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Information Transmission in Markets

Informational Role of Prices: Hayek (1945), Grossman (1976),
Grossman and Stiglitz (1981).

I Centralized Exchanges:
• Wilson (1977), Townsend (1978), Milgrom (1981), Vives (1993),

Pesendorfer and Swinkels (1997), and Reny and Perry (2006).

I Over-the-Counter Markets:
• Wolinsky (1990), Blouin and Serrano (2002), Golosov, Lorenzoni,

and Tsyvinski (2009).
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Information Percolation

I Closed-form solutions for the evolution of the cross-sectional
distribution of beliefs.

• Duffie and Manso (2007).

I Rates of convergence to REE price under different market
structures:

• Duffie, Giroux, and Manso (2008), Duffie, Malamud, and Manso
(2009).

I Value of information/connectivity in a segmented market:
• Duffie, Malamud, and Manso (2010).
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Model Primitives

Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010):

I Continuum of agents

I Two possible states of nature Y ∈ {0, 1}.

I Common prior P(Y = 0) and P(Y = 1) over Y .

I Each agent j is initially endowed with signals S = {s1, . . . , sn} s.t.
Pj(si = 1 |Y = 1) ≥ Pj(si = 1 |Y = 0)

I For every pair agents, their initial signals are Y -conditionally
independent

I Random matching, intensity λ.
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Initial Information Endowment

After observing signals S = {s1, . . . , sn}, the logarithm of the
likelihood ratio between states Y = 0 and Y = 1 is by Bayes’ rule:

log
P(Y = 0 | s1, . . . , sn)

P(Y = 1 | s1, . . . , sn)
= log

P(Y = 0)

P(Y = 1)
+

n
∑

i=1

log
P(si |Y = 0)

P(si |Y = 1)
.

We say that the “type” θ associated with this set of signals is

θ =

n
∑

i=1

log
P(si |Y = 0)

P(si |Y = 1)
.
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Bargaining Protocol: Double Auction

I Upon meeting, agents participate in a double auction.

I If bids are strictly increasing in the type associated with the
signals agents have collected, then bids reveal type.
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Information is Additive in Type Space

Proposition: Let S = {s1, . . . , sn} and R = {r1, . . . , rm} be
independent sets of signals, with associated types θ and φ. If two
agents with types θ and φ reveal their their types to each other, then
both agents achieve the posterior type θ + φ.

This follows from Bayes’ rule, by which

log
P(Y = 0 |S,R, θ + φ)

P(Y = 1 |S,R, θ + φ)
= log

P(Y = 0)

P(Y = 1)
+ θ + φ,

= log
P(Y = 0 | θ + φ)

P(Y = 1 | θ + φ)
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log
P(Y = 0 |S,R, θ + φ)
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= log
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= log
P(Y = 0 | θ + φ)
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By induction, this property holds for all subsequent meetings.
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Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution µt of
types is

d
dt
µt = −λµt + λµt ∗ µt .

with a given initial distribution of types µ0.
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Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution µt of
types is

d
dt
µt = −λµt + λµt ∗ µt .

with a given initial distribution of types µ0.

Proposition: The unique solution of (10) is the Wild sum

µt =
∑

n≥1

e−λt (1 − e−λt)n−1µ∗n
0 .
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Proof of Wild Summation

Taking the Fourier transform of µt of the Boltzmann equation

d
dt
µt = −λµt + λµt ∗ µt .

we obtain the following ODE

d
dt
µ̂t = −λ µ̂t + λ µ̂2

t .

whose solution is

µ̂t =
µ̂0

eλt (1 − µ̂0) + µ̂0
.

This solution can be expanded as

µ̂t =
∑

n≥1

e−λt (1 − e−λt)n−1µ̂n
0,

which is the Fourier transform of the Wild sum (10).
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Convergence Rate

We let πt be the cross-sectional distribution of posteriors.

