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Typically, when modelling, one proceeds as follows:

Write down a plausible and well behaved model.

Compute prices of (liquid) financial instruments as function of
model parameters.

Calibrate the model: chose the parameters to match the
prices already observed in the market.

Use it: sell and hedge new derivatives.

This approach has important drawbacks:

It is exposed to model risk which may be hard to quantify.

Models are re-calibrated daily: theoretically inconsistent.

Inevitably, it ignores some information present in the market.

We want to develop a more robust approach.
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The general challenge for robust approach is as follows:

Q1: robust pricing
Start with market information: prices of some instruments.
Assume it admits no arbitrage ⇐⇒ could come from a model.

Given a new product, determine its feasible price, i.e. a price
which does not introduce any arbitrage in this market.

Q2: robust hedging
Furthermore, derive best super-/sub- hedging strategies which
always work.

Thus we want to use the information in the market to make
statements which are model-independent.

Later in this talk we will be concerned with pricing & hedging of
(weighted) variance swaps, given market prices for finite family of
co-maturing puts.
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We assume (St : t ≤ T ) takes values in some functional space P.
X is a given set of traded assets, mappings from P to R.
On this set we have a pricing operator P which acts linearly on X ,
P : Lin(X )→ R. PX is the market price of X .
Assume interest rates are deterministic, here set to zero: P1 = 1.

We say that there exists a (P,X )–market model if there is a model
(Ω,F , (Ft),Q, (St)), St a Q–martingale and PX = EQ[X ],
X ∈ X . We would like to have

P admits no arbitrage on X ⇔ there exists a market model
⇔ {PX}X∈X satisfy some constraints

Typically we want to start with simpler X and then consider
X ∪ {OT} for an exotic option OT : P→ R.
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Definition (Model–independent arbitrage)

We say that P admits a model–independent arbitrage on X if
there exists X ∈ Lin(X ) with X ≥ 0 and PX < 0.
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Definition (Model–independent arbitrage)

We say that P admits a model–independent arbitrage on X if
there exists X ∈ Lin(X ) with X ≥ 0 and PX < 0.

This coarsest notion is typically sufficient to derive no–arbitrage
bounds but not sufficient to give existence of a market model.
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Definition (Model–independent arbitrage)

We say that P admits a model–independent arbitrage on X if
there exists X ∈ Lin(X ) with X ≥ 0 and PX < 0.

Definition (Weak arbitrage (Davis & Hobson 2007))

We say that P admits a weak arbitrage on X if for any model,
there exists X ∈ Lin(X ) with PX ≤ 0 but Q(X ≥ 0) = 1,
Q(X > 0) > 0.
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Theorem (Davis and Hobson (2007))

Let X = {1, (Ki − ST )+ : i = 1, . . . n}. The following are
equivalent

P admits no WA on X
there exists a (P,X )-market model

pi = P(Ki − St)+ ≥ (Ki − S0)+ and the piecewise linear
interpolation of the points (0, 0), (K1, p1), . . . , (Kn′ , pn′) is
increasing, convex and with slope strictly bounded by 1, where
n′ = inf{i : pi = (Ki − S0)} ∧ n.

1 knkn'k3k2k1

where S0 = 1. Note that here
Q(ST ≥ kn′) = 0 in any market
model.

Jan Ob lój Robust pricing of variance swaps



Motivating questions and FTAP with market input
Weighted variance swaps

Robust pricing and hedging of options with convex payoffs

Classical vs robust modelling framework
General setup and different notions of arbitrage
Towards FTAP with market input

Definition (Model–independent arbitrage)

We say that P admits a model–independent arbitrage on X if
there exists X ∈ Lin(X ) with X ≥ 0 and PX < 0.

Definition (Weak arbitrage (Davis & Hobson 2007))

We say that P admits a weak arbitrage on X if for any model,
there exists X ∈ Lin(X ) with PX ≤ 0 but Q(X ≥ 0) = 1,
Q(X > 0) > 0.

Definition (Weak free lunch with vanishing risk (Cox & O. 2009))

We say that P admits a weak free lunch with vanishing risk on X
if there exists Xn,Z ∈ Lin(X ) such that Xn → X (pointwise on
P), Xn ≥ Z , X ≥ 0 and limPXn < 0.
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Theorem (Cox and O. (2009))

Let X = {1, (K − ST )+ : K ≥ 0}. Then the following are
equivalent

P admits no WFLVR on X
there exists a (P,X )-market model

P(K ) = P(K − ST )+ satisfies

P(K ) ≥ (K − S0)+ is convex and non-decreasing,
and P(0) = 0, P ′(K ) ≤ 1,

(1)

P(K )− (K − S0)→ 0 as K →∞. (2)

When (1) holds but (2) fails P admits no model-free arbitrage but
a market model does not exist.

