
Market Modelling of CDOs

Thorsten Schmidt

Technische Universität Chemnitz

www.tu-chemnitz.de/mathematik/fima
thorsten.schmidt@mathematik.tu-chemnitz.de

Toronto, May 2010

joint work with E. Eberlein, D. Filipović, Z. Grbac and J. Zabczyk
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The top-down approach

Introduction

Essentials of securitization

Consider a CDO as a pool of m defaultable entities.

Default i occurs at τi with associated loss qi

Essential process: cumulative loss

At =
m∑
i=1

qi1{τi≤t}.

Normalize the total nominal to 1, set I := [0, 1].

Loss is split into tranches: a tranche refers to an interval (xi , xi−1] ⊂ I,

0 = x0 < x1 < · · · < xk = 1
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The top-down approach

Partition of losses into tranches
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The top-down approach

Single tranche CDOs

A STCDO is specified by

a number of future dates T0 < T1 < · · · < Tm,

a tranche with lower and upper detachment points x1 < x2 ,

a fixed spread S .

We write

H(x) := (x2 − x)+ − (x1 − x)+ =

∫
(x1,x2]

1{x≤y}dy .

An investor in this STCDO

receives SH(ATk ) at Tk , k = 1, . . . ,m − 1 (payment leg),

pays H(ATk+1 )− H(ATk ) at any Tk+1,k = 1, . . . ,m − 1. (default leg)
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The top-down approach

A security which pays 1{AT≤x} at T is called (T , x)-bond. Its price at
time t ≤ T is denoted by P(t,T , x).

If the market is free of arbitrage, P(t,T , x) is nondecreasing in x and
P(t,T , 1) = P(t,T ). (risk-free bond)

Let us denote by e(t,Tk+1, x) the value at time t of the payment given by
1{ATk

≤x,ATk+1
>x} at the tenor date Tk+1.

Proposition

The value of the STCDO at time t ≤ T1 is

πSTCDO(t,S) =

∫ x2

x1

(
S

m−1∑
k=1

P(t,Tk , y)−
m−1∑
k=1

e(t,Tk+1, y)
)

dy . (1)

Solving πSTCDO = 0 for S gives the fair spread.
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The continuous setting

Dynamic forward-rate models for CDO markets
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The continuous setting

Drift condition

Filipovic, Overbeck and Schmidt (2009) and Schmidt and Zabczyk (2009)
study a market of (T , x)-bonds:

(A1) At =
∑

s≤t ∆As is an increasing marked point process with compensator

νA(t, dx) dt and values in [0, 1].

Consider λ(t, x), such that

Mx
t = 1{At≤x} +

∫ t

0

1{As≤x}λ(s, x) ds

is a martingale.

Consider a d-dimensional Lévy process X such that IE( e−〈u,Xt〉) = etJ(u)

u ∈ Rd with

J(u) = 〈m, u〉+
1

2
〈Σu, u〉+

∫
Rd

(
e−〈u,z〉 − 1 + 1{|z|≤1}(z) 〈u, z〉

)
ν̃(dz).
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The continuous setting

HJM-like approach:

We consider

P(t,T , x) = 1{At≤x} exp
(
−
∫ T

t

f (t, u, x) du
)

where

f (t,T , x) = f (0,T , x) +

∫ t

0

a(s,T , x)ds +

∫ t

0

〈b(s,T , x), dXs〉. (2)
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The continuous setting

No-arbitrage condition(
e−

∫ t
0 rsdsP(t,T , x)

)
0≤t≤T

are local martingales for all (T , x). (3)

Under some technical assumptions we have:

Theorem

(3) is equivalent to ∫ s

t

a(t, u, x)du = J

(∫ s

t

b(t, u, x)du

)
(4)

f (t, t, x) = f (t, t, 1) + λ(t, x), (5)

on {Lt ≤ x}, a.s.
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Libor market models

Libor market models
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Libor market models

The (Tk , x)-Libor rate

Denote T := {T0, . . . ,Tn}, δk := Tk+1 − Tk and let

P(t,T , x) = p(t,T , x)1{At≤x}, (6)

(p(t,T , x))0≤t≤T a strictly positive special semimartingale with p(T ,T , x) = 1.