We say that the rate of convergence of πt to π∞ is exponential at the
rate α > 0 if there are constants κ0 and κ1 such that, for any b in
(0, 1),

e−αtκ0 ≤ |πt (0, b) − π∞(0, b)| ≤ e−αtκ1.
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Convergence Rate in Two-Agent Meetings

Proposition: Convergence of the cross-sectional distribution of
beliefs to that of complete information is exponential at the rate λ.
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Proof of the Proposition
The evolution of cross-sectional types is given by:

µt =
∑

n≥1

e−λt (1 − e−λt)n−1µ∗n
0 . (1)

1. Lower bound: µt(−∞, a) ≥ e−λtµ0(−∞, a).

2. Upper bound: large deviation result.

If X is a random variable with a finite strictly positive
mean and a moment generating function that is finite on
(−c, 0] for some c > 0, then
P(X ≤ 0) ≤ inf

−c<s<0
E [esX ] < 1.

3. From type to posterior:

πt (0, b) = µt

(

−∞, log
b

(1 − b)
− log

ν

(1 − ν)

)

.
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Multi-Agent Meetings

The Boltzmann equation for the cross-sectional distribution µt of
types is

d
dt
µt = −λµt + λµ∗m

t .

Taking the Fourier transform, we obtain the ODE,

d
dt
µ̂t = −λ µ̂t + λ µ̂m

t .

whose solution satisfies

µ̂m−1
t =

µ̂m−1
0

e(m−1)λt (1 − µ̂m−1
0 ) + µ̂m−1

0

. (2)
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Wild Summation Solution

The unique solution of the Boltzmann equation for m-at-a-time
matching is

µt =
∑

n≥1

a[(m−1)(n−1)+1]e
−λt (1 − e−(m−1)λt )n−1µ

∗[(m−1)(n−1)+1]
0 ,

where a1 = 1 and, for n > 1,

a(m−1)(n−1)+1 =
1

m − 1











1 −
∑

{

i1,...,i(m−1)<n
∑

ik =n+m−2

}

m−1
∏

k=1

a[(m−1)(ik−1)+1]











.
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Invariance of the Convergence Rate

Proposition: For any group size m, the cross-sectional distribution
πt of posteriors converges to a common posterior distribution
exponentially at the rate λ.
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Proof of the Proposition

The cross-sectional distribution of types evolves according to:

µt =
∑

n≥1

a[(m−1)(n−1)+1]e
−λt (1 − e−(m−1)λt )n−1µ

∗[(m−1)(n−1)+1]
0 .

1. Lower bound: µt(−∞, a) ≥ e−λtµ0(−∞, a).

2. Upper bound: follows from the previous upper bound result.
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New Private Information

Suppose that, independently across agents as above, each agent
receives, at Poisson mean arrival rate ρ, a new private set of signals
whose type outcome y is distributed according to a probability
measure ν. Then the evolution equation is extended to

d
dt
µt = −(λ+ ρ)µt + λµt ∗ µt + ρ µt ∗ ν.

Taking Fourier transforms, we obtain the following ODE

d
dt
µ̂t = −(λ+ ρ) µ̂t + λ µ̂2

t + ρ µ̂t ν̂.

whose solution satisfies

µ̂t =
µ̂0

e(λ+ρ(1−ν̂))t (1 − µ̂0) + µ̂0
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Other Extensions

I Public information releases
• Duffie, Malamud, and Manso (2010).

I Endogenous search intensity
• Duffie, Malamud, and Manso (2009).
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Segmented Markets

Duffie, Malamud, and Manso (2010). Same as the previous model
except that:

I N classes of investors.

I Agent of class i has matching intensity λi .

I Upon meeting, the probability that a class-j agent is selected as
a counterparty is κij .
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Evolution of Type Distribution

The evolution equation is given by:

d
dt
ψit = −λi ψit + λi ψit ∗

N
∑

j=1

κij ψjt , i ∈ {1, . . . ,N},

Taking Fourier transforms we obtain:

d
dt
ψ̂it = −λi ψ̂it + λi ψ̂it

N
∑

j=1

κij ψ̂jt , i ∈ {1, . . . ,N},
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General Case: Wild Sum Representation

