2(Ti ,S
Π
Ti

),

and use it on [Ti ,Ti+1).
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Relationship between S and SΠ

I We set σΠ
0 = σ0.

I We use volatility σ0 to generate St , 0 ≤ t ≤ T .

I We use volatility σΠ
0 to generate SΠ

t , 0 ≤ t ≤ T1.

I Therefore, St = SΠ
t for 0 ≤ t ≤ T1.

I At time T1, we choose a new σΠ
T1

so that

(ST1 , σ0)
D
= (SΠ

T1
, σΠ

T1
).

I We use volatility σΠ
T1

to continue SΠ
t , T1 ≤ t ≤ T2.

I Therefore, (St , σ0)
D
= (SΠ

t , σ
Π
t ), T1 ≤ t ≤ T2.

I At time T2, we choose a new σΠ
T2

so that

(ST2 , σ0)
D
= (SΠ

T2
, σΠ

T2
).

I We use volatility σΠ
T2

to continue SΠ
t , T2 ≤ t ≤ T3.

I Therefore, (St , σ0)
D
= (SΠ

t , σ
Π
t ), T2 ≤ t ≤ T3.
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A local volatility model with mixture marginals.

Properties of SΠ.

I For each t, St and SΠ
t have the same distribution, and so . . .

I European calls on S have the same prices as European calls
on SΠ.

I SΠ has piecewise constant volatility.

I Immediately after each Ti , observation of SΠ reveals the
volatility being used on [Ti ,Ti+1), but not the volatilities that
will be used after time Ti+1.
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A local volatility model with mixture marginals.

Take the limit. Recall

0 = T0 < T1 < T2 < · · · < Tn = T .

Let n→∞ so that maxi |Ti+1 − Ti | → 0. It can be shown that
SΠ converges to a process S`v (“S local volatility”) satisfying

dS`v
t = σ(t,S`v

t )S`v
t dWt , 0 ≤ t ≤ T ,

where

σ2(t, s) = E
[
σ2

0

∣∣St = s
]

=
v1π1(t, s) + v2π2(t, s)

π1(t, s) + π2(t, s)

and πi (t, s) is the log-normal distribution corresponding to time t
and volatility vi . This is a new argument for a known result.2

2Brigo, D. and Mercurio, F. A mixed-up smile, Risk, September 2000.
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A local volatility model with mixture marginals.

Corollary (to the theorem at the end)

Assume
dSt = σtStdWt , 0 ≤ t ≤ T ,

where σt can be an adapted, time-varying process satisfying
E
∫ T

0 σ2
t dt <∞. Then there exists a function σ(t, s) and a weak

solution to the stochastic differential equation

dS`v
t = σ(t,S`v

t )S`v
t dWt , 0 ≤ t ≤ T ,

such that for each t ≥ 0, the random variables St and S`v
t have the

same distribution. Furthermore, for Lebesgue-almost-every
t ∈ [0,T ], the “local volatility” function σ2(t, s) is a version of
E
[
σ2

t

∣∣St = s
]
.
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A local volatility model with mixture marginals.

I The corollary generalizes a known result3 by removing the
assumption that σt must be bounded away from zero and
bounded above. These boundedness conditions are violated in
many models, e.g., Heston stochastic volatility model.

I If there is a transition density for S`v
t , then one can compute

σ(t, s) using a formula due to Dupire4.

3I. Gyöngy (1986) Mimicking the one-dimensional marginal distributions of
processes having an Itô differential, Prob. Theory and Related Fields 71,
501–516.

4B. Dupire (1994) Pricing with a smile, Risk 7, 18–20.
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Disclaimer

Under the assumptions in the Corollary, the equation

dS`v
t = σ(t, S`v

t )S`v
t dWt ,

can have more than one solution. We have examples of this built
around σ(t, s) taking the value zero. We do not yet have a general
theorem that guarantees uniqueness of the solution to the
stochastic differential equation.
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Nonuniqueness
Let X0 = 0 and dX (t) = σt dWt , where

σt = lI(1,∞)(t)lI{W1>0}.

