Information Percolation

Gustavo Manso MIT

based on joint work with Darrell Dufife, Gaston Giroux, and Semyon Malamud

Fields Institute - May 2010

Information Transmission in Markets

Informational Role of Prices: Hayek (1945), Grossman (1976), Grossman and Stiglitz (1981).

- Centralized Exchanges:
 - Wilson (1977), Townsend (1978), Milgrom (1981), Vives (1993), Pesendorfer and Swinkels (1997), and Reny and Perry (2006).
- Over-the-Counter Markets:
 - Wolinsky (1990), Blouin and Serrano (2002), Golosov, Lorenzoni, and Tsyvinski (2009).

- Closed-form solutions for the evolution of the cross-sectional distribution of beliefs.
 - Duffie and Manso (2007).
- Rates of convergence to REE price under different market structures:
 - Duffie, Giroux, and Manso (2008), Duffie, Malamud, and Manso (2009).
- Value of information/connectivity in a segmented market:
 - Duffie, Malamud, and Manso (2010).

Outline of the Talk

1 Information Percolation

2 Double Auction

3 Connectedness and Information

Outline of the Talk

1 Information Percolation

2 Double Auction

3 Connectedness and Information

Model Primitives

Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010):

- Continuum of agents
- Two possible states of nature $Y \in \{0, 1\}$.
- Common prior P(Y = 0) and P(Y = 1) over Y.
- ► Each agent *j* is initially endowed with signals $S = \{s_1, ..., s_n\}$ s.t. $P_j(s_i = 1 | Y = 1) \ge P_j(s_i = 1 | Y = 0)$
- For every pair agents, their initial signals are Y-conditionally independent
- **•** Random matching, intensity λ .

Initial Information Endowment

After observing signals $S = \{s_1, ..., s_n\}$, the logarithm of the likelihood ratio between states Y = 0 and Y = 1 is by Bayes' rule:

$$\log \frac{\mathsf{P}(\mathsf{Y} = 0 \mid s_1, \dots, s_n)}{\mathsf{P}(\mathsf{Y} = 1 \mid s_1, \dots, s_n)} = \log \frac{\mathsf{P}(\mathsf{Y} = 0)}{\mathsf{P}(\mathsf{Y} = 1)} + \sum_{i=1}^n \log \frac{\mathsf{P}(s_i \mid \mathsf{Y} = 0)}{\mathsf{P}(s_i \mid \mathsf{Y} = 1)}.$$

We say that the "type" θ associated with this set of signals is

$$\theta = \sum_{i=1}^n \log \frac{\mathsf{P}(s_i \mid \mathsf{Y} = 0)}{\mathsf{P}(s_i \mid \mathsf{Y} = 1)}.$$

Bargaining Protocol: Double Auction

- Upon meeting, agents participate in a double auction.
- If bids are strictly increasing in the type associated with the signals agents have collected, then bids reveal type.

Information is Additive in Type Space

Proposition: Let $S = \{s_1, ..., s_n\}$ and $R = \{r_1, ..., r_m\}$ be independent sets of signals, with associated types θ and ϕ . If two agents with types θ and ϕ reveal their their types to each other, then both agents achieve the posterior type $\theta + \phi$.

This follows from Bayes' rule, by which

$$\log \frac{\mathsf{P}(\mathsf{Y}=0 \mid \mathsf{S}, \mathsf{R}, \theta + \phi)}{\mathsf{P}(\mathsf{Y}=1 \mid \mathsf{S}, \mathsf{R}, \theta + \phi)} = \log \frac{\mathsf{P}(\mathsf{Y}=0)}{\mathsf{P}(\mathsf{Y}=1)} + \theta + \phi,$$
$$= \log \frac{\mathsf{P}(\mathsf{Y}=0 \mid \theta + \phi)}{\mathsf{P}(\mathsf{Y}=1 \mid \theta + \phi)}$$

Information is Additive in Type Space

Proposition: Let $S = \{s_1, ..., s_n\}$ and $R = \{r_1, ..., r_m\}$ be independent sets of signals, with associated types θ and ϕ . If two agents with types θ and ϕ reveal their their types to each other, then both agents achieve the posterior type $\theta + \phi$.