Similar thm for X with digital double barrier options.
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Towards general FTAP...

X is some functional space and P is an element of its dual.

Appropriate no-arbitrage condition is the one which ensures P
extends to a countably additive measure on P.

Boundary cases (weak arbitrages) correspond to P being a
bounded (finitely) additive measure.

First step in Cassese (2008): FTAP (for bounded assets) with
no probability measure, but with no market input.

work in progress...
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Standing assumptions
w -variance swaps and convex payoffs

Our standing assumptions are:

Liquid market in underlying asset St , t ∈ [0,T ].

No transaction costs.

(St) has continuous paths.

No interest rate volatility.

Uniquely determined forward price FT (e.g. deterministic
dividend yield).

Options are traded at time 0 at quoted prices. In this talk all
options are European with the same exercise time T .

For this talk r = q = 0 so that FT = S0.
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We want to develop robust pricing and hedging for weighed
variance swaps. A w -weighted variance swap pays

Vw
T =

∫ T

0
w(Su)d〈log S〉u − kw ,

where swap rate kw is set so that PVw
T = 0. We take

w : R+ → R+ with w(s)/s2 locally integrable.
Then, in any model,∫ T

0
w(Su)d〈log S〉u = 2λw (ST )−2λw (S0)−2

∫ T

0
λ′w (Su)dSu a.s ,

where λ′′w (s) = w(s)/s2.
We have three important examples:

1 Realised variance swap: w ≡ 1 and λw (s) = − log(s).
2 Corridor variance swap: w(s) = 1(0,a)(s) or w(s) = 1(a,∞)(x),

where 0 < a <∞ and λw (s) =
(
− log

(
s
a

)
+ s

a − 1
)

w(s).
3 Gamma swap: w(s) = s and λw (s) = s log(s)− s.
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Standing assumptions
w -variance swaps and convex payoffs

Lemma

Consider a model (Ω,F , (Ft),Q, (St)) with St a Q–martingale.
Then

EQ
[∫ T

0
w(Su)d〈log S〉u

]
= 2EQ[λw (ST )]− 2λw (S0)

and if they are finite then
∫ T

0 λ′w (Su)dSu is a value of an
admissible self-financing strategy.

Corollary

Suppose vanilla assets X with prices P are given and there exists a
(P,X )–market model. Then the following are equivalent

There exists a (P,X ∪ {Vw
T })–market model with PVw

T = 0.
There exists a (P,X ∪ {λw (ST )})–market model with
Pλw (ST ) = kw/2 + 2λw (S0).

Hence we reduce the problem to that of robust pricing and hedging
of convex payoffs.
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Main results
Upper bound
Lower bound

Suppose X = {1, (Ki − ST )+ : i = 1, . . . , n} with
P(Ki − St)+ = pi . We are interested in the range of EQλ(ST )
over all (P,X )–market models.

Put differently: we are given prices of n put options and we want
to understand no-arbitrage prices (and robust hedges) for an
European option with payoff λ(ST ).

The prices only depend on µ – the risk-neutral law of ST . Given
any µ on R+ such that∫

sµ(ds) = S0,

∫
(Ki − s)+µ(ds) = pi , i = 1, . . . , n

a (P,X )–market model is given by St = B t
T−t
∧τ , where Bu is a

Q-BM and τ solves the Skorokhod embedding problem, Bτ ∼ µ.

This is also a (P,X ∪ {λ(ST )})–market model where
Pλ(ST ) =

∫
λ(s)µ(ds).

In particular, no-arbitrage prices of λ(ST ) form an interval (by
considering random mixtures of models).
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Main results
Upper bound
Lower bound

Suppose (P,X ) do not admit weak arbitrage, λ′′ ≥ 0.

Primal Problem: Find

UBλ = sup
µ∼ST

∫
λ(s)µ(ds), LBλ = inf

µ∼ST

∫
λ(s)µ(ds),

over all (P,X )–market models.

Dual Problem: Find

ŨBλ = inf

{
PF (ST ) : F (s) =

n∑
i=1

πi (Ki − s)+ + φs + ψ ≥ λ(s)

}

L̃Bλ = sup

{
PF (ST ) : F (s) =

n∑
i=1

πi (Ki − s)+ + φs + ψ ≤ λ(s)

}
Theorem

If |LBλ| <∞ then there is no duality gap, LBλ = L̃Bλ, and there exists
an optimal F ∗ which solves the dual.
Likewise for the upper bound if there exists at least one superreplicating
portfolio.

ŨB and Superreplication – explicit

L̃B and Subreplication – solution of a dynamic programming alg
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Main results
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Suppose (P,X ) do not admit weak arbitrage, λ′′ ≥ 0.