Definition

The (Tk , x)-Libor rate at time t ≤ Tk is given by

L(t,Tk , x) := 1{At≤x}
1

δk

(
p(t,Tk , x)

p(t,Tk+1, x)
− 1

)
; (7)

the (Tk , x)-credit spread is defined by

H(t,Tk , x) := 1{At≤x}
L(t,Tk , x)− L(t,Tk)

1 + δkL(t,Tk)
. (8)

The (Tk , x)-forward price is given by

F (t,Tk , x) :=
P(t,Tk , x)

P(t,Tk)
. (9)
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Libor market models

The quantities H(t,Tk , x) represent the discrete-tenor analogs of credit spreads
in the continuous case: under

P(t,Tk , x) = 1{At≤x}e
−

∫ Tk
t f (t,u,x)du,

by the definition of the Libor rate

L(t,Tk) =
1

δk

(
e
∫ Tk+1
Tk

f (t,u,1)du − 1

)
≈ 1

δk

∫ Tk+1

Tk

f (t, u, 1)du.

This shows that the Libor rate is approximately the average forward rate over
[Tk ,Tk+1].
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Libor market models

Furthermore, on At ≤ x ,

H(t,Tk , x) =
L(t,Tk , x)− L(t,Tk)

1 + δkL(t,Tk)

=
1

δk

(
e
−

∫ Tk+1
Tk

(f (t,u,x)−f (t,u,1))du − 1

)
≈ 1

δk

∫ Tk+1

Tk

(f (t, u, x)− f (t, u, 1))du,

which is approximately the average forward credit spread over the time interval
[Tk ,Tk+1].
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The relation of STCDOs and Libor rates

Relation between STCDO and Libor

How to extract the Libor rates from observed STCDO prices? Recal (1) and
assume that

P(t,Tk , x) = P(t,Tk)IEQTk+1
(1{ATk

≤x}|Gt), (10)

for all (Tk , x) ∈ T × I and 0 ≤ t ≤ Tk . Note that (10) is equivalent to

IEQTk+1
(1{ATk

≤x}|Gt) = IEQTk
(1{ATk

≤x}|Gt).

Lemma

Assume (10). Then

e(t,Tk+1, x) =
P(t,Tk+1)

P(t,Tk)
P(t,Tk , x)− P(t,Tk+1, x)

for k = 1, . . . ,m − 1 and x ∈ I.
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The relation of STCDOs and Libor rates

Assume now that risk-free Libor rates and STCDO prices at time t are
observed for maturities T1, . . . ,Tm and levels (xi−1, xi ) with i = 1, . . . , n where
x0 = 0 and xn = 1 and (10) holds.

• Step 1 For maturity T1 the default leg equals∫ xi

xi−1

(
P(t,T1)− P(t,T1, y)

)
dy .

This allows directly to compute

P(t,T1, xi−1, xi ) :=

∫ xi

xi−1

P(t,T1, y)dy

for all i = 1, . . . , n.
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The relation of STCDOs and Libor rates

• j → j+1 Assume that the values P(t,Tk , xi−1, xi ) are given for all
i = 1, . . . , n and k = 1, . . . , j . A STCDO with maturity Tj+1 satisfies

S(t,Tj+1, xi−1, xi ) =∑j
k=1

(
P(t,Tk+1)

P(t,Tk )
P(t,Tk , xi−1, xi )− P(t,Tk+1, xi−1, xi )

)
∑j

k=1 P(t,Tk , xi−1, xi )
.

The denominator is given as a sum of quantities which have been
computed in the previous j steps. The numerator equals

P(t,Tj+1)

P(t,Tj)
P(t,Tj , xi−1, xi )− P(t,Tj+1, xi−1, xi )

+

j−1∑
k=1

(
P(t,Tk+1)

P(t,Tk)
P(t,Tk , xi−1, xi )− P(t,Tk+1, xi−1, xi )

)
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The relation of STCDOs and Libor rates

Therefore P(t,Tj+1, xi−1, xi ) equals

P(t,Tj+1)

P(t,Tj)
P(t,Tj , xi−1, xi ) (11)

+

j−1∑
k=1

(
P(t,Tk+1)

P(t,Tk)
P(t,Tk , xi−1, xi )− P(t,Tk+1, xi−1, xi )

)

− S(t,Tj+1, xi−1, xi )

j∑
k=1

P(t,Tk , xi−1, xi )

and this step is completed.
In this way one is able to extract (Tk , x)-rates from STCDO prices.
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The relation of STCDOs and Libor rates

If we assume in addition zero risk-free interest rates, we obtain the following
formula for the default leg of the STCDO:

m−1∑
k=1

∫ xi

xi−1

e(t,Tk+1, y)dy =

∫ xi

xi−1

(
P(t,T1, y)− P(t,Tm, y)

)
dy .

