
Continuously monitored barrier options under
Markov processes

Martijn Pistorius
Department of Mathematics

Imperial College London

Workshop on Financial Derivatives and Risk Management

Fields Institute, Toronto

May 28, 2010

Based on joint work with Aleksandar Mijatovi ć
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1. Motivation: valuing barrier contracts

• Barrier options are among the most liquid exotic options, esp.
in foreign exchange, equity

• Commonly traded types: double-no-touch, double/single
knock-out and knock-in call/put options.

• For valuation and hedging there is interest in efficient
calculation methods of first-passage time distributions and
their sensitivities (Greeks).

• Credit risk : structural models in terms of first passage over a
boundary
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1. Motivation: valuing barrier contracts

A barrier-type contract with expiry T > 0 pays the random cash flow

g(ST )I{τA>T} + h(SτA)I{τA≤T}, where τA = inf{t ≥ 0 : St ∈ A}.

where
• S = {St}t≥0 is the asset price;

• Knock-out set A = (0, `] ∪ [u,∞), 0 ≤ ` < u ≤ ∞;

• g, h : (0,∞)→ R+ payoff and rebate functions respectively.

Examples:

• knock-out double barrier (0 < `, u <∞, h ≡ 0);

• down-and-out (u =∞, h ≡ 0), up-and-out (` = 0, h ≡ 0);

• rebate (g ≡ 0), European (0 = `, u =∞).
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1. Motivation: valuing barrier contracts

If S is under a risk neutral measure and r is the risk-free rate, the
arbitrage-free price of the barrier contract is

Ex
[
e−rT g(ST )I{τA>T}

]
+ Ex

[
e−rτAh(SτA)I{τA≤T}

]
, S0 = x.

It is of interest to efficiently evaluate these expectations.
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1. Motivation: valuing barrier contracts

Examples of models of interest:

• diffusion models (e.g. CEV (Davydov and Linetsky));

• jump-diffusion models (e.g. Kou model, Merton model);

• Lévy models (Carr et al., Barndorff-Nielsen, Eberlein et al.);

• generalised OU models (Barndorff-Nielsen et al.).

The underlying risky asset in all of these models is driven by a
Markov process with state-dependent volatility and/or jumps.
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1. Literature review

In a given model the valuation of barrier options is more
challenging than that of European type options. Methods that have
been developed for specific models include:

• Spectral decompositions for diffusions (Linetsky et al., Lipton)

• Transform approaches for Lévy proc. using Wiener-Hopf fact.
(Boyarchenko & Levendorskii, Kou & Wang, Jeannin & P.)

General approaches are:

• PDE/PIDE methods (discretisation/finite element/tree methods)

• Monte Carlo (Euler scheme used to approximate the SDE)
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1. The Markov chain approach

The Markov chain approach has the following properties:

• first developed by Kushner in optimal control setting with
discrete time chains

• works for general Markov processes;

• it is based on approximation of the target process by a
continuous-time Markov chain.

• approximation yields arbitrage-free model prices at any stage

We next introduce the modelling framework and describe the
pricing algorithm.
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2. Definition of the model

S = {St}t≥0 Markov process on state-space E = [0,∞) with
semigroup (Pt)t≥0, where Ptf(x) := Ex[f(St)] s.t.

{e−(r−d)tSt}t≥0 is a martingale

where r and d are the risk-free interest rate and the dividend yield.

Regularity assumptions:

Assumption 1. The semigroup (Pt)t≥0 is a Feller semigroup , i.e.

(i) if f ∈ C0(E), then Ptf ∈ C0(E) for any t > 0;

(ii) limt→0 Ptf(x) = f(x) for any x ∈ E and f ∈ C0(E).

Assumption 2. Px(τA = τAo) = 1 where Ao = (0, `) ∪ (u,∞).
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2. Infinitesimal generator

(Pt)t≥0 is a strongly continuous semigroup. Define a dense
subspace D of C0(E) by

D :=

{

f ∈ C0(E) : ∃ lim
t↓0

1
t (Ptf − f) ∈ C0(E)

}

and a possibly unbounded linear operator L : D → C0(E), known
as the infinitesimal generator, by

Lf(x) := lim
t↓0

1
t (Ptf − f)(x).

The operator L on the domain D determines the semigroup (Pt)t≥0
uniquely.
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2. Stopped process

General barrier contract is a ‘vanilla’ option on the stopped and
discounted process S̃A where τA = inf{t ≥ 0 : St ∈ A}:

P̃AT f(x) := Ex[f(S̃T∧τA)] = Ex[e
−r(τA∧T )f(ST∧τA)]

= Ex
[
e−rT g(ST )I{τA>T}

]
+ Ex

[
e−rτAh(SτA)I{τA≤T}

]

where the function f is defined as

f(x) =

{
h(x), x ∈ A,
g(x), x /∈ A.