Primal Problem: Find range of no-arbitrage prices

Dual Problem: Find robust super- and sub- hedges

Theorem

If |LBλ| <∞ then there is no duality gap, LBλ = L̃Bλ, and there exists
an optimal F ∗ which solves the dual.
Likewise for the upper bound if there exists at least one superreplicating
portfolio.
Let Xλ = X ∪ {λ(ST )}.

If Pλ(ST ) ∈ (LBλ,UBλ) then there exists a (P,Xλ)–m.m.

If Pλ(ST ) /∈ [LBλ,UBλ] then there is model-independent arbitrage.

If Pλ(ST ) ∈ {LBλ,UBλ} then there either exists a (P,Xλ)–m.m. or
there is a weak arbitrage.

ŨB and Superreplication – explicit

L̃B and Subreplication – solution of a dynamic programming alg
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Motivating questions and FTAP with market input
Weighted variance swaps

Robust pricing and hedging of options with convex payoffs

Main results
Upper bound
Lower bound

Suppose for simplicity that λ(0) <∞ and λ(s) = 0 for all s ≥ s.
Then, in any market model

EQ[λ(ST )] =

∫ ∞
0

λ′′(K )P(K )dK , where P(K ) = EQ(K−ST )+.

However in any (P,X )–market model P(K ) lays below the
piecewise linear interpolation of the market prices, i.e. points
(0, 0), (K1, p1),. . . , (Kn, pn). We extend it with slope 1 to the right
of Kn and call P∗(K ). Then

UBλ = sup
(P,X )–m.m.

EQ[λ(ST )] =

∫ ∞
0

λ′′(K )P∗(K )dK .

More importantly, UBλ is simply the market price of

F (ST ) =
n∑

i=1

π∗i (Ki − ST )+ + φ∗ST + ψ∗ ≥ λ(ST ),

where F (s) is a linear interpolation of (Ki , λ(Ki )), i = 0, 1, . . . , n.
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Robust pricing and hedging of options with convex payoffs

Main results
Upper bound
Lower bound

Lower bound is trickier – there is no uniform lower bound on put prices
P(K ) given our market input.

Indeed, choosing minimal price in one interval [Ki ,Ki+1] typically forces
maximial prices in adjacent intervals. It is not clear a priori if lower
bound is attained and by what measure/put prices, and how to construct
a subreplicating portfolio?

We first showed that it is sufficient to look only at measures with at
most n + 1 atoms,

then obtained the lower bound as solution to a dynamic
programming,

and then proved it is always a value of a portfolio in market quoted
options.

...and finally understood that it all hinges on duality in the theory of

semi-infinite programming! (Issi, Karlin 1960)
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Consider an example with one put option (n = 1). We want to subhedge
− log ST , i.e. superhedge log ST .

For any choice of b, we can form a portfolio of cash, long underlying and
short put option with payoff:

log x

x1K

b
x0

x0, x1 solve

g(x0) = g(x1) = 1+b+Ke−1−b,

where g(x) = log x + K/x .

F (ST ) = b +
1

x1
ST −

(
1

x0
− 1

x1

)
(K − ST )+ ≥ log ST ,

and hence PF (ST ) = b + 1
x1

S0 −
(

1
x0
− 1

x1

)
pK ≥ P log ST . Minimising

in b gives the lowest price and the associated superreplication. We then
have pK = (K − x0)(x1 − S0)/(x1 − x0) and hence the bound is attained
in a model with ST ∼ qδx0 + (1− q)δx1 , with q = (x1 − S0)/(x1 − x0).
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In fact the above is nothing else but an semi-infinite linear program:

Find vP = inf{c ′z |z ∈ Z} where

Z = {z ∈ R3 : a(s)z ≥ b(s) ∀s ∈ R+}.

Here a(s) is the vector of exercise values a(s) = (1, s, (K − s)+),
b(s) = log s and c is the vector of asset prices c = (1,S0, pK ).

Formally the LP dual is:
Find vD = sup

∫
R+ b(s)µ(ds), where the supremum is taken over positive

measures µ satisfying the equality constraints c =
∫

a(s)µ(ds), i.e.

(1,S0, pK ) =

(∫
1 dµ,

∫
s dµ,

∫
(K − s)+dµ

)
.

Our simple calculation shows

There is no duality gap.

The fact that the dual maximum is achieved at an atomic measure
corresponds to the conventional LP result that dual variables are
zero wherever constraints are not binding.