This follows from Bayes' rule, by which

$$\log \frac{\mathsf{P}(\mathsf{Y}=0 \mid \mathsf{S}, \mathsf{R}, \theta + \phi)}{\mathsf{P}(\mathsf{Y}=1 \mid \mathsf{S}, \mathsf{R}, \theta + \phi)} = \log \frac{\mathsf{P}(\mathsf{Y}=0)}{\mathsf{P}(\mathsf{Y}=1)} + \theta + \phi,$$
$$= \log \frac{\mathsf{P}(\mathsf{Y}=0 \mid \theta + \phi)}{\mathsf{P}(\mathsf{Y}=1 \mid \theta + \phi)}$$

By induction, this property holds for all subsequent meetings.

Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution μ_t of types is

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t.$$

with a given initial distribution of types μ_0 .

Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution μ_t of types is

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t.$$

with a given initial distribution of types μ_0 .

Proposition: The unique solution of (10) is the Wild sum

$$\mu_t = \sum_{n \ge 1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \mu_0^{*n}.$$

Proof of Wild Summation

Taking the Fourier transform of μ_t of the Boltzmann equation

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t.$$

we obtain the following ODE

$$\frac{d}{dt}\hat{\mu}_t = -\lambda\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^2.$$

whose solution is

$$\hat{\mu}_t = \frac{\hat{\mu}_0}{\boldsymbol{e}^{\lambda t} (1 - \hat{\mu}_0) + \hat{\mu}_0}$$

This solution can be expanded as

$$\hat{\mu}_t = \sum_{n \ge 1} \mathbf{e}^{-\lambda t} (\mathbf{1} - \mathbf{e}^{-\lambda t})^{n-1} \hat{\mu}_0^n,$$

which is the Fourier transform of the Wild sum (10).

Convergence Rate

We let π_t be the cross-sectional distribution of posteriors.

We say that the rate of convergence of π_t to π_∞ is exponential at the rate $\alpha > 0$ if there are constants κ_0 and κ_1 such that, for any *b* in (0, 1),

$$\mathbf{e}^{-lpha t}\kappa_0 \leq |\pi_t(\mathbf{0}, \mathbf{b}) - \pi_\infty(\mathbf{0}, \mathbf{b})| \leq \mathbf{e}^{-lpha t}\kappa_1.$$

Convergence Rate in Two-Agent Meetings

Proposition: Convergence of the cross-sectional distribution of beliefs to that of complete information is exponential at the rate λ .

Proof of the Proposition

The evolution of cross-sectional types is given by:

$$\mu_t = \sum_{n \ge 1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \mu_0^{*n}.$$
 (1)

1. Lower bound: $\mu_t(-\infty, a) \ge e^{-\lambda t} \mu_0(-\infty, a)$.

2. Upper bound: large deviation result.

If X is a random variable with a finite strictly positive mean and a moment generating function that is finite on (-c, 0] for some c > 0, then $P(X \le 0) \le \inf_{-c < s < 0} E[e^{sX}] < 1.$

3. From type to posterior:

$$\pi_t(\mathbf{0}, \mathbf{b}) = \mu_t \left(-\infty, \log \frac{\mathbf{b}}{(1-\mathbf{b})} - \log \frac{\nu}{(1-\nu)} \right).$$

Multi-Agent Meetings

The Boltzmann equation for the cross-sectional distribution μ_t of types is

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t^{*m}.$$

Taking the Fourier transform, we obtain the ODE,

$$\frac{d}{dt}\hat{\mu}_t = -\lambda\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^m.$$

whose solution satisfies

$$\hat{\mu}_t^{m-1} = \frac{\hat{\mu}_0^{m-1}}{e^{(m-1)\lambda t}(1-\hat{\mu}_0^{m-1})+\hat{\mu}_0^{m-1}}.$$
(2)

Wild Summation Solution

The unique solution of the Boltzmann equation for *m*-at-a-time matching is

$$\mu_t = \sum_{n \ge 1} a_{[(m-1)(n-1)+1]} e^{-\lambda t} (1 - e^{-(m-1)\lambda t})^{n-1} \mu_0^{*[(m-1)(n-1)+1]},$$

where $a_1 = 1$ and, for n > 1,

$$a_{(m-1)(n-1)+1} = \frac{1}{m-1} \left(1 - \sum_{\substack{\{i_1, \dots, i_{(m-1)} < n \\ \sum i_k = n+m-2}} \prod_{k=1}^{m-1} a_{[(m-1)(i_k-1)+1]} \right).$$

Invariance of the Convergence Rate

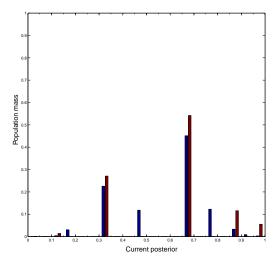
Proposition: For any group size *m*, the cross-sectional distribution π_t of posteriors converges to a common posterior distribution exponentially at the rate λ .