Generator L̃A of semigroup (P̃At )t≥0 can be expressed explicitly in
terms of the generator L of S.
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2. Killed process

Knock-out barrier contract is a ‘vanilla’ option on the killed process

ŜA = {StI{t<τA} + ∂I{t≥τA}}

where ∂ is an absorbing “graveyard state”, as

P̂AT f(x) := Ex[g(ŜT∧τA)]

= Ex
[
g(ST )I{τA>T}

]

with g(∂) = 0

Generator L̂A of semigroup (P̂At )t≥0 can be expressed explicitly in
terms of the generator L of S.

Continuously monitored barrier options under Markov processes – p. 12/36



3. Markov chains: European options

Notation
• G = {x1, . . . , xN} ⊂ R+ finite set with x1 < . . . < xN .

• For any matrix A ∈ RN×N and vector φ ∈ RN identify

A(x, y) := e′xAey and φ(x) := e′xφ x, y ∈ G,

where ex, ey are the standard basis vectors of RN .

• X = {Xt}t≥0 continuous-time Markov chain with generator
matrix Λ that approximates the generator L of the Markov
process S.
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3. Markov chains: European options

The price of a European option with vanilla payoff

φ : G→ R

is given by

Ex[φ(XT )] = PTφ(x) =

(

exp
(
TΛ
)
φ

)

(x).

for X0 = x ∈ G.
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3. Markov chains: Barrier contracts

Define matrices Λ̃ and Λ̂ as:

=

=

=

Ĝ

Ĝ

Λ 11 Λ 12

Λ 21

Λ 21

Λ 22

Λ 22
Λ

Λ̃

0 0

Λ̂ Λ 22

The subset Ĝ ⊂ G consists of the elements of G between ` and u.
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3. Markov chains: barrier contracts

Theorem. For any T > 0, r ≥ 0 and any functions g : Ĝ→ R and
h : G→ R with h(y) = 0 for y ∈ Ĝ we have that

Ex
[
g(XT )I{τ>T}

]
=

(
exp

(
T Λ̂
)
g
)
(x), x ∈ Ĝ,

Ex
[
e−rτh(Xτ )I{τ≤T}

]
=

(
exp

(
T (Λ̃− rĨ)

)
h
)
(x), x ∈ G,

where X is the chain generated by Λ and

τ := inf{t ≥ 0 : Xt /∈ (`, u) }.

Continuously monitored barrier options under Markov processes – p. 16/36



3. The algorithm

Let S be a Markov process with state-space E = (0,∞) and
generator L. The algorithm for the pricing of barrier contracts is:

(1) Construct the approximating Markov chain by specifying a
finite state-space G ⊂ E and a generator matrix Λ that
approximates the operator L on G.

(2) To value knock-out and rebate options, obtain Λ̂ and Λ̃ from Λ,
exponentiate and multiply with pay-off vector.

50 60 70 80 90 100 110 120 130 140 150
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4. Convergence

Theorem Let S be a Feller process with state-space E and
infinitesimal generator L satisfying Assumption 2, and X(n) a
sequence of Markov chains with generator matrices Λ(n) such that

max
x∈G(n)

∣
∣
∣Λ(n)fn(x)− Lf(x)

∣
∣
∣→ 0 as n→∞

for any function f in a core of L. If τ (n)A = inf{t ≥ 0 : X(n)t /∈ A} we
have

Ex
[
g
(
X
(n)
T

)
I{τ (n)A >T}

]
−→ Ex

[
g(ST )I{τA>T}

]
,

Ex
[
e−rτ

(n)
A h

(
X
(n)

τ
(n)
A

)
I{τ (n)A ≤T}

]
−→ Ex

[
e−rτAh(SτA)I{τA≤T}

]
,

as n→∞ for any bounded continuous functions g, h : E → R.
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4. Error estimates

Consider the (non-uniform) time and spatial grids G(n) = {x(n)i } and

T(m) = {T (m)j } and denote by k = k(n) the tail mass of the
jump-measure, and let

h = h(n) = max
i

∣
∣
∣x
(n)
i+1 − x

(n)
i

∣
∣
∣ , δ = δ(m) = max

j

∣
∣
∣T
(m)
j+1 − T

(m)
j

∣
∣
∣ .

