Matching Statistics of an Itô Process by a Process of Diffusion Type

Steven E. Shreve
Department of Mathematical Sciences
Carnegie Mellon University
shreve@andrew.cmu.edu

Joint work with Gerard Brunick Department of Mathematics University of Texas

Available at http://www.math.cmu.edu/users/shreve

Outline

- ▶ Volatility smile fitting by mixing log-normal distributions.
- Corollary: A local volatility model with mixture marginals.
- Corollary: A "local volatility" model for stock and running maximum.
- Theorem.

The Black-Scholes-(Merton) model assumes that the underlying asset price has a log-normal distribution under a "risk-neutral" (martingale) probability measure at the option expiration date \mathcal{T} . It has been proposed to instead assume that the distribution is a mixture of log-normals.

¹Bhupinder, B. (1998) Implied risk-neutral probability density functions from options prices: A central bank perspective. In *Forecasting Volatility in the Financial Markets*, 137–167, Oxford.

The Black-Scholes-(Merton) model assumes that the underlying asset price has a log-normal distribution under a "risk-neutral" (martingale) probability measure at the option expiration date \mathcal{T} . It has been proposed to instead assume that the distribution is a mixture of log-normals.

Why use a mixture of log-normals?

¹Bhupinder, B. (1998) Implied risk-neutral probability density functions from options prices: A central bank perspective. In *Forecasting Volatility in the Financial Markets*, 137–167, Oxford.

The Black-Scholes-(Merton) model assumes that the underlying asset price has a log-normal distribution under a "risk-neutral" (martingale) probability measure at the option expiration date \mathcal{T} . It has been proposed to instead assume that the distribution is a mixture of log-normals.

Why use a mixture of log-normals?

► Empirical reason: Mixture of two log-normals fits the volatility smile.¹

 $^{^{1}\}mathrm{BHUPINDER},\ B.\ (1998)$ Implied risk-neutral probability density functions from options prices: A central bank perspective. In *Forecasting Volatility in the Financial Markets*, 137–167, Oxford.

The Black-Scholes-(Merton) model assumes that the underlying asset price has a log-normal distribution under a "risk-neutral" (martingale) probability measure at the option expiration date \mathcal{T} . It has been proposed to instead assume that the distribution is a mixture of log-normals.

Why use a mixture of log-normals?

- ► Empirical reason: Mixture of two log-normals fits the volatility smile.¹
- Computational reason: The mixture of log-normals gives prices and Greeks (sensitivities) that are mixtures of Black-Scholes prices and Greeks.

¹Bhupinder, B. (1998) Implied risk-neutral probability density functions from options prices: A central bank perspective. In *Forecasting Volatility in the Financial Markets*, 137–167, Oxford.

A model describes the evolution of the underlying asset price, not just its risk-neutral distribution at the final time T.

A model describes the evolution of the underlying asset price, not just its risk-neutral distribution at the final time T.

If we don't model the evolution, we cannot build successful trading strategies. Trading strategies generate profits and losses over time.

A model describes the evolution of the underlying asset price, not just its risk-neutral distribution at the final time T.

- If we don't model the evolution, we cannot build successful trading strategies. Trading strategies generate profits and losses over time.
- ▶ If we don't model the evolution, we cannot price path-dependent options. The price of a path-dependent option depends on the joint distribution of the underlying asset at multiple time points.

Assume

$$0 < v_1 < v_2$$
.

Consider a "model" with

$$dS_t = rS_t dt + \sigma_0 S_t dW_t, \quad 0 \le t \le T,$$

where

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

We set the value of σ_0 at time zero, and then the risk-neutral distribution of S(T) is a mixture of log-normals with volatilities $\sqrt{v_1}$ and $\sqrt{v_2}$.

Assume

$$0 < v_1 < v_2$$
.

Consider a "model" with

$$dS_t = rS_t dt + \sigma_0 S_t dW_t, \quad 0 \le t \le T,$$

where

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

We set the value of σ_0 at time zero, and then the risk-neutral distribution of S(T) is a mixture of log-normals with volatilities $\sqrt{v_1}$ and $\sqrt{v_2}$.

Immediately after time zero, we can determine σ_0 from the observed returns, and we no longer have a mixture model.

