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Motivation: information-based asset pricing

In the asset pricing approach proposed in the paper

D. C. Brody, L. P. Hughston & A. Macrina (2008) Information-Based Asset
Pricing. International Journal of Theoretical and Applied Finance Vol. 11,
107-142,

asset prices fluctuate due to the flow of incomplete information about the asset’s
future cash flows. The setup of this approach is as follows:

The financial market is modelled by a filtered probability space (Ω,F , {Ft}, Q),
where Q is the risk-neutral measure.

Let a cash flow XT , occurring at a fixed future date T , be modelled by a
random variable with a priori density q(x).

Let {LtT}0≤t≤T be a Markov process that is used to model incomplete
information about XT . We call such a process an “information process”.
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The market filtration {Ft} is generated by {LtT}, that is Ft = σ ({LsT}0≤s≤t).

To ensure that the cash flow XT is FT -measurable, we require that
LTT = G(XT ) for some invertible function G(x).

This measurability condition justifies the use of random bridge processes for the
construction of information processes.

A variety of such time-inhomogeneous Markov processes which are driven by
“underlying” Lévy processes can be constructed explicitly.

For a detailed construction of these processes and their application to the
modelling of financial information we refer to:

E. Hoyle, L. P