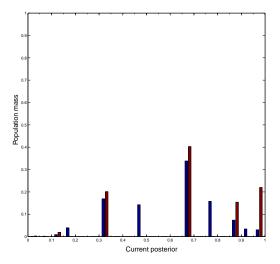
Proof of the Proposition

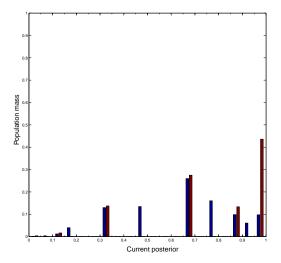
The cross-sectional distribution of types evolves according to:

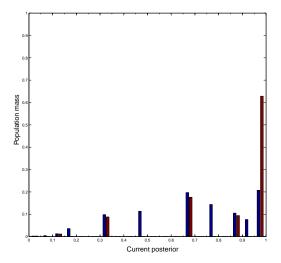
$$\mu_t = \sum_{n \ge 1} a_{[(m-1)(n-1)+1]} e^{-\lambda t} (1 - e^{-(m-1)\lambda t})^{n-1} \mu_0^{*[(m-1)(n-1)+1]}.$$

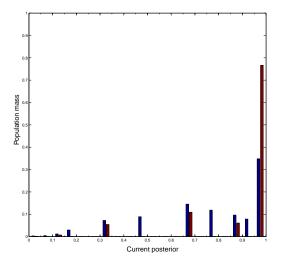
- 1. Lower bound: $\mu_t(-\infty, a) \ge e^{-\lambda t} \mu_0(-\infty, a)$.
- 2. Upper bound: follows from the previous upper bound result.

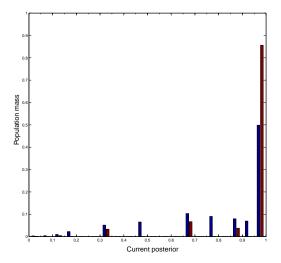


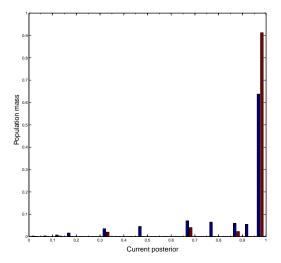












New Private Information

Suppose that, independently across agents as above, each agent receives, at Poisson mean arrival rate ρ , a new private set of signals whose type outcome *y* is distributed according to a probability measure ν . Then the evolution equation is extended to

$$\frac{d}{dt}\mu_t = -(\lambda + \rho)\,\mu_t + \lambda\,\mu_t * \mu_t + \rho\,\mu_t * \nu.$$

Taking Fourier transforms, we obtain the following ODE

$$\frac{d}{dt}\hat{\mu}_t = -(\lambda + \rho)\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^2 + \rho\,\hat{\mu}_t\,\hat{\nu}.$$

whose solution satisfies

$$\hat{\mu}_{t} = \frac{\hat{\mu}_{0}}{e^{(\lambda + \rho(1 - \hat{\nu}))t}(1 - \hat{\mu}_{0}) + \hat{\mu}_{0}}$$

Other Extensions

Public information releases

- Duffie, Malamud, and Manso (2010).
- Endogenous search intensity
 - Duffie, Malamud, and Manso (2009).

Segmented Markets

Duffie, Malamud, and Manso (2010). Same as the previous model except that:

- N classes of investors.
- Agent of class *i* has matching intensity λ_i .
- Upon meeting, the probability that a class-*j* agent is selected as a counterparty is κ_{ij}.

Evolution of Type Distribution

The evolution equation is given by:

$$\frac{d}{dt}\psi_{it} = -\lambda_i \psi_{it} + \lambda_i \psi_{it} * \sum_{j=1}^N \kappa_{ij} \psi_{jt}, \quad i \in \{1, \ldots, N\},$$

Taking Fourier transforms we obtain:

$$\frac{d}{dt}\hat{\psi}_{it} = -\lambda_i \hat{\psi}_{it} + \lambda_i \hat{\psi}_{it} \sum_{j=1}^N \kappa_{ij} \hat{\psi}_{jt}, \quad i \in \{1, \dots, N\},$$

Evolution of Type Distribution

The evolution equation is given by:

$$\frac{d}{dt}\psi_{it} = -\lambda_i \psi_{it} + \lambda_i \psi_{it} * \sum_{j=1}^N \kappa_{ij} \psi_{jt}, \quad i \in \{1, \ldots, N\},$$