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. To simplify the presentation, we assume r=0: $dS_t=\sigma_0S_t\,dW_t$.

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. To simplify the presentation, we assume r=0: $dS_t=\sigma_0S_t\,dW_t$.

Choose a time-partition

$$\Pi: 0 = T_0 < T_1 < T_2 < \cdots < T_n = T.$$

At each time T_i , compute

$$p_1(T_i,s) = \mathbb{P}\{\sigma_0^2 = v_1 | S_{T_i} = s\}, \quad p_2(T_i,s) = \mathbb{P}\{\sigma_0^2 = v_2 | S_{T_i} = s\}.$$

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. To simplify the presentation, we assume r = 0: $dS_t = \sigma_0 S_t dW_t$.

Choose a time-partition

$$\Pi: 0 = T_0 < T_1 < T_2 < \cdots < T_n = T.$$

At each time T_i , compute

$$p_1(T_i,s) = \mathbb{P}\{\sigma_0^2 = v_1 | S_{T_i} = s\}, \quad p_2(T_i,s) = \mathbb{P}\{\sigma_0^2 = v_2 | S_{T_i} = s\}.$$

Construct a second process S^{Π} recursively. On $[T_0, T_1)$ use the volatility σ_0 chosen above. At each subsequent time T_i , redraw the volatility according to

$$\mathbb{P}\{(\sigma_{T_i}^{\Pi})^2 = v_1\} = p_1(T_i, S_{T_i}^{\Pi}), \quad \mathbb{P}\{(\sigma_{T_i}^{\Pi})^2 = v_2\} = p_2(T_i, S_{T_i}^{\Pi}),$$
 and use it on $[T_i, T_{i+1})$.

Relationship between S and S^{Π}

- We set $\sigma_0^{\Pi} = \sigma_0$.
- ▶ We use volatility σ_0 to generate S_t , $0 \le t \le T$.
- ▶ We use volatility σ_0^{Π} to generate S_t^{Π} , $0 \le t \le T_1$.
- ▶ Therefore, $S_t = S_t^{\Pi}$ for $0 \le t \le T_1$.

Relationship between S and S^{Π}

- We set $\sigma_0^{\Pi} = \sigma_0$.
- ▶ We use volatility σ_0 to generate S_t , $0 \le t \le T$.
- ▶ We use volatility σ_0^{Π} to generate S_t^{Π} , $0 \le t \le T_1$.
- ▶ Therefore, $S_t = S_t^{\Pi}$ for $0 \le t \le T_1$.
- At time T_1 , we choose a new $\sigma_{T_1}^{\Pi}$ so that $(S_{T_1}, \sigma_0) \stackrel{\mathcal{D}}{=} (S_{T_1}^{\Pi}, \sigma_{T_1}^{\Pi})$.
- ▶ We use volatility $\sigma_{T_1}^{\Pi}$ to continue S_t^{Π} , $T_1 \leq t \leq T_2$.
- ▶ Therefore, $(S_t, \sigma_0) \stackrel{\mathcal{D}}{=} (S_t^{\Pi}, \sigma_t^{\Pi})$, $T_1 \leq t \leq T_2$.

Relationship between S and S^{Π}

- We set $\sigma_0^{\Pi} = \sigma_0$.
- ▶ We use volatility σ_0 to generate S_t , $0 \le t \le T$.
- ▶ We use volatility σ_0^{Π} to generate S_t^{Π} , $0 \le t \le T_1$.
- ▶ Therefore, $S_t = S_t^{\Pi}$ for $0 \le t \le T_1$.
- ▶ At time T_1 , we choose a new $\sigma_{T_1}^{\Pi}$ so that $(S_{T_1}, \sigma_0) \stackrel{\mathcal{D}}{=} (S_{T_1}^{\Pi}, \sigma_{T_1}^{\Pi})$.
- ▶ We use volatility $\sigma_{T_1}^{\Pi}$ to continue S_t^{Π} , $T_1 \leq t \leq T_2$.
- ▶ Therefore, $(S_t, \sigma_0) \stackrel{\mathcal{D}}{=} (S_t^{\Pi}, \sigma_t^{\Pi})$, $T_1 \leq t \leq T_2$.
- At time T_2 , we choose a new $\sigma_{T_2}^{\Pi}$ so that $(S_{T_2}, \sigma_0) \stackrel{\mathcal{D}}{=} (S_{T_2}^{\Pi}, \sigma_{T_2}^{\Pi})$.
- ▶ We use volatility $\sigma_{T_2}^{\Pi}$ to continue S_t^{Π} , $T_2 \leq t \leq T_3$.
- ▶ Therefore, $(S_t, \sigma_0) \stackrel{\mathcal{D}}{=} (S_t^{\Pi}, \sigma_t^{\Pi}), T_2 \leq t \leq T_3$.

