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The financial network

A network of financial counterparties can be modeled as a
weighted directed graph whose

• n vertices (nodes) i ∈ V represent financial market
participants : banks, funds, corporate borrowers and
lenders,...

• (directed) links represent counterparty exposures : eij is
the exposure of i to j .

• In a market-based framework eij is understood as the fair
market value of the exposure of i to j .

• Each institution i disposes of a capital buffer ci which
absorbs market losses. Insolvency occurs if Loss(i)> ci .

• Proxy for ci : Tier I+II capital minus required regulatory
capital for non-financial assets. Other measures can be
used.
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Balance sheet

Assets Liabilities

Interbank assets Interbank liabilities
Ai =

∑

j eij Li =
∑

j eji

Deposits
di

Other Net worth
assets

xi ci

Tab.: Stylized balance sheet of a bank.

The capital ratio : γi = ci

Ai
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The default dynamics

Cascade definition : Bastos, Cont & Moussa (2009)
The default of a market participant j affects its counterparts in
the following way over a short term horizon

• Creditors lose a fraction (1 − R) of their exposure.
Loss is first absorbed by capital :
ci → min(ci − (1 − R)eij , 0).

• This leads to a writedown of (1 − R)eij in the balance
sheet of i , which can lead to default of i if

ci < (1 − R)eij

Typically R ≃ 0 in the short term (liquidation takes time).
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Heterogeneity in the structure of

interbank networks

Example : Brazil’s interbank network (data from Banco Central
do Brasil 2008).

• Average number of counterparties (degree)= 7

• Heterogeneity in number of debtors : In-degree has a
heavy-tailed Pareto distribution with exponent ≃ 2.

• Heterogeneity in number of creditors : Out-degree has
a heavy-tailed Pareto distribution with exponent ≃ 3.

• Heterogeneous exposures sizes : heavy tailed distribution,
a handful of bilateral exposures are > 100 times larger
than most of the rest → Pareto distribution.



Resilience to
contagion

Andreea
Minca

Outline

The network
approach

A stylized
description of
contagion

Empirical studies

The
probabilistic
approach

Random
financial
networks

Assumptions

Contagion

The asymptotic
size of contagion

Resilience to
contagion

Amplification of
initial shocks

Numerical
Results

Stress testing

Ideas of proofs

Random Graph
Related Work

CM

Conclusions

Financial networks under

incomplete information

Financial system : weighted graph e with the vertex set
[1, . . . , n] and the corresponding sequence of capital ratios
γn = (γi )

n
i=1.

The idea of this paper to do an embedding in a probability
space : look at the weighted graph e as a realization of a
random weighted graph E, endowed with a sequence of capital
ratios γ̂.
We may observe partially the real network e.
The degree sequence is prescribed as well as the exposures.
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Random financial networks

Definition
The random financial network E is a random matrix of size n

having the following properties :

• For every 1 ≤ i ≤ n, the line Ei is a random uniform
permutation of the line ei, with the constraint that
Ei ,i = 0 ;

• On every column 1 ≤ j ≤ n, the number of non zero
elements in E is the same as in e.
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Asymptotic study : idea

Aim : study contagion on the random financial network as its
size n → ∞.
We are given : the sequence e(n) of financial networks.
On the probability space (Ω, P),
study contagion on the sequence of “rewired” networks E(n).
More precisely, we introduce the final fraction of defaults

αn =
Nn

def (E
(n), γ̂(n))

n

Question 1 : αn
p→?

and under which assumptions ?
Question 2 : How does the limit depend on the network
topology and the individual exposures ?
Question 3 : Is the network resilient to small shocks ?
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Asymptotic study

We have d(n)+ = {(d (n)+
i )ni=1} and d(n)− = {(d (n)−

i )ni=1} the
sequences of non-negative integers representing the degrees :

n∑

i=1

d
(n)+
i =

n∑

i=1

d
(n)−
i .