Theorem: There is a unique solution of the evolution equation, given
by

ψit =
∑

k∈Z
N
+

ait (k)ψ∗k1
10 ∗ · · · ∗ ψ∗kN

N0 ,

where ψ∗n
i0 denotes n-fold convolution,

a′
it = −λi ait + λi ait ∗

N
∑

j=1

κij ajt , ai0 = δei ,

(ait ∗ ajt )(k1, . . . , kN) =
∑

l=(l1,...,lN)∈Z
N
+ , l<k

ait (l) ajt (k − l),

and
ait(ei ) = e−λi t ai0(ei).
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Double Auction

I At some time T , the economy ends and the utility realized by an
agent of class i for each additional unit of the asset is

Ui = viY + vH(1 − Y ),

measured in units of consumption, for strictly positive constants
vH and vi < vH , where Y is a non-degenerate 0-or-1 random
variable whose outcome will be revealed at time T .

I If vi = vj , no trade (Milgrom and Stokey (1982), Serrano-Padial
(2010)), so that κij = 0.

I Meeting between two agents vi > vj , then i is buyer and j is
seller.

I Upon meeting, participate in a double auction. If the buyer’s bid
β is higher than the seller’s ask σ, trade occurs at the price σ.
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Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class i and a
buyer of class j provided that, fixing β, the offer σ maximizes the
seller’s conditional expected gain,

E
[

(σ − E(Ui | FS ∪ {β}))1{σ<β} | FS
]

,

and fixing σ, the bid β maximizes the buyer’s conditional expected
gain

E
[

(E(Uj | FB ∪ {σ}) − σ)1{σ<β} | FB
]

.

Counterexample: Reny and Perry (2006)
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Restriction on the Initial Information Endowment

Lemma: Suppose that each signal Z satisfies

P(Z = 1 |Y = 0) + P(Z = 1 |Y = 1) = 1.

Then, for each agent class i and time t , the type density ψit satisfies
the hazard-rate order condition as well as the property

ψH
it (x) = exψH

it (−x), ψL
it (x) = ψH

it (−x) x ∈ R.
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Bidding Strategies

Lemma: For any V0 ∈ R, there exists a unique solution V2( · ) on
[vi , vH) to the ODE

V ′
2(z) =

1
vi − vj

(

z − vi

vH − z
1

hH
it (V2(z))

+
1

hL
it(V2(z))

)

, V2(vi) = V0.

This solution, also denoted V2(V0, z), is monotone increasing in both
z and V0. Further, limv→vH V2(v) = +∞ . The limit
V2(−∞, z) = limV0→−∞ V2(V0, z) exists. Moroever, V2(−∞, z) is
continuously differentiable with respect to z.
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Bidding Strategies

Proposition: Suppose that (S,B) is an absolutely continuous
equilibrium such that S(θ) ≤ vH for all θ ∈ R. Let
V0 = B−1(vi) ≥ −∞. Then,

B(φ) = V−1
2 (φ), φ > V0,

Further, S(−∞) = limθ→−∞ S(θ) = vi and
S(+∞) = limθ→−∞ S(θ) = vH , and for any θ, we have
S(θ) = V−1

1 (θ) where

V1(z) = log
z − vi

vH − z
− V2(z), z ∈ (vi , v

H) .

Any buyer of type φ < V0 will not trade, and has a bidding policy B
that is not uniquely determined at types below V0.
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Tail Condition

Definition: We say that a probability density g( · ) on the real line is of
exponential type α at +∞ if, for some constants c > 0 and γ > −1,

lim
x→+∞

g(x)

xγ eαx = c

In this case, we write g(x) ∼ Exp+∞(c, γ, α).
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Exponential Tails in Percolation Models

Suppose N = 1, and let λ = λ1 and ψt = ψ1t . The Laplace transform
ψ̂t of ψt is given by

ψ̂t (z) =
e−λt ψ̂0(z)

1 − (1 − e−λt )ψ̂0(z)

and ψt(x) ∼ Exp+∞(ct , 0,−αt) in t , where αt is the unique positive
number z solving

ψ̂0(z) =
1

1 − e−λt ,

and where

ct =
e−λt

(1 − e−λt )2 d
dz ψ̂0(αt )

.