Jan Ob lój Robust pricing of variance swaps



Motivating questions and FTAP with market input
Weighted variance swaps

Robust pricing and hedging of options with convex payoffs

Main results
Upper bound
Lower bound

Numerical example for n = 1:

S0 (spot) 105
F (forward) 107.12

D (discount) 0.95123
K (strike) 100

T 1

Parameter values shown correspond to an interest rate of 5% and a
dividend yield of 3%. If the put option price is pK = 88.02 then portfolio
is minimised at b = 14.407 and the minimum value is v0 = 1.912. The
values of x0 and x1 are 7.465 and 4.91× 106.

We conclude that if there is a quoted log-option price of 1.912 in the

market (≈ BS value with σ = 25%) then the put price cannot be more

than 88.02, since the minimum v0 decreases with pK . This contrasts with

the maximum put value DK = 95.13 in the absence of the log option.
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Numerical example for n = 3:

Consider a market input of three European put options maturing in 1
year. The data are S0 = 100, FT = 105, DT = exp(−0.03), Ki = 50, 100
and 150, p1 = 1.127, p2 = 18.006 and p3 = 53.326. The range of (weak)
arbitrage-free prices for a vanilla variance swap, corridor variance swap
and gamma swap is then:

VS type w(x) λw (x) Arbitrage bounds
VS 1 − ln(x) [0.224,∞)

Corr VS 1h 75
FT
,∞
”(x) [− ln( xFT

75 ) + FT x
75 − 1]w(x) (0.038, 0.340)

Gamma S x x ln(x)− x (0.125,∞)
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Numerical example for n = 3 (cont):

Consider a market input of three European put options maturing in 1
year. The data are S0 = 100, FT = 105, DT = exp(−0.03), Ki = 50, 100
and 150, p1 = 1.127, p2 = 18.006 and p3 = 53.326.

50 100 150

0

S

The log contract payoff − ln(ST/FT ) (blue line) and the consequent

sub-hedging portfolio (black line). The portfolio is given by π†1 = 0.01706,

π†2 = 0.00472, π†3 = 0.00259, φ† = −0.00536 and ψ† = 0.42517.
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Numerical example for n = 3 (cont):

Consider a market input of three European put options maturing in 1
year. The data are S0 = 100, FT = 105, DT = exp(−0.03), Ki = 50, 100
and 150, p1 = 1.127, p2 = 18.006 and p3 = 53.326.

50 100 15075

0

S

Corr VS equivalent payoff [− ln(ST

75 ) + ST

75 − 1]1h 75
FT
,∞
”(ST/FT ) (blue

line) and the consequent sub-hedging portfolio (black line) and

super-hedging portfolio (red line).
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Numerical example for n = 3 (cont):

Consider a market input of three European put options maturing in 1
year. The data are S0 = 100, FT = 105, DT = exp(−0.03), Ki = 50, 100
and 150, p1 = 1.127, p2 = 18.006 and p3 = 53.326.

50 100 150

0

S

Gamma Swap equivalent payoff ST

FT
ln
(

ST

FT

)
− ST

FT
(blue line) and the

consequent sub-hedging portfolio (black line). The portfolio is given by

π†1 = 0.00772, π†2 = 0.00571, π†3 = −0.00225, φ† = 0 and ψ† = −0.929.
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Market example: Variance swaps on S&P500 Index

Term Quote date VS quote LB No. of puts
2M 20/04/2008 21.78 18.73 58
2M 19/07/2008 23.6 21.18 51
2M 19/10/2008 57.97 57.07 101
2M 20/01/2008 52.88 47.68 82
3M 20/03/2008 27.22 26.33 48
3M 19/06/2008 22.33 19.24 40
3M 19/09/2008 26.78 26.02 58
3M 20/12/2008 45.93 65.81 137
6M 19/03/2008 25.63 22.97 25
6M 19/06/2008 22.88 21.76 28

VS quote source: Peter Carr & Liuren Wu

European options source: Datastream and UBS (mid-quotes)
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Closing remarks

We derive model-independent no-arbitrage bounds, and associated
super/sub-hedges, on prices of a European option with convex
payoff, given market prices of finite set of co-maturing puts.

This is equivalent to robust pricing and hedging of weighted
variance swaps, assuming continuity of paths.

This can be turned around: from market quotes of variance swaps
rates we can infer information about wings of put prices

Number of questions remain, e.g. input of options with intermediate
maturities, effect of jumps, quantifying the error due to discrete
sampling...
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Towards a unified theory...

Classical approach
Assume a specific model.
Calibrate using some market prices.

Deduce unique prices and hedges.

Robust approach
Make no modelling assumptions.
Use all market prices.
Deduce price intervals and
super/sub- hedges.

Unified approach
Have some modelling beliefs
(a set of possible dynamics)

Use all market information
(both current and historic prices)

Deduce robust prices and hedges
(which will work with some p-ty)
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THANK YOU
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