Taking Fourier transforms we obtain:

$$\frac{d}{dt}\hat{\psi}_{it} = -\lambda_i \hat{\psi}_{it} + \lambda_i \hat{\psi}_{it} \sum_{j=1}^N \kappa_{ij} \hat{\psi}_{jt}, \quad i \in \{1, \dots, N\},$$

General Case: Wild Sum Representation

Theorem: There is a unique solution of the evolution equation, given by

$$\psi_{it} = \sum_{k \in \mathbb{Z}_{+}^{N}} a_{it}(k) \psi_{10}^{*k_{1}} * \cdots * \psi_{N0}^{*k_{N}},$$

where ψ_{i0}^{*n} denotes *n*-fold convolution,

$$\mathbf{a}_{it}' = -\lambda_i \, \mathbf{a}_{it} + \lambda_i \, \mathbf{a}_{it} * \sum_{j=1}^N \kappa_{ij} \, \mathbf{a}_{jt}, \quad \mathbf{a}_{i0} = \delta_{\mathbf{e}_i},$$
$$(\mathbf{a}_{it} * \mathbf{a}_{jt})(\mathbf{k}_1, \dots, \mathbf{k}_N) = \sum_{I = (l_1, \dots, l_N) \in \mathbb{Z}_+^N, \ I < k} \mathbf{a}_{it}(I) \, \mathbf{a}_{jt}(k-I)$$

and

$$a_{it}(\mathbf{e}_i) = \mathbf{e}^{-\lambda_i t} a_{i0}(\mathbf{e}_i).$$

Information Percolation

,

Outline of the Talk

Information Percolation

3 Connectedness and Information

Double Auction

At some time T, the economy ends and the utility realized by an agent of class i for each additional unit of the asset is

$$U_i = v_i Y + v^H (1 - Y),$$

measured in units of consumption, for strictly positive constants v^H and $v_i < v^H$, where Y is a non-degenerate 0-or-1 random variable whose outcome will be revealed at time T.

- ▶ If $v_i = v_j$, no trade (Milgrom and Stokey (1982), Serrano-Padial (2010)), so that $\kappa_{ij} = 0$.
- Meeting between two agents v_i > v_j, then i is buyer and j is seller.
- Upon meeting, participate in a double auction. If the buyer's bid β is higher than the seller's ask σ , trade occurs at the price σ .

Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class *i* and a buyer of class *j* provided that, fixing β , the offer σ maximizes the seller's conditional expected gain,

$$\mathsf{E}\left[\left(\sigma - \mathsf{E}(\mathsf{U}_i \,|\, \mathcal{F}_{\mathsf{S}} \cup \{\beta\})\right) \mathsf{1}_{\{\sigma < \beta\}} \,|\, \mathcal{F}_{\mathsf{S}}\right],\,$$

and fixing $\sigma,$ the bid β maximizes the buyer's conditional expected gain

$$E\left[\left(E(U_{j} | \mathcal{F}_{B} \cup \{\sigma\}) - \sigma\right) \mathbf{1}_{\{\sigma < \beta\}} | \mathcal{F}_{B}\right].$$

Counterexample: Reny and Perry (2006)

Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class *i* and a buyer of class *j* provided that, fixing β , the offer σ maximizes the seller's conditional expected gain,

$$\mathsf{E}\left[\left(\sigma - \mathsf{E}(\mathsf{U}_i \,|\, \mathcal{F}_{\mathsf{S}} \cup \{\beta\})\right) \mathsf{1}_{\{\sigma < \beta\}} \,|\, \mathcal{F}_{\mathsf{S}}\right],\,$$

and fixing $\sigma,$ the bid β maximizes the buyer's conditional expected gain

$$E\left[\left(E(U_{j} | \mathcal{F}_{B} \cup \{\sigma\}) - \sigma\right) \mathbf{1}_{\{\sigma < \beta\}} | \mathcal{F}_{B}\right].$$

Counterexample: Reny and Perry (2006)

Restriction on the Initial Information Endowment

Lemma: Suppose that each signal Z satisfies

$$\mathbb{P}(Z = 1 \mid Y = 0) + \mathbb{P}(Z = 1 \mid Y = 1) = 1.$$

Then, for each agent class *i* and time *t*, the type density ψ_{it} satisfies the hazard-rate order condition as well as the property

$$\psi_{it}^{H}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}}\psi_{it}^{H}(-\mathbf{x}), \qquad \psi_{it}^{L}(\mathbf{x}) = \psi_{it}^{H}(-\mathbf{x}) \quad \mathbf{x} \in \mathbb{R}.$$