Properties of S^{Π} .

- ▶ For each t, S_t and S_t^{Π} have the same distribution, and so . . .
- ▶ European calls on S have the same prices as European calls on S^{Π} .
- ▶ S^{Π} has piecewise constant volatility.
- ▶ Immediately after each T_i , observation of S^{Π} reveals the volatility being used on $[T_i, T_{i+1})$, but not the volatilities that will be used after time T_{i+1} .

Take the limit. Recall

$$0 = T_0 < T_1 < T_2 < \cdots < T_n = T.$$

Let $n \to \infty$ so that $\max_i |T_{i+1} - T_i| \to 0$. It can be shown that S^{Π} converges to a process $S^{\ell \nu}$ ("S local volatility") satisfying

$$dS_t^{\ell v} = \sigma(t, S_t^{\ell v}) S_t^{\ell v} dW_t, \quad 0 \le t \le T,$$

where

$$\sigma^{2}(t,s) = \mathbb{E}[\sigma_{0}^{2} | S_{t} = s] = \frac{v_{1}\pi_{1}(t,s) + v_{2}\pi_{2}(t,s)}{\pi_{1}(t,s) + \pi_{2}(t,s)}$$

and $\pi_i(t,s)$ is the log-normal distribution corresponding to time t and volatility v_i . This is a new argument for a known result.²

²Brigo, D. and Mercurio, F. A mixed-up smile, Risk, September 2000.

Corollary (to the theorem at the end)

Assume

$$dS_t = \sigma_t S_t dW_t, \quad 0 \le t \le T,$$

where σ_t can be an adapted, time-varying process satisfying $\mathbb{E} \int_0^T \sigma_t^2 dt < \infty$. Then there exists a function $\sigma(t,s)$ and a weak solution to the stochastic differential equation

$$dS_t^{\ell v} = \sigma(t, S_t^{\ell v}) S_t^{\ell v} dW_t, \quad 0 \le t \le T,$$

such that for each $t \geq 0$, the random variables S_t and $S_t^{\ell \nu}$ have the same distribution. Furthermore, for Lebesgue-almost-every $t \in [0,T]$, the "local volatility" function $\sigma^2(t,s)$ is a version of $\mathbb{E}\left[\sigma_t^2 \middle| S_t = s\right]$.

▶ The corollary generalizes a known result³ by removing the assumption that σ_t must be bounded away from zero and bounded above. These boundedness conditions are violated in many models, e.g., Heston stochastic volatility model.

³I. Gyöngy (1986) Mimicking the one-dimensional marginal distributions of processes having an Itô differential, *Prob. Theory and Related Fields* **71**, 501–516.

⁴B. Dupire (1994) Pricing with a smile, *Risk* **7**, 18–20.

- The corollary generalizes a known result³ by removing the assumption that σ_t must be bounded away from zero and bounded above. These boundedness conditions are violated in many models, e.g., Heston stochastic volatility model.
- ▶ If there is a transition density for $S_t^{\ell \nu}$, then one can compute $\sigma(t,s)$ using a formula due to Dupire⁴.

 $^{^3}$ I. Gyöngy (1986) Mimicking the one-dimensional marginal distributions of processes having an Itô differential, *Prob. Theory and Related Fields* **71**, 501–516.

⁴B. Dupire (1994) Pricing with a smile, *Risk* **7**, 18–20.

Disclaimer

Under the assumptions in the Corollary, the equation

$$dS_t^{\ell v} = \sigma(t, S_t^{\ell v}) S_t^{\ell v} dW_t,$$

can have more than one solution. We have examples of this built around $\sigma(t,s)$ taking the value zero. We do not yet have a general theorem that guarantees uniqueness of the solution to the stochastic differential equation.