We introduce the empirical distribution of the degrees as

µn(j , k) :=
1

n
#{i : d

(n)+
i = j , d

(n)−
i = k}.
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Assumptions on the degree

sequence

For each n ∈ N, d(n)+ = {(d (n)+
i )ni=1} and

d(n)− = {(d (n)−
i )ni=1} are sequences of nonnegative integers

such that
∑n

i=1 d
(n)+
i =

∑n
i=1 d

(n)−
i , and we assume that for

some probability distribution µ(j , k) independent of n,

1 µn(j , k) → µ(j , k) as n → ∞ ;

2
∑

j ,k jµ(j , k) =
∑

j ,k kµ(j , k) =: λ ∈ (0,∞) ;

3 mn/n → λ as n → ∞ ;

4
∑n

i=1(d
(n)+
i )2 + (d

(n)−
i )2 = O(n).
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Mapping continuous into discrete

variables

For each node i and permutation τ of the counterparties of i ,
we define

Θ(i , τ) := min{k ≥ 0, ci <
k∑

j=1

(1 − R)e
(n)
i ,τ(j)}

Θ(i , τ) is the number of counterparty defaults which will
generate the default of i if defaults happen in the order
prescribed by τ .

pn(j , k, θ) :=

#{(i , τ) | τ ∈ Σj
︸︷︷︸

Perm. of 1,..,j

, d
(n)+
i = j , d

(n)−
i = k, Θ(i , τ) = θ}

nµn(j , k)j!
.
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Contagious links

A link is called contagious if it generates a default of the end
node if the starting node defaults.
nµn(j , k)jpn(j , k, 1) is the total number of contagious links that
enter a node with degree (j , k).
The value pn(j , k, 1) gives the proportion of contagious links
ending in nodes with degree (j , k).
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Assumptions on the exposure

sequence

There exists a function p : N
3
+ → [0, 1] such that for all

j , k, θ ∈ N (θ ≤ j)

pn(j , k, θ)
n→∞→ p(j , k, θ). (1)

as n → ∞. This assumption is fulfilled for exemple in a model
where exposures are exchangeable arrays.
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The probability limit for the final

fraction of defaults

Let us define

β(n, π, θ) := P(Bin(n, π) ≥ θ) =

n∑

j≥θ

(
n

j

)

πj(1 − π)n−j .

We introduce the out-degree and respectively in-degree biased
probability measures µ̂ and µ̃

µ̂(j , k) =
µ(j , k)k

λ
(2)

µ̃(j , k) =
µ(j , k)j

λ
(3)

representing the probability that an edge at random begins and
respectively ends in a node with in-degree j and out-degree k.
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Define

I (π) :=
∑

j ,k

µ̂(j , k)

j
∑

θ=0

p(j , k, θ)β(j , π, θ) (4)

Theorem
Consider the sequences of exposures and capital ratios after

shock {(en)n≥1, (γ̂n)n≥1} satisfying the Assumptions on the

degree and exposure sequence. Let π∗ be the smallest fixed

point of I. We have

1 If π∗ = 1, i.e. if I (π) > π for all π ∈ [0, 1), then

asymptotically all nodes default during the cascades

αn = 1 − op(1).

2 If π∗ < 1 and furthermore π∗ is a stable fixed point of I ,

then the asymptotic fraction of defaults

αn
p→

∑

j ,k

µ(j , k)

j
∑

θ=0

p(j , k, θ)β(j , π∗, θ).
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The intuition :branching process

approximation
We can give the for

I (π) =
∑

j ,k

µ̂(j , k)

j
∑

θ=0

p(j , k, θ)β(j , π, θ)

the following interpretation : if the counterparty of a randomly
chosen node defaults with probability π defaults, I (π) is the
expected fraction of counterparty defaults after one iteration of
the cascade.
The function

∑

j ,k

µ(j , k)

j
∑

θ=0

p(j , k, θ)β(j , π, θ),

gives the fraction of defaulted nodes supposing that a
counterparty of a randomly chosen node defaults with
probability π.
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Is the random network robust to

small shocks ?

Corollary

If
∑

j ,k

jk
µ(j , k)

λ
p(j , k, 1) < 1 (5)

is satisfied, then with high probability, the default of a single

node cannot trigger the default of a positive fraction of the

financial network.
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The skeleton of contagious links

The converse also holds, if

∑

j ,k

jk
µ(j , k)

λ
p(j , k, 1) > 1,

then the network is not robust.