Bidding Strategies

Lemma: For any $V_0 \in \mathbb{R}$, there exists a unique solution $V_2(\cdot)$ on $[v_i, v^H)$ to the ODE

$$V_2'(z) = \frac{1}{v_i - v_j} \left(\frac{z - v_i}{v^H - z} \frac{1}{h_{it}^H(V_2(z))} + \frac{1}{h_{it}^L(V_2(z))} \right), \quad V_2(v_i) = V_0.$$

This solution, also denoted $V_2(V_0, z)$, is monotone increasing in both z and V_0 . Further, $\lim_{v \to v^H} V_2(v) = +\infty$. The limit $V_2(-\infty, z) = \lim_{v \to -\infty} V_2(V_0, z)$ exists. Moreover, $V_2(-\infty, z)$ is continuously differentiable with respect to z.

Bidding Strategies

Proposition: Suppose that (S, B) is an absolutely continuous equilibrium such that $S(\theta) \leq v^H$ for all $\theta \in \mathbb{R}$. Let $V_0 = B^{-1}(v_i) \geq -\infty$. Then,

$$B(\phi) = V_2^{-1}(\phi), \quad \phi > V_0,$$

Further, $S(-\infty) = \lim_{\theta \to -\infty} S(\theta) = v_i$ and $S(+\infty) = \lim_{\theta \to -\infty} S(\theta) = v^H$, and for any θ , we have $S(\theta) = V_1^{-1}(\theta)$ where

$$V_1(z) = \log \frac{z - v_i}{v^H - z} - V_2(z), \quad z \in (v_i, v^H).$$

Any buyer of type $\phi < V_0$ will not trade, and has a bidding policy *B* that is not uniquely determined at types below V_0 .

Tail Condition

Definition: We say that a probability density $g(\cdot)$ on the real line is of exponential type α at $+\infty$ if, for some constants c > 0 and $\gamma > -1$,

$$\lim_{x\to+\infty}\,\frac{g(x)}{x^{\gamma}\,e^{\alpha x}}\,=\,c$$

In this case, we write $g(x) \sim \text{Exp}_{+\infty}(c, \gamma, \alpha)$.

Exponential Tails in Percolation Models

Suppose N = 1, and let $\lambda = \lambda_1$ and $\psi_t = \psi_{1t}$. The Laplace transform $\hat{\psi}_t$ of ψ_t is given by

$$\hat{\psi}_t(z) = \frac{e^{-\lambda t} \hat{\psi}_0(z)}{1 - (1 - e^{-\lambda t}) \hat{\psi}_0(z)}$$

and $\psi_t(\mathbf{x}) \sim \operatorname{Exp}_{+\infty}(\mathbf{c}_t, 0, -\alpha_t)$ in *t*, where α_t is the unique positive number *z* solving

$$\hat{\psi}_0(z) = \frac{1}{1-e^{-\lambda t}},$$

and where

$$c_t = \frac{e^{-\lambda t}}{(1 - e^{-\lambda t})^2 \frac{d}{dz} \hat{\psi}_0(\alpha_t)}.$$

Furthermore, α_t is monotone decreasing in *t*, with $\lim_{t\to\infty} \alpha_t = 0$.

Strictly Monotone Equilibrium

Proposition: Suppose that, for all *t* in [0, *T*], there are $\alpha_i(t)$, $c_i(t)$, and $\gamma_i(t)$ such that

$$\psi_{it}^{H}(\mathbf{x}) \sim \mathsf{Exp}_{+\infty}(\mathbf{c}_{i}(t), \gamma_{i}(t), -\alpha_{i}(t)).$$

If $\alpha_i(T) < 1$, then there is no equilibrium associated with $V_0 = -\infty$. Moreover, if $v_i - v_j$ is sufficiently large and if $\alpha_i(T) > \alpha^*$, where α^* is the unique positive solution to $\alpha^* = 1 + 1/(\alpha^* 2^{\alpha^*})$ (which is approximately 1.31), then there exists a unique strictly monotone equilibrium associated with $V_0 = -\infty$. This equilibrium is in undominated strategies, and maximizes total welfare among all continuous equilibria.