Theorem 1 Under suitable regularity assumptions on the coefficients, there

exists a sequence of Markov chains X(n) and constants C1, C2, C3, such that

for all n sufficiently large and x ∈ G(n)

∣
∣
∣
∣E0,x

[

e−
∫ T∧τ(n)

A
0 r(n)(t)dtf

(
X
(n)

T∧τ (n)A

)]

− E0,x
[
e−
∫
T∧τA
0

r(t)dtf (ST∧τA)
] ∣∣
∣
∣

≤ C1h+ C2k + C3δ
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5. Diffusion models

Let S = {St}t≥0 be an asset price process that evolves under a
risk-neutral measure according to the SDE

dSt

St
= γdt+ σ (St) dWt

where W is a Wiener process, and σ : R+ → R+ is locally Lipschitz
and such that {e−γtSt}t∈[0,T ] is a martingale.

For f ∈ C20 the infinitesimal generator of S is given by

Lf(s) =
σ2(s)s2

2
f ′′(s) + γsf ′(s).

Continuously monitored barrier options under Markov processes – p. 20/36



5. Diffusion models

For a given finite state-space G, the generator matrix Λ of the
continuous-time Markov chain X = {Xt}t≥0 is defined via the
instantaneous moment matching conditions (set X0 := S0 ∈ G):

ES0
[
(SΔt − S0)

j
]
= EX0

[
(XΔt −X0)

j
]
+ o(Δt), for j ∈ {1, 2}.

The entries of Λ thus have to satisfy the system for each x ∈ G:

∑

y∈G

Λ(x, y) = 0 and Λ(x, y) ≥ 0 ∀y ∈ G\{x},

∑

y∈G

Λ(x, y)(y − x) = γx, (1)

∑

y∈G

Λ(x, y)(y − x)2 = σ (x)2 x2
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5. Diffusion models: CEV model
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Figure 1: Blue is the MG algorithm and the green finite difference

Crank-Nicholson PDE scheme.
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5. State-dependent jump measure

General form of the generator L of a Feller process S:

Lf(x) =
σ2(x)x2

2
Δf(x) + (r − d− μ(x))x∇f(x)

+

∫ ∞

−1
[f(x(1 + y))− f(x)−∇f(x)xyI{|y|<1}]ν(x, dy),

where μ, σ : E → R and for x ∈ E, ν(x, dy) is a (Lévy) measure
supported in (−1,∞) s.t.

∫∞
−1 y

2ν(x, dy) <∞.

The discounted process {e−(r−d)tSt}t≥0 is a local martingale if

μ(x) =

∫ ∞

1
yν(x, dy) <∞ ∀x ∈ E.
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5. State-dependent jump measure

To approximate this L we define a matrix Λ = ΛJ + Λc as follows.

ΛJ(x, x(1 + yi)) := ν (x, (αx(yi−1), αx(yi))) , yi 6= 0,

ΛJ(x, x) := −
∑

z∈G\{x}

ΛJ(x, z).

∑

z∈G

Λc(x, z) = 0 and Λc(x, z) ≥ 0 ∀z ∈ G\{x},

∑

z∈G

Λc(x, z)(z − x) = (r − d)x−
∑

z′∈G

ΛJ(x, z
′)(z′ − x),

∑

z∈G

Λc(x, z)(z − x)
2 = x2

[

σ (x)2 +

∫ ∞

−1
y2ν(x, dy)

]

−
∑

z′∈G

ΛJ(x, z
′)(z′ − x)2
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5. Numerical example: CGMY

The price process S is modelled as

St = S0e
−(r−d)t e

Xt

E[eXt ]

where X is a CGMY process, i.e. a Lévy process without a
Gaussian component, with Lévy density

k(x) = 1{x<0}C
e−G|x|

|x|Y+1
+ 1{x>0}C

e−M |x|

|x|Y+1
.

Continuously monitored barrier options under Markov processes – p. 25/36



5. Numerical example: CGMY subordinator

In Madan and Yor (2006) it is shown that X has the same law as
the process

X ′t =WYt + θYt

where θ = (G−M)/2 and Y is a subordinator that has Laplace
exponent ψ

E[e−λYt ] = etψ(λ) = exp (tCΓ(−Y )) [2rY cos(ηY )−MY −GY ]

where

r(λ) :=
√
2λ+GM and η(λ) := arctan

(√
2λ− θ2
G+M
2

)

.
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5. Numerical example: CGMY

By the Philips theorem, the infinitesimal generator L of X ′ satisfies

L = ψ(−G), (2)

where G is the infinitesimal generator of a Brownian motion with
drift θ, that acts on f ∈ C20 as

Gf =
1

2
f ′′ + θf ′.

• Construct a Markov chain approximating the BM with drift by
solving the related system (1).

