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Structure of the talk

1 Definition of various concepts of no-arbitrage (NFLVR, NGA,
NRA).

2 Deterministic characterisation in diffusion models and
comparison.
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Free lunch with vanishing risk (FLVR)

Discounted asset price model: semimart S = (S)¢cj0.17, T € (0, 0],
Admissible Trading strategy: predictable process H = (H;).co,1
s.t. 4 a constant cy > 0 and

H-S;>—cyg as. Vtel0,T].

Discounted wealth process with the initial capital r e R: « + H - S.

The model S satisfies the NFLVR condition if C N L = {0} where
C :={g € L* | dadmissible H suchthat ¢ < H - St a.s.}.

C is the closure of C C L in the norm topology.
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Financial significance and characterisation of NFLVR

FLVR in S = 3 g € L\{0}, g, € C C L* and attainable claims
H™ .- Str, n €N, such that

g, < H™ - St a.s. andnli_{lgo g — gnllco = 0.

Economic interpretation: the risk of H” vanishes with increasing n

lim ((H" - S7)A0) = 0.

n—oo

(Delbaen and Schachermayer 1998): S satisfies NFLVR iff there
exists an equivalent sigma-martingale measure for S.

If S'is locally bounded from below, NFLVR holds iff 4 equivalent
local martingale measure for S (Ansel-Stricker lemma)
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Generalised arbitrage (GA)

Disc. asset price model: non-negative semimart S = (¢ ):c0,77-
Predictable trading strategies H = (H;).co, 7 IS given by

N
H = th_lI(Tk—lka]7 where N € N,O <1< - - <7y <T
k=1

are stopping times, h;_; are R-valued F,, . -measurable. Let

(H - S)r
(1 + ST)

C' :={h € L | dH simple strategy s.t. h < a.s.}.

The model S satisfies NGA if
C*n LY ={0},

where C" is closure of C in weak-* topology o (L>, L') on L*°.
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NFLVR and NGA

FLVR: (Delbaen and Schachermayer 1994)
GA: (Sin 1996), (Yan 1998), (Cherny 2007)

Discounted asset price process. non-negative cts. semimart S

NFLVR on [0,T] <= 3 Q ~ P: (S¢):cjo, 1 Is @ Q-loc. mart.
NFLVR on [0,00) <= 3 Q ~ P: (S5¢)ic)0,00) IS @ Q-loc. mart.

NGAon [0,T] <= 3 Q ~ P: (S¢)epo, ) Is a Q-mart.
NGA on [0,00) <= 3 Q ~ P: (5¢)ie[0,00) IS @ Q-U.I. mart.

In particular, NGA — NFLVR
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Setting

Bond price =1
Stock price dY; = u(Yy) dt + o(Yy) dWy, Yo = 29 € J := (0, 00)

Assumptions
(A)o(x) #0Vr e J
(B) 1/0% € L (J)

(C) /o € LL ()

loc

(D) Y does not exit at oo
On the contrary, Y may exit at 0. We stop Y after it reaches 0.
Inputs: functions p and o

Outputs: determnistic criteria for NFLVR, NGA and NRA in terms of
1 and o
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Recall (C) p/o? € L

1
loc

Ingredients

()

(1)

(2)

(3)
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Criteria for NFLVR and NGA in the difussion model Y

Assume (A)—(D)

Theorem 1 NFLVR on [0,T] <= (a) or (b), where
(a) (1) and (2) hold

(b) (1) and (3) hold and Y does not exit at O

Corollary 2 (Delbaen and Shirakawa 2002) If Y does not exit at O:
NFLVR on [0,T] < (1) and (3)

Theorem 3 NFLVR on [0, ) <= (1), (2), and s(o0) = o0,
where s denotes the scale function of Y

Proposition 4 NGA on [0, 7] <= NFLVR on [0, 7] and
v/0%(x) ¢ Ligc(00—)

loc

Proposition 5 There is always GA on [0, co)
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What is behind these results?

Let b : J — R Borel measurable with b*/c* € L} (J) and

tAC 1 [INC
Z; = exp {/ b(Yy)dW, — —/ bQ(Yu) du} , t€]0,00),
0 0

2

where we set Z; :=0fort > ( on {( < o, foC b*(Y,) du = oo}.

() When is Z a martingale?
(i) Whenis Zp > 0 P-a.s. for T € (0, 00]?
(iii) Can Z be defined for b = —p1/02%?
(iv) Is the candidate density Z of the form above?

Proofs: (Mijatovic and Urusov 2009a), (Mijatovic and
Urusov 2009b)
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The setting for relative arbitrage (RA)

Stochastic portfolio theory (Fernholz 2002), (Fernholz and
Karatzas 2008b). Assume from now on T' < .

RA on |0, T]: there exists a self-financing strategy with a strictly
positive wealth (Vt)tE[O,T] such that V, = Yy, Vpr > Y a.s., and

P(Vr>Yr) >0

For RA we assume (A), (B), (C’), and (D’)
(A)o(x) #0Vz e J
(B) 1/0% € L} _(J)

(C) p?/o* € Ly (J)

loc

(D’) Y exits neither at O nor at oo

Deterministic criteria for the absence of arbitrage in diffusion models —p.11/14



Criterion for NRA

Assume (A), (B), (C), and (D’)

Recall dY; = u(Y;) dt + o(Y;) dWs, Yo =z € J = (0, 0)

Set Z; := exp{— [ (/o) (V) AWy — (1/2) [5 (1% )0%)(Ya) du}
By Ité’s formula ZY = (ZYt)tE[Oﬂ is a local martingale

(Fernholz and Karatzas 2008a) and (Mijatovi¢c and Urusov 2009a):

NRA <= ZY martingale
Proposition 6 NRA < z/0%(z) ¢ L. _(co—)

Proof. d(Z,;Y;) = Zthb(Y}) dWi with b(z) = o(x)/x — p(x)/o(x)
ZtY;g = CE()(C; fO dW ) []
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Comparison

Assume (A), (B), (C), and (D’)

() NFLVR <= z/0%(x) & Lj.(0+)

(i) NRA <= 2/0%(x) ¢ L, (c0—)

("I) NGA <— x/a ( ) % Lloc((H_) and :c/a ( ) §é Lloc(

Thus, NFLVR and NRA are in a general position and

NGA <— NFLVR and NRA

NFLVR & NRA dY; =Y, dt + Yt dW,
NFLVR & RA  dY; = Y, dt + Y2 dW,
FLVR & NRA  dY; = & dt + dW;

FLVR & RA dYt_QdH(\FJrY)th
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Thank you for your attention!
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