Furthermore, αt is monotone decreasing in t , with limt→∞ αt = 0.
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Strictly Monotone Equilibrium

Proposition: Suppose that, for all t in [0,T ], there are αi(t), ci(t), and
γi(t) such that

ψH
it (x) ∼ Exp+∞(ci(t), γi (t),−αi (t)).

If αi (T ) < 1, then there is no equilibrium associated with V0 = −∞.
Moreover, if vi − vj is sufficiently large and if αi(T ) > α∗, where α∗ is
the unique positive solution to α∗ = 1 + 1/(α∗2α∗

) (which is
approximately 1.31), then there exists a unique strictly monotone
equilibrium associated with V0 = −∞. This equilibrium is in
undominated strategies, and maximizes total welfare among all
continuous equilibria.
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Class-i Agent Utility

The expected future profit at time t of a class-i agent is

Ui(t ,Θt ) = E





∑

τk >t

∑

j

κij πij (τk ,Θτk )

∣

∣

∣

∣

Θt



 ,

where τk is this agent’s k -th auction time and πij(t , θ) is the expected
profit of a class-i agent of type θ entering an auction at time t with a
class-j agent.

Agents may be able to disguise the characteristics determining their
information at a particular auction. In this case, we denote the
expected future profit at time t of a class-i agent as Ûi(t ,Θt ).
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The Value of Initial Information and Connectivity
When Trades Can be Disguised

Theorem: Suppose that v1 = v2. If λ2 ≥ λ1 and if the initial type
densities ψ10 and ψ20 are distinguished by the fact that the density p2

of the number of signals received by class-2 agents has first-order
stochastic dominance over the density p1 of the number of signals by
class-1 agents, then

E [ Û2(t ,Θ2t )]

λ2
≥

E [ Û1(t ,Θ1t )]

λ1
, t ∈ [0,T ].

The above inequality holds strictly if, in addition, λ2 > λ1 or if p2 has
strict dominance over p1.
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What if Characteristics are Commonly Observed?

I trade-off between adverse selection and gains from trade.

I more informed/connected investor may achieve lower profits than
less informed/connected investor.

Gustavo Manso Information Percolation 43



What if Characteristics are Commonly Observed?

I If v1 = v2 = 0.9, v3 = 0, vH = 1.9,

ψ10(x) = 12
e3x

(1 + ex )5 ,

and ψ20(x) = ψ10 ∗ ψ10.

Then,
E [U2(t ,Θ1t )] < E [U1(t ,Θ2t )]

and
E [ Û1(t ,Θ1t )] < E [U1(t ,Θ2t )].
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Even If Characteristics are Commonly Observed
Connectivity May be Valuable

Proposition: Suppose that κ1 = κ2 and λ1 < λ2, and suppose that
class-1 and class-2 investors have the same initial information quality,
that is, ψ10 = ψ20, and assume the exponential tail condition
ψH

it ∼ Exp+∞ (cit , γit ,−αit) for all i and t , with α10 > 3,

α30 >
α10 − 1
3 − α10

,

and
α1t + 1
α1t − 1

> α3t , t ∈ [0,T ].

If v̄ − v3 is sufficiently large, then for any time t we have

E [U2(t ,Θ2t )]

λ2
>

E [ Û2(t ,Θ2t )]

λ2
>

E [ Û1(t ,Θ1t )]

λ1
>

E [U1(t ,Θ1t )]

λ1
.
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Subsidizing Order Flow

I Investors i and j with vi = vj meet at time t .

I Enter a swap agreement by which the amount

k
[

(pj(t) − Y )2 − (pi(t) − Y )2] ,

will be paid by investor i to investor j at time T .

I Increase connectivity of class i investors.

I When would investors want to subsidize order flow?
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Concluding Remarks

I tractable model of information diffusion in over-the-counter
markets.

I rates of convergence for different market structures.

I initial information and connectivity may or may not increase
profits:

• more informed/connected investors attain higher profits than less
informed connected investors when investors can disguise trades.

• more informed/connected investors may attain lower profits than
less informed connected investors when investors’ characteristics
are commonly observed.
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Future Research

I Endogenous information acquisition and convergence.

I Market design
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Other Applications

I centralized exchanges, decentralized information transmission

I bank runs

I knowledge spillovers

I social learning

I technology diffusion
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