• Subsequently use the relation (2) to obtain the generator
matrix of the approximating chain for X.
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5. Numerical example: CGMY
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Figure 2: Slopes on the left are approximately −1.2 and −2.
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5. Local Lévy model – Example of a Lévy driven SDE

dSt

St−
= (r − d− λζ(St−/S0)

β)dt+ (St−/S0)
βdLt, where

Lt := σ0Wt +

Nt∑

i=1

(
eKi − 1

)
, σ0 ∈ (0,∞) and β ∈ R.

with state-dependent jump measure

ν(x, dy) = (x/S0)
βλ
[
pη1(y + 1)

−1−η1I{y>0} + (1− p)η2(y + 1)
η2−1I{−1<y<0}

]
dy.

• Brownian motion W , Poisson process N , double-exponential
Ki, i ∈ N, are all independent.

• The genrator of S is as described above.

• If β = 0 we get the Kou model.
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5. Local Lévy model – numerical results
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5. Time-inhomogeneous Markov chains

• State-space E, N := |E|, times 0 =: T0 < T1 < ∙ ∙ ∙ < Tn := T
and Tn+1 =∞.

• X a continuous-time Markov chain on E with generator

Lt :=
n+1∑

i=1

Li1[Ti−1,Ti)(t), t ≥ 0,

where Li, for i ∈ {1, . . . , n+ 1}, is a generator matrix.

• Then for each x ∈ E we have

Ex
[
1{τ>T}φ(XT )

]
=

(
exp

(
ΔT1L̂1

)
∙ ∙ ∙ exp

(
ΔTnL̂n

)
φ
)
(x),

where τ is the first passage time.
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5. Numerical example: Sato process

CGMY (2007) introduced into financial modelling the process

St = S0e
(r−d)t e

Yt

E0[eYt ]

where Y is an additive process which is:

• self-similar : Yt ∼ tγY1 for some constant γ > 0 and all t > 0,

• the law of Y1 is self decomposable.

CGMY (2007) prove that, if Y has bounded variation, the
characteristic function of Yt is of the form

ΦY (u, t) = E0
[
eiuYt

]
= exp

(∫

R

(
eiuy − 1

) h(y/tγ)
|y|

dy

)

.

Continuously monitored barrier options under Markov processes – p. 32/36



5. Numerical example: VG-Sato process

VG-Sato: h(x) = C exp(−G|x|)1{x<0} + C exp(−Mx)1{x>0}.

Approximate Y by a time-inhomogeneous Markov process Xn

with a piecewise constant generator on 0 = t0 < t1 < . . . < tn = T :

• On the time interval (ti, ti+1), Xn is a forward Variance Gamma
process, with the characteristic exponent

(ti+1 − ti)
−1 log(ΦY (u, ti+1)/ΦY (u, ti)).

• We have (Yt1 , . . . , Ytn) ∼ (X
n
t1 , . . . , X

n
tn).
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5. Numerical example: VG-Sato process

Sato process
ν = 26.4, γ = −0.53, θ = 0, σ = 1

n = 5 n = 50 n = 100 n = 500

KO Call: 0.4534 0.4604 0.4605 0.4605
N=600 Double-no-touch: 0.1459 0.1481 0.1481 0.1481

KO Call: 0.4628 0.4699 0.4700 0.4700
N=1200 Double-no-touch: 0.1483 0.1504 0.1504 0.1504

KO Call: 0.4652 0.4722 0.4722 0.4722
N=1800 Double-no-touch: 0.1489 0.1510 0.1510 0.1510

KO Call: 0.4662 0.4732 0.4732 0.4732
N=2400 Double-no-touch: 0.1491 0.1512 0.1512 0.1512

KO Call: 0.4668 0.4737 0.4737 0.4737
N=3000 Double-no-touch: 0.1493 0.1513 0.1513 0.1513

The prices of the double barrier knock-out call option and the
double-no-touch option in the Sato VG model.
Market data: S0 = 100, r = 0.02, d = 0 and T = 0.1.
Contracts: K = 100, L = 80, U = 120.
MC approx: N number of states, n the number of time-steps.
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6. Conclusion

• General class of models: Markov processes

• Consistent pricing: European and barrier options

• Easy, robust implementation

• Convergence and error estimates

Preprint: A. Mijatovic & M. Pistorius, Continuously monitored
barrier options under Markov processes.

available at http://ssrn.com/abstract=1462822
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6. Conclusion

Possible future work:
• Sharp rates of convergence (under weaker smoothness

conditions)

• Extension to moderate dimensions: efficient
moderate-dimensional grids
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