Outline of the Talk

Information Percolation

2 Double Auction

3 Connectedness and Information

Class-i Agent Utility

The expected future profit at time t of a class-i agent is

$$\mathcal{U}_{i}(t,\Theta_{t}) = E\left[\sum_{\tau_{k}>t}\sum_{j}\kappa_{ij}\pi_{ij}(\tau_{k},\Theta_{\tau_{k}}) \mid \Theta_{t}\right],$$

where τ_k is this agent's *k*-th auction time and $\pi_{ij}(t, \theta)$ is the expected profit of a class-*i* agent of type θ entering an auction at time *t* with a class-*j* agent.

Agents may be able to disguise the characteristics determining their information at a particular auction. In this case, we denote the expected future profit at time *t* of a class-*i* agent as $\hat{U}_i(t, \Theta_t)$.

The Value of Initial Information and Connectivity When Trades Can be Disguised

Theorem: Suppose that $v_1 = v_2$. If $\lambda_2 \ge \lambda_1$ and if the initial type densities ψ_{10} and ψ_{20} are distinguished by the fact that the density p_2 of the number of signals received by class-2 agents has first-order stochastic dominance over the density p_1 of the number of signals by class-1 agents, then

$$\frac{E[\hat{\mathcal{U}}_2(t,\Theta_{2t})]}{\lambda_2} \geq \frac{E[\hat{\mathcal{U}}_1(t,\Theta_{1t})]}{\lambda_1}, \quad t \in [0,T].$$

The above inequality holds strictly if, in addition, $\lambda_2 > \lambda_1$ or if p_2 has strict dominance over p_1 .

What if Characteristics are Commonly Observed?

- trade-off between adverse selection and gains from trade.
- more informed/connected investor may achieve lower profits than less informed/connected investor.

What if Characteristics are Commonly Observed?

• If
$$v_1 = v_2 = 0.9$$
, $v_3 = 0$, $v^H = 1.9$,

$$\psi_{10}(x) = 12 \, rac{\mathrm{e}^{3x}}{(1 + \mathrm{e}^{x})^5},$$

and $\psi_{20}(x) = \psi_{10} * \psi_{10}$.

Then,

and
$$E[\mathcal{U}_2(t,\Theta_{1t})] < E[\mathcal{U}_1(t,\Theta_{2t})]$$
 $\in E[\hat{\mathcal{U}}_1(t,\Theta_{1t})] < E[\mathcal{U}_1(t,\Theta_{2t})].$

Even If Characteristics are Commonly Observed Connectivity May be Valuable

Proposition: Suppose that $\kappa_1 = \kappa_2$ and $\lambda_1 < \lambda_2$, and suppose that class-1 and class-2 investors have the same initial information quality, that is, $\psi_{10} = \psi_{20}$, and assume the exponential tail condition $\psi_{it}^H \sim \text{Exp}_{+\infty} (c_{it}, \gamma_{it}, -\alpha_{it})$ for all *i* and *t*, with $\alpha_{10} > 3$,

$$\alpha_{30} > \frac{\alpha_{10} - 1}{3 - \alpha_{10}},$$

and

$$\frac{\alpha_{1t}+1}{\alpha_{1t}-1} > \alpha_{3t}, \quad t \in [0,T].$$

If $\bar{v} - v_3$ is sufficiently large, then for any time *t* we have

$$\frac{E[\mathcal{U}_2(t,\Theta_{2t})]}{\lambda_2} > \frac{E[\hat{\mathcal{U}}_2(t,\Theta_{2t})]}{\lambda_2} > \frac{E[\hat{\mathcal{U}}_1(t,\Theta_{1t})]}{\lambda_1} > \frac{E[\mathcal{U}_1(t,\Theta_{1t})]}{\lambda_1}.$$

Subsidizing Order Flow

- Investors *i* and *j* with $v_i = v_j$ meet at time *t*.
- Enter a swap agreement by which the amount

$$k\left[(p_j(t)-Y)^2-(p_i(t)-Y)^2\right],$$

will be paid by investor i to investor j at time T.

- Increase connectivity of class *i* investors.
- When would investors want to subsidize order flow?

Concluding Remarks

- tractable model of information diffusion in over-the-counter markets.
- rates of convergence for different market structures.
- initial information and connectivity may or may not increase profits:
 - more informed/connected investors attain higher profits than less informed connected investors when investors can disguise trades.
 - more informed/connected investors may attain lower profits than less informed connected investors when investors' characteristics are commonly observed.

Future Research

- Endogenous information acquisition and convergence.
- Market design

Other Applications

- centralized exchanges, decentralized information transmission
- bank runs
- knowledge spillovers
- social learning
- technology diffusion