Moreover, in the above algorithm (11) simplifies to

P(t,Tj+1, xi−1, xi ) = P(t,T1, xi−1, xi )

− S(t,Tj+1, xi−1, xi )

j∑
k=1

P(t,Tk , xi−1, xi ).
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The relation of STCDOs and Libor rates

Recall

H(t,Tk , x) := 1{At≤x}
L(t,Tk , x)− L(t,Tk)

1 + δkL(t,Tk)

and let

h(t,Tk , x) :=
L(t,Tk , x)− L(t,Tk)

1 + δkL(t,Tk)
.

Lemma

Assume (A9). Let x ∈ I and k ∈ {1, . . . ,m − 1}. Then, for every t ≤ Tk ,

e(t,Tk+1, x) = δkP(t,Tk+1, x)IEQTk+1,x

(
h(Tk ,Tk , x)|Gt

)
.
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Construction of the model The relation of STCDOs and Libor rates

Consider a complete stochastic basis (Ω,G,G,QT∗)
We assume that At =

∑
s≤t ∆As is an I-valued increasing marked point

process with absolutely continuous Q∗-compensator

νA(dt, dy) = FA
t (dy)dt, (12)

where FA is a transition kernel from (Ω× [0,T ∗],P) into (R,B(R)) and P
denotes the predictable σ-algebra on Ω× [0,T ∗]. Let
λ(t, x) = νA(t, (x − At , 1] ∩ I); such that

Mx
t = 1{At≤x} +

∫ t

0

1{As≤x}λ(s, x)ds (13)

is a Q∗-martingale

Thorsten Schmidt, TU Chemnitz



Construction of the model The relation of STCDOs and Libor rates

Let
X = (X 1, . . . ,X d ,X d+1) = (X̃ ,X d+1)

be an Rd+1-valued special semimartingale on the stochastic basis (Ω,G,G,Q∗)
with X0 = 0. Assume that X̃ is a time-inhomogeneous Lévy process and X d+1

is a pure-jump process with compensator

νA(dt, dy) = FA(dy)dt.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Recall H(t,Tk , x) = 1{At≤x}h(t,Tk , x) and then

1 + δkL(t,Tk , x) = (1 + δkL(t,Tk))(1 + δkh(t,Tk , x))

such that

L(t,Tk , x) = 1{At≤x}
1

δk

(
(1 + δkL(t,Tk))(1 + δkh(t,Tk , x))− 1

)
. (14)

In other words, every forward (Tk , x)-Libor rate can be obtained from the
risk-free forward Libor rate with the same maturity and the corresponding
pre-default credit spread. Note that

L(t,Tk , x) > L(t,Tk)⇐⇒ h(t,Tk , x) > 0

on {At ≤ x}. Hence, h(·,Tk , x) > 0 ensures that the defaultable forward
(Tk , x)-Libor rates are higher than their risk-free counterparts, an important
property in practice.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Denote
γ̃(s,Tk , x) := (γ1(s,Tk , x), . . . , γd(s,Tk , x)).

We assume that the pre-default credit spread h follows:

(A7) For every t ≤ Tk

h(t,Tk , x) = h(0,Tk , x) exp

(∫ t

0

b(s,Tk , x)ds +

∫ t

0

γ̃(s,Tk , x)dX̃
Tk+1
s

+

∫ t

0

∫
I

c(s,Tk , x ; y)(µA − νA,Tk+1 )(ds, dy)

)
with the initial condition

h(0,Tk , x) =
1

δk

(
F (0,Tk , x)

F (0,Tk+1, x)
− 1

)
.

The drift term b(·,Tk , ·) is an R-valued process with b(s,Tk , x) = 0.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

(A4) For all Tk there is a deterministic, Rd+1
+ -valued function γ(s,Tk , x), which

as a function of (s, x) 7→ γ(s,Tk , x) is B(R+)⊗ B(I)-measurable.
Moreover,

γd+1(s,Tk , x) = 0 and

n−1∑
k=1

(σj(s,Tk) + γ j(s,Tk , x)) ≤ C ,

for all s ∈ [0,T ∗] and every coordinate j ∈ {1, . . . , d + 1}, where C is the
constant from (A1). If s > Tk , then γ(s,Tk , x) = 0.

(A5) For all Tk there is an R-valued function c(s,Tk , x ; y), which is called the
contagion parameter and which as a function of (s, x , y) 7→ c(s,Tk , x ; y)
is P ⊗ B(I)⊗ B(I)-measurable. We also assume

sup
s≤Tk ,x,y∈I,ω∈Ω

|c(s,Tk , x ; y)| <∞

and c(s,Tk , x ; y) = 0 for s > Tk .