Proposition

Consider the sequence of random financial networks (E(n), γ̂(n))
satisfying the Assumptions on the degree and exposure

sequence. If
∑

j ,k

kµ̃(j , k)p(j , k, 1) > 1,

then with high probability there exists set of nodes representing

a positive fraction of the financial system, strongly interlinked

such that any node belonging to this set can trigger the default

of all nodes in the set.
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Amplification

We suppose that the resilience condition is satisfied.
Let π∗

ǫ be the smallest fixed point of I in [0, 1], when a fraction
ǫ of all nodes represent fundamental defaults, i.e. p(j , k, 0) = ǫ
for all j , k.
First order approximation of the function I :

π∗
ǫ =

ǫ

1 − ∑

j ,k kµ̃(j , k)p(j , k, 1)
+ o(ǫ).

lim
ǫ→0

g(π∗
ǫ )

ǫ
= 1 +

∑

j ,k jµ(j , k)p(j , k, 1)

1 − ∑

j ,k kµ̃(j , k)p(j , k, 1)
.
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Amplification - cont.

We denote π∗
ǫ (d

+, d−) the smallest fixed point of I in [0, 1] in
the case where p(d+, d−, 0) = ǫ and p(j , k, 0) = 0 for all
(j , k) 6= (d+, d−).
Then the good measure of how many times is the final fraction
of defaults larger than the initial fraction of defaults is

lim
ǫ→0

g (π∗
ǫ (d

+, d−))

ǫµ(d+, d−)
= 1 +

d−

λ

∑

j ,k µ̂(j , k)jp(j , k, 1)

1 − ∑

j ,k kµ̃(j , k)p(j , k, 1)
.
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Relevance of asymptotics

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30
Heterogeneity and Systemic Risk

γ
min

A
m

pl
ifi

ca
tio

n

Scale Free Heterogenous Exposures − Simulation
Scale Free Heterogenous Exposures − Theoretical

Fig.: Amplification of the default number in a Scale-Free Network.
The in and out-degree of the scale-free network are Pareto
distributed with tail coefficients 2.19 and 1.98 respectively, the
exposures are Pareto distributed with tail coefficient 2.61, n = 10000.
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Amplification
We plot the simulated final fraction of defaults starting from
one fundamental default in a simulated, scale free network as a
function of the out-degree, versus the theoretical slope given
above.
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Fig.: Number of defaulted nodes
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The Impact of heterogeneity
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Fig.: Amplification of the number of defaults in a Scale-Free
Network (in and out-degree of the scale-free network are Pareto
distributed with tail coefficients 2.19 and 1.98 respectively, the
exposures are Pareto distributed with tail coefficient 2.61), the same
network with equal weights and an Erdös Rényi Network with equal
exposures n = 10000.
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A simple external shock model

ci = γminAi .

We suppose that after the shock, the capital ratio becomes

γ̂i = γmin(1 + σi (
√

1 − ρYi +
√

ρZ )),

with Yi ∼ N (0, 1) independent and Z is imposed.
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Fig.: Final fraction of defaults
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Phase transitions :Armageddon ?
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Fig.: Function I for increasing magnitude of the macroeconomic
shock. As the common factor increases, the smallest fixed point
becomes 1 and the phase transition occurs.
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Related problems

• Giant component
Undirected graphs :

• Molloy & Reed : The size of the giant component of a
random graph with given degree sequence(1998)

• Janson : A new approach to the giant component
problem(2009)

Directed graphs - Cooper&Frieze : The size of the largest
strongly connected component of a random digraph with a
given degree sequence(2007)

• Lukzak & Janson : A simple solution to the k-core
problem(2005)
Wormald & Cain :Encores on cores(2005)

• Balogh &Pittel : Bootstrap percolation on the random
regular graph(2006)
Amini :Bootstrap percolation and diffusion in random
graphs with given vertex degrees(2010)
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Configuration Model

The random graph E(n) has the same distribution as the
random multigraph G ∗

n given by Configuration Model
conditional on it being simple.
The conditions on the degree sequence insure (Janson 2009)
that

lim inf
n→∞

P(G ∗
n is simple) > 0.