Nonuniqueness

Let $X_0 = 0$ and $dX(t) = \sigma_t dW_t$, where

$$\sigma_t = I_{(1,\infty)}(t)I_{\{W_1>0\}}.$$

The solution is

$$X_t = I_{(1,\infty)}(t)I_{\{W_1>0\}}(W_t - W_1).$$

We have $\sigma(t,x)=0$ for $0 \le t \le 1$, and for t>1,

$$\sigma^2(t,x) = \mathbb{E}[\sigma_t^2|X_t = x] = \left\{ egin{array}{ll} 1, & ext{if } x
eq 0, \ 0, & ext{if } x = 0. \end{array}
ight.$$

Both $X_t^{(1)} \equiv 0$ and

$$X^{(2)}(t) = I_{(1,\infty)}(t)(W_t - W_1)$$

are solutions of $dX_t^{\ell \nu} = \sigma(t, X_t^{\ell \nu}) dW_t$. The weak solution we want is $X^{(1)}$ with probability $\frac{1}{2}$ and $X^{(2)}$ with probability $\frac{1}{2}$.

What about path dependent options?

The price of a knock-out call is

$$B(0, S_0; \sigma^2) = \mathbb{E}[(S_T - K)^+ I_{\{M_T \leq B\}}],$$

where

$$M_T = \max_{0 \le u \le T} S_u.$$

From the reflection principle for Brownian motion, we have an explicit formula for $B(0, S_0; \sigma^2)$ when the volatility of S is a constant σ .

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = \mathbf{v_1}\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = \mathbf{v_2}\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. Then the knock-out call price is

$$\frac{1}{2}B(0,S_0;\mathbf{v_1})+\frac{1}{2}B(0,S_0;\mathbf{v_2}).$$

This is nice analytic formula, but it is based on a nonsensical dynamic model.

We could instead use the local volatility model

$$dS_t^{\ell v} = \sigma(t, S_t^{\ell v}) S_t^{\ell v} dW_t,$$

where

$$\sigma^{2}(t,s) = \mathbb{E}[\sigma_{0}^{2}|S_{t}=s] = \frac{v_{1}\pi_{1}(t,s) + v_{2}\pi_{2}(t,s)}{\pi_{1}(t,s) + \pi_{2}(t,s)}$$

and $\pi_i(t, s)$ is the log-normal distribution corresponding to time t and squared volatility v_i .

- ▶ For each $t \ge 0$, the random variable $S_t^{\ell v}$ has the same distribution as the random variable S_t .
- ▶ But the *paths* of the process $S^{\ell v}$ do not have the same distribution as the *paths* of the process S.
- In particular,

$$\mathbb{E}\big[(S_T^{\ell \nu}-K)^+I_{\{M_T^{\ell \nu}\leq B\}}\big]\neq \frac{1}{2}B(0,S_0;\nu_1)+\frac{1}{2}B(0,S_0;\nu_2).$$

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. Define $M_t = \max_{0 \le u \le t} S_u$.

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. Define $M_t = \max_{0 \le u \le t} S_u$. Choose a time-partition

$$\Pi: 0 = T_0 < T_1 < T_2 < \cdots < T_n = T.$$

At each time T_i , compute

$$p_k(T_i, s, m) = \mathbb{P}\{\sigma_0^2 = v_k | S_{T_i} = s, M_{T_i} = m\}, \quad k = 1, 2.$$

At time 0 choose a volatility σ_0 with

$$\mathbb{P}\{\sigma_0^2 = v_1\} = \frac{1}{2}, \quad \mathbb{P}\{\sigma_0^2 = v_2\} = \frac{1}{2}.$$

Use this volatility throughout to obtain a process S. Define $M_t = \max_{0 \le u \le t} S_u$. Choose a time-partition

$$\Pi: 0 = T_0 < T_1 < T_2 < \cdots < T_n = T.$$

At each time T_i , compute

$$p_k(T_i, s, m) = \mathbb{P}\{\sigma_0^2 = v_k | S_{T_i} = s, M_{T_i} = m\}, \quad k = 1, 2.$$

Construct a second process S^{Π} recursively. On $[T_0, T_1)$ use the volatility σ_0 chosen above. At each subsequent time T_i , redraw the volatility according to

$$\mathbb{P}\{(\sigma_{T_i}^{\Pi})^2 = v_k\} = p_k(T_i, S_{T_i}^{\Pi}, M_{T_i}^{\Pi}), \quad k = 1, 2,$$

and use it on $[T_i, T_{i+1})$, where $M_{T_i}^{\Pi} = \max_{0 \le u \le T_i} S_u^{\Pi}$.