The solution is

Xt = lI(1,∞)(t)lI{W1>0}(Wt −W1).

We have σ(t, x) = 0 for 0 ≤ t ≤ 1, and for t > 1,

σ2(t, x) = E[σ2
t |Xt = x ] =

{
1, if x 6= 0,
0, if x = 0.

Both X
(1)
t ≡ 0 and

X (2)(t) = lI(1,∞)(t)(Wt −W1)

are solutions of dX `v
t = σ(t,X `v

t )dWt . The weak solution we want
is X (1) with probability 1

2 and X (2) with probability 1
2 .
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Beyond local volatility.

What about path dependent options?

The price of a knock-out call is

B(0,S0;σ2) = E
[
(ST − K )+lI{MT≤B}

]
,

where
MT = max

0≤u≤T
Su.

From the reflection principle for Brownian motion, we have an
explicit formula for B(0,S0;σ2) when the volatility of S is a
constant σ.

25 / 39



Beyond local volatility.

At time 0 choose a volatility σ0 with

P{σ2
0 = v1} =

1

2
, P{σ2

0 = v2} =
1

2
.

Use this volatility throughout to obtain a process S . Then the
knock-out call price is

1

2
B(0,S0; v1) +

1

2
B(0,S0; v2).

This is nice analytic formula, but it is based on a nonsensical
dynamic model.
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Beyond local volatility.
We could instead use the local volatility model

dS`v
t = σ(t, S`v

t )S`v
t dWt ,

where

σ2(t, s) = E
[
σ2

0

∣∣St = s
]

=
v1π1(t, s) + v2π2(t, s)

π1(t, s) + π2(t, s)

and πi (t, s) is the log-normal distribution corresponding to time t
and squared volatility vi .

I For each t ≥ 0, the random variable S`v
t has the same

distribution as the random variable St .

I But the paths of the process S`v do not have the same
distribution as the paths of the process S .

I In particular,

E
[
(S`v

T − K )+lI{M`v
T ≤B}

]
6= 1

2
B(0, S0; v1) +

1

2
B(0, S0; v2).

27 / 39



Beyond local volatility.
At time 0 choose a volatility σ0 with

P{σ2
0 = v1} =

1

2
, P{σ2

0 = v2} =
1

2
.

Use this volatility throughout to obtain a process S . Define
Mt = max0≤u≤t Su.

Choose a time-partition

Π : 0 = T0 < T1 < T2 < · · · < Tn = T .

At each time Ti , compute

pk(Ti , s,m) = P{σ2
0 = vk |STi

= s,MTi
= m}, k = 1, 2.

Construct a second process SΠ recursively. On [T0,T1) use the
volatility σ0 chosen above. At each subsequent time Ti , redraw the
volatility according to

P{(σΠ
Ti

)2 = vk} = pk(Ti , S
Π
Ti
,MΠ

Ti
), k = 1, 2,

and use it on [Ti ,Ti+1), where MΠ
Ti

= max0≤u≤Ti
SΠ

u .
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Beyond local volatility.
Properties of (SΠ,MΠ).

I For each t, (St ,Mt) and (SΠ
t ,M

Π
t ) have the same distribution,

and so . . .

I Barrier options on S have the same prices as barrier options
on SΠ, i.e., they are a mixture of Black-Scholes prices.

I SΠ has piecewise constant volatility.

I Immediately after each Ti , observation of SΠ reveals the
volatility being used on [Ti ,Ti+1), but not the volatilities that
will be used after time Ti+1.

Let n→∞ so that maxi |Ti+1 − Ti | → 0. It can be shown that
SΠ converges to a process S`v satisfying

dS`v
t = σ(t, S`v

t ,M`v
t )S`v

t dWt ,

where
σ2(t, s,m) = E

[
σ2

0

∣∣St = s,Mt = m
]
.
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Beyond local volatility.

Corollary (to the theorem at the end)

Assume
dSt = σtStdWt , 0 ≤ t ≤ T ,

where σt can be an adapted, time-varying process satisfying
E
∫ T

0 σ2
t dt <∞. Define

Mt , max
0≤u≤t

Su.