(A6) The initial term structure P(0,Tk , x) is strictly positive, strictly decreasing
in k and satisfies

F (0,Tk , x) =
P(0,Tk , x)

P(0,Tk)
≥ P(0,Tk+1, x)

P(0,Tk+1)
= F (0,Tk+1, x).
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Absence of Arbitrage in a Market Model
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Construction of (Tk , x)-Libor rates and absence of arbitrage

By absence of arbitrage we mean that for each i , k = 1, . . . , n the bond price
process (P(t,Tk , x)

P(t,Ti )

)
0≤t≤Ti∧Tk

is a local martingale with respect to the corresponding forward measure QTi . If
the risk-free market is free of arbitrage, then this is equivalent to the following:

For each k = 1, . . . , n the process(P(t,Tk , x)

P(t,Tk)

)
0≤t≤Tk

is a QTk -local martingale.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Let us denote for each t ≤ Tk , k = 1, . . . , n − 1, and x ∈ I

y(t,Tk , x) :=
1

1 + δkh(t,Tk , x)
. (15)

In the following lemma we deduce the connection between the forward
(Tk , x)-bond price processes and y .

Lemma

Consider t ∈ (0,Tk−1], where t ∈ (Tl−1,Tl ] for some l ∈ {1, . . . , k − 1}. Then

F (t,Tk , x) =

(
k−1∏
i=l

y(t,Ti , x)

)
F (t,Tl , x). (16)
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Construction of (Tk , x)-Libor rates and absence of arbitrage

The proof relies on the following relationship: On the set {At ≤ x},

1 + δkH(t,Tk , x) =
1 + δkL(t,Tk , x)

1 + δkL(t,Tk)
,

and hence

1 + δkH(t,Tk , x) =
p(t,Tk , x)

P(t,Tk)

(
p(t,Tk+1, x)

P(t,Tk+1)

)−1

> 0.

such that

H(t,Tk , x) =
1

δk

(
F (t,Tk , x)

F (t,Tk+1, x)
− 1

)
.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Consequently, as soon as the pre-default intensities h(·,Tk , x) are specified, the
forward (Tk , x)-bond price process is also partially specified. More precisely,
according to the previous lemma, in order to describe completely the dynamics
of F (·,Tk , x), it remains to specify for each l = 1, . . . , n the dynamics of the
process F (·,Tl , x) on the interval (Tl−1,Tl ]. This can be done in different
ways; the specification below being an obvious and simple choice.

(A8) For every t ≤ Tk and x ∈ I

p(t,Tk , x)

P(t,Tk)
=

(
k−1∏
i=0

y(t,Ti , x)

)
e
∫ t

0 bP (s,Tk ,x)ds ,

where bP(·,Tk , ·) is an R-valued, locally integrable process. Recall that
y(t,Ti , x) = y(Ti ,Ti , x), for t ≥ Ti , by assumption (A7).

Then the forward (Tk , x)-bond price is given by

F (t,Tk , x) =
p(t,Tk , x)

P(t,Tk)
1{At≤x} =

(
k−1∏
i=0

y(t,Ti , x)

)
e
∫ t

0 bP (s,Tk ,x)ds1{At≤x}.

(17)
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Remark

To ease notation we work with a continuous, finite variation process

e
∫ t

0 bP (s,Tk ,x)ds in (A8). A more general specification with an exponential of
some special semimartingale is possible and the occurring calculations can be
done in the same way.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Before stating the main theorem of the section, which provides necessary and
sufficient conditions for the forward (Tk , x)-bond price process (17) to be a
QTk -local martingale, we need some auxiliary results.

Lemma

Assume (A1)–(A7′) and let Ỹ (·,Tk , x) :=
∏k−1

i=0 y(·,Ti , x). Then

dỸ (t,Tk , x) = Ỹ (t−,Tk , x)

[
D(t,Tk , x)dt −

k−1∑
i=1

g(t−,Ti , x)
√

ctγ(t,Ti , x)dW Tk
t

+

∫
Rd+1

(
k−1∏
i=1

(
1 + g(t−,Ti , x)(e%(t,Ti ,x ;y) − 1)

)−1

− 1

)
(µ− νTk )(dt, dy)

]
,

where

g(t,Ti , x) :=
δih(t,Ti , x)

1 + δih(t,Ti , x)
(18)

and ...
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Construction of (Tk , x)-Libor rates and absence of arbitrage

D(t,Tk , x) := −
k−1∑
i=1

g(t−,Ti , x)b(t,Ti , x)

+
k−1∑
i=1

g(t−,Ti , x)
〈
γ(t,Ti , x), ct

k−1∑
j=i+1

α(t,Tj)
〉

−
k−1∑
i=1

1

2
(g(t−,Ti , x)− g(t−,Ti , x)2)‖

√
ctγ(t,Ti , x)‖2

+
1

2

∥∥∥ k−1∑
i=1

g(t−,Ti , x)
√

ctγ(t,Ti , x)
∥∥∥2

(19)