Properties of (S^{Π}, M^{Π}) .

- ► For each t, (S_t, M_t) and (S_t^{Π}, M_t^{Π}) have the same distribution, and so . . .
- ▶ Barrier options on S have the same prices as barrier options on S^{Π} , i.e., they are a mixture of Black-Scholes prices.
- \triangleright S^{Π} has piecewise constant volatility.
- ▶ Immediately after each T_i , observation of S^{Π} reveals the volatility being used on $[T_i, T_{i+1})$, but not the volatilities that will be used after time T_{i+1} .

Let $n \to \infty$ so that $\max_i |T_{i+1} - T_i| \to 0$. It can be shown that S^{Π} converges to a process $S^{\ell \nu}$ satisfying

$$dS_t^{\ell v} = \sigma(t, S_t^{\ell v}, M_t^{\ell v}) S_t^{\ell v} dW_t,$$

where

$$\sigma^2(t, s, m) = \mathbb{E}[\sigma_0^2 | S_t = s, M_t = m].$$

Corollary (to the theorem at the end)

Assume

$$dS_t = \sigma_t S_t dW_t, \quad 0 \le t \le T,$$

where σ_t can be an adapted, time-varying process satisfying $\mathbb{E} \int_0^T \sigma_t^2 dt < \infty$. Define

$$M_t \triangleq \max_{0 \leq u \leq t} S_u$$
.

Then there exists a function $\sigma(t, s, m)$ and a weak solution to the stochastic differential equation

$$dS_t^{\ell v} = \sigma(t, S_t^{\ell v}, M_t^{\ell v}) S_t^{\ell v} dW_t,$$

where

$$M_t^{\ell v} \triangleq \max_{0 \le u \le t} S_u^{\ell v},$$

such that for each $t \geq 0$, the pair of random variables $(S_t^{\ell v}, M_t^{\ell v})$ has the same distribution as the pair (S_t, M_t) .

The theorem at the end.

Let C^d denote the space of continuous functions from $[0,\infty)$ to \mathbb{R}^d .

The theorem at the end.

Let C^d denote the space of continuous functions from $[0,\infty)$ to \mathbb{R}^d .

Define three operators mapping $C^d \times [0, \infty)$ to C^d :

- ▶ Shift operator: $\Theta(x, t) \triangleq x(t + \cdot)$,
- ▶ Stopping operator: $\nabla(x,t) \triangleq x(t \land \cdot)$,
- ▶ Difference operator: $\Delta(x,t) \triangleq x(t+\cdot) x(t)$.

The theorem at the end.

Let C^d denote the space of continuous functions from $[0,\infty)$ to \mathbb{R}^d .

Define three operators mapping $C^d \times [0, \infty)$ to C^d :

- ▶ Shift operator: $\Theta(x, t) \triangleq x(t + \cdot)$,
- ▶ Stopping operator: $\nabla(x,t) \triangleq x(t \land \cdot)$,
- ▶ Difference operator: $\Delta(x,t) \triangleq x(t+\cdot) x(t)$.

We say $\Phi \colon C^d \to C^d$ is an updating function if

- ▶ Initiation: $\Phi_0(x) = x(0)$,
- ▶ Non-anticipativity: $\nabla(\Phi(x),t) = \nabla(\Phi(\nabla(x,t)),t$,
- "Markov" property: $\Theta(\Phi(x), t) = \Phi(\Phi_t(x) + \Delta(x, t))$.