Then there exists a function σ(t, s,m) and a weak solution to the
stochastic differential equation

dS`v
t = σ(t, S`v

t ,M`v
t )S`v

t dWt ,

where
M`v

t , max
0≤u≤t

S`v
u ,

such that for each t ≥ 0, the pair of random variables (S`v
t ,M`v

t )
has the same distribution as the pair (St ,Mt).
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The theorem at the end.

Let Cd denote the space of continuous functions from [0,∞) to
Rd .

Define three operators mapping Cd × [0,∞) to Cd :

I Shift operator: Θ(x , t) , x(t + ·),

I Stopping operator: ∇(x , t) , x(t ∧ ·),

I Difference operator: ∆(x , t) , x(t + ·)− x(t).

We say Φ: Cd → Cd is an updating function if

I Initiation: Φ0(x) = x(0),

I Non-anticipativity: ∇(Φ(x), t) = ∇
(

Φ
(
∇(x , t)

)
, t
)

,

I “Markov” property: Θ
(
Φ(x), t

)
= Φ

(
Φt(x) + ∆(x , t)

)
.
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Theorem (Brunick5)

Given

Xt = X0 +

∫ t

0
µs ds +

∫ t

0
σs dWs , t ≥ 0,

where E
∫ t

0

(
‖µs‖+ ‖σsσ

T
s ‖
)

ds <∞ for all t ≥ 0. Let Z = Φ(X ).
For Lebesgue-almost-every t, there are versions

µ̂(t,Zt) = E[µt |Zt ], σ̂(t,Zt)σ̂T (t,Zt) = E[σtσ
T
t |Zt ],

and a weak solution

X̂t = X̂0 +

∫ t

0
µ̂(s, Ẑs) ds +

∫ t

0
σ̂(s, Ẑs) dWs ,

Ẑ = Φ(X̂ ),

such that Ẑt
D
= Zt for every t ≥ 0.

5G. Brunick (2008) A weak existence result with application to the financial
engineer’s calibration problem, Ph.D. dissertation, Carnegie Mellon University.
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Extended partition Π

I Canonical space Cd .

I Canonical filtration {Ft}t≥0.

I 0 = T0 ≤ T1 ≤ · · · ≤ Tn, a sequence of finite stopping times.

I {Gi}ni=1, a collection of σ-fields with Gi ⊂ FTi
for every i .

I

Ti+1 − Ti ∈ Gi ∨ σ
(
∆(X ,Ti )

)
I

Hi+1 , Gi ∨ σ
(
∇
(
∆(X ,Ti ),Ti+1

))
I

Gi+1 ⊂ Hi+1
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Concatenation of measures

Theorem
Let P be a probability measure on Cd . Then there exists a unique
measure P⊗Π on Cd such that

I

P⊗Π[A] = P[A] ∀A ∈ Hi , ∀i ,

I

P⊗Π[B|FTi
] = P[B|Gi ] ∀B ∈ Hi+1,∀i ,

i.e., every P-version of P[B|Gi ] is a P⊗-version of P⊗Π[B|FTi
].
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Convergence

I Construct a sequece Πn of extended partitions with ‖Πn‖ → 0.

I Define C = 〈X 〉.
I Under P, X and XX T − C are local martingales.

I Show that under each P⊗Πn , X and XX T − C are local
martingales.

I Recall the assumption that E‖CT‖ <∞.

I Show that E⊗Πn‖CT‖ = E‖CT‖. Use this to conclude that
the collection of probability measures {P⊗Πn}∞n=1 is tight.6

I Tightness implies convergence along a subsequence. Call the
limiting measure P∞.

I Show that Ct =
∫ t

0 σ̂
(
u,Φu(X )

)
σ̂
(
u,Φu(X )

)T
du,

where σ̂(t, s) = E∞[σtσ
T
t |Φt(X ) = s].

6R. Rebolledo, La méthode des martingales appliquée à l’étude de la
convergence en loi de processus, Mémoires de la Société Mathématique de
France 62, 1–125, 1979.
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