We associate to each node two sets, W +
i representing its

in-coming half edges and W−
i representing its out-going half

edges. We have that |W +
i | = d+

i and |W−
i | = d−

i .
Let W + =

⋃

i W
+
i and W− =

⋃

i W
−
i .

We choose a random matching of W + with W−, uniformly
among all matchings. The in-coming half edges of node i are
assigned independently from the underlying graph the exposure
sequence.
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Fig.: Configuration model. Green arrows : a random matching of
out-going half edges with weighted in-coming half edges. We have

re-denoted by (xl (i))
d+

i

l=1 i ’s set of exposures.
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Contagion study

Ideas :

1 Construct the random graph as contagion spreads.

2 Construct the matching of half edges in CM in two steps :
choose independently for each node i a random
permutation τi of its in-coming half edges giving their
relative order of matching to the out-going half edges and
then do the global matching.

3 Replace the information given by the capital ratios and the
exposures by default thresholds :

Θi = min{k ≥ 0, ci <
k∑

j=1

(1 − R)e
(n)
i ,τi (j)

}

4 All nodes of degree (j , k) and threshold equal to θ become
now indistinguishible.
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Contagion explained by a simple

Markov chain

We describe our Markovian system in terms of

• D j ,k,θ(t) : the number of defaulted banks with in-degree j ,
out-degree k at time t and default threshold θ,

• S
j ,k,θ
l (t), l < θ ≤ j , the number of solvent banks with

in-degree j , out-degree k, default threshold θ and l

defaulted debtors before time t,

• D(t) : the number of defaulted banks at time t,

• Din(t) : the number of in-coming edges belonging to
defaulted banks,

• Dout : the number of out-going edges belonging to
defaulted banks,

• Sin(t) : the number of in-coming edges belonging to
solvent banks at time t.
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Sin(t) =
∑

j ,k

∑

0≤l<θ

(j − l)S j ,k,θ
l (t),

Dout(t) =
∑

j ,k,0≤θ≤j

kD j ,k,θ(t) − t,

D(t) =
∑

j ,k,0≤θ≤j

D j ,k,θ(t).

The process will finish at the stopping time Tf which is the
first time t ∈ N where Dout(t) = 0. The final number of
defaulted banks will be D(Tf ).
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Transition probabilities

Y(t) =
(

D j ,k,θ(t),S j ,k,θ
l (t)

)

j ,k,0≤l<θ≤j
represents a Markov

chain. Choose an available out-going half edge belonging to a
defaulted node A. Let B be its counterparty.

• B is defaulted, the next state is Y(t + 1) = Y(t).

• B is solvent of in-degree j , out-degree k, default threshold
θ and this is the (l + 1)-th deleted in-coming edge and

l + 1 < θ. The probability of this event is
(j−l)S j,k,θ

l
(t)

mn−t
. The

changes for next state will be

S
j ,k,θ
l (t + 1) = S

j ,k,θ
l (t) − 1,

S
j ,k,θ
l+1 (t + 1) = S

j ,k,θ
l+1 (t) + 1.
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• B is solvent of in-degree j , out-degree k, default threshold
θ and this is the θ-th deleted in-coming edge. Then with

probability
(j−θ+1)S j,k,θ

θ−1 (t)

mn−t
we have

D j ,k,θ(t + 1) = D j ,k,θ(t) + 1,

S
j ,k,θ
θ−1 (t + 1) = S

j ,k,θ
θ−1 (t) − 1.

When n → ∞ we have that Y (nτ)
n

p→ y(τ) (Wormald
1995), with y(τ) the solutions the associated differential
equations.
The differential equations can be solved in closed form.
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Conclusions

• We can find in closed form the asymptotic limit in
probability for the final fraction of defaults in the
probabaility space of “rewired” networks.

• The formula suggests that the largest threat to the system
is posed by banks that have both high out-degree and are
high fraction of contagious links.

• Systemic nodes both highly interconnected and
over-exposed.

• Certain networks may be intrinsicly fragile, and an external
shock may trigger a phase transition.
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