Theorem (Brunick⁵)

Given

$$X_t = X_0 + \int_0^t \mu_s \, ds + \int_0^t \sigma_s \, dW_s, \quad t \ge 0,$$

where $\mathbb{E} \int_0^t \left(\|\mu_s\| + \|\sigma_s \sigma_s^T\| \right) ds < \infty$ for all $t \ge 0$. Let $Z = \Phi(X)$. For Lebesgue-almost-every t, there are versions

$$\widehat{\mu}(t, Z_t) = \mathbb{E}[\mu_t | Z_t], \quad \widehat{\sigma}(t, Z_t) \widehat{\sigma}^T(t, Z_t) = \mathbb{E}[\sigma_t \sigma_t^T | Z_t],$$

and a weak solution

$$\widehat{X}_{t} = \widehat{X}_{0} + \int_{0}^{t} \widehat{\mu}(s, \widehat{Z}_{s}) ds + \int_{0}^{t} \widehat{\sigma}(s, \widehat{Z}_{s}) dW_{s},
\widehat{Z} = \Phi(\widehat{X}),$$

such that $\widehat{Z}_t \stackrel{\mathcal{D}}{=} Z_t$ for every $t \geq 0$.

 $^{^5}$ G. Brunick (2008) A weak existence result with application to the financial engineer's calibration problem, Ph.D. dissertation, Carnegie Mellon University.

Extended partition Π

- Canonical space C^d.
- ▶ Canonical filtration $\{\mathcal{F}_t\}_{t\geq 0}$.
- ▶ $0 = T_0 \le T_1 \le \cdots \le T_n$, a sequence of finite stopping times.
- ▶ $\{\mathcal{G}_i\}_{i=1}^n$, a collection of σ -fields with $\mathcal{G}_i \subset \mathcal{F}_{\mathcal{T}_i}$ for every i.

$$T_{i+1} - T_i \in \mathcal{G}_i \vee \sigma(\Delta(X, T_i))$$

•

$$\mathcal{H}_{i+1} \triangleq \mathcal{G}_i \vee \sigma\Big(\nabla\big(\Delta(X,T_i),T_{i+1}\big)\Big)$$

$$\mathcal{G}_{i+1} \subset \mathcal{H}_{i+1}$$

Concatenation of measures

Theorem

Let \mathbb{P} be a probability measure on C^d . Then there exists a unique measure $\mathbb{P}^{\otimes \Pi}$ on C^d such that

$$\mathbb{P}^{\otimes \Pi}[A] = \mathbb{P}[A] \quad \forall A \in \mathcal{H}_i, \forall i,$$

$$\mathbb{P}^{\otimes \Pi}[B|\mathcal{F}_{T_i}] = \mathbb{P}[B|\mathcal{G}_i] \quad \forall B \in \mathcal{H}_{i+1}, \forall i,$$

i.e., every \mathbb{P} -version of $\mathbb{P}[B|\mathcal{G}_i]$ is a \mathbb{P}^{\otimes} -version of $\mathbb{P}^{\otimes \Pi}[B|\mathcal{F}_{T_i}]$.

Convergence

- ▶ Construct a sequece Π_n of extended partitions with $\|\Pi_n\| \to 0$.
- ▶ Define $C = \langle X \rangle$.
- ▶ Under \mathbb{P} , X and $XX^T C$ are local martingales.
- ▶ Show that under each $\mathbb{P}^{\otimes \Pi_n}$, X and $XX^T C$ are local martingales.
- ▶ Recall the assumption that $\mathbb{E}\|C_T\| < \infty$.
- ▶ Show that $\mathbb{E}^{\otimes \Pi_n} \| C_T \| = \mathbb{E} \| C_T \|$. Use this to conclude that the collection of probability measures $\{\mathbb{P}^{\otimes \Pi_n}\}_{n=1}^{\infty}$ is tight.⁶
- ▶ Tightness implies convergence along a subsequence. Call the limiting measure \mathbb{P}^{∞} .
- Show that $C_t = \int_0^t \widehat{\sigma}(u, \Phi_u(X)) \widehat{\sigma}(u, \Phi_u(X))^T du$, where $\widehat{\sigma}(t, s) = \mathbb{E}^{\infty}[\sigma_t \sigma_t^T | \Phi_t(X) = s]$.

⁶R. Rebolledo, La méthode des martingales appliquée à l'étude de la convergence en loi de processus, *Mémoires de la Société Mathématique de France* **62**, 1–125, 1979.