+

∫
Rd+1

[
k−1∏
i=1

(
1 + g(t−,Ti , x)(e%(t,Ti ,x ;y) − 1)

)−1

− 1

+
k−1∑
i=1

g(t−,Ti , x)%(t,Ti , x ; y)×

(
k−1∏
j=i+1

β(t,Tj , y)

)]
FTk
t (dy),
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Lemma

Assume (A1)–(A8). The dynamics of the process p(·,Tk ,x)
P(·,Tk )

under the forward
measure QTk is given by

d

(
p(t,Tk , x)

P(t,Tk)

)
=

p(t−,Tk , x)

P(t−,Tk)

((
bP(t,Tk , x) + D(t,Tk , x)

)
dt

−
k−1∑
i=1

g(t−,Ti , x)
√

ctγ(t,Ti , x)dW Tk
t

+

∫
Rd+1

(
k−1∏
i=1

(
1 + g(t−,Ti , x)(e%(t,Ti ,x ;y) − 1)

)−1

− 1

)

× (µ− νTk )(dt, dy)

)
.
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Theorem

Assume that (A1)–(A8) are in force. Then the forward bond price process
(F (t,Tk , x))0≤t≤Tk is a QTk -local martingale if and only if

D(t,Tk , x) = λTk (t, x)− bP(t,Tk , x) (20)

+

∫
Rd+1

(
k−1∏
i=1

(
1 + g(t−,Ti , x)(e%(t,Ti ,x ;y) − 1)

)−1

− 1

)
× 1{At+yd+1>x}FTk

t (dy),

on the set {At ≤ x}, for every t ∈ [0,Tk ] dt ×QTk -a.s.

Thorsten Schmidt, TU Chemnitz



Construction of (Tk , x)-Libor rates and absence of arbitrage

Example (Eberlein, Kluge, Schönbucher (2006))

This approach is a special case of our model in the doubly stochastic setting
with no contagion, i.e. c(·,Tk ; y) = 0, for all Tk . Note that we can suppress x
from the notation since in this case I = {0} and

1{At≤0} = 1{τ>t},

where τ is the default time of the considered defaultable bond.
Doubly stochastic means that the filtration G is given as G = F ∨H, where
F = (Ft)0≤t≤T∗ is the background filtration (or the reference filtration) and
the filtration H := (Ht) is generated by the default time, i.e.
Ht := σ(1{τ≤s}; 0 ≤ s ≤ t). Moreover, the default time τ is modeled as the
first jump of the Cox process with hazard process denoted by Γ, i.e. Γ is an
F-adapted, right-continuous, increasing process such that Γ0 = 0 and for every
t ≤ T ∗

QTn (τ > t|Ft) = e−Γt .
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Construction of (Tk , x)-Libor rates and absence of arbitrage

Example

Let us assume Γt =
∫ t

0
λsds; λ remains the F-intensity process of τ under all

forward measures QTk . In EKS, the pre-default value B(·,Tk) of the
defaultable bond is specified as follows

B(t,Tk)

B(t,Tk)
:=

k−1∏
i=0

1

1 + δih(t,Ti )
eΓt , (21)

where B(·,Tk) is the default-free bond price process and where

h(t,Tk) = h(0,Tk) exp

(∫ t

0

bH(s,Tk)ds +

∫ t

0

√
cs γ̃(s,Tk)dX̃

Tk+1
s

)
;

X̃Tk+1 being the d-dimensional special semimartingale obtained from the
time-inhomogeneous Lévy process X̃ by changing from QTn to the forward
measure QTk+1 . By assumption, X̃ is F-adapted and so is h(·,Tk).
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The no-arbitrage condition of EKS(2) is obtained as a special case of Theorem
7, stated in the following corollary.

Corollary

The forward defaultable bond price process B(·,Tk )
B(·,Tk )

1{τ>t} with specification

(21) is a (G,QTk )-local martingale if and only if

D(t,Tk) = 0,

for almost all t ∈ [0,Tk ], or equivalently, if and only if the process

k−1∏
i=0

y(t,Ti ) =
k−1∏
i=0

1

1 + δih(t,Ti )
, t ≤ Tk ,

is an (F,QTk )-local martingale.

Thorsten Schmidt, TU Chemnitz



Construction of (Tk , x)-Libor rates and absence of arbitrage

[1] E Eberlein, Z Grbac, T Schmidt: Market Models for CDOs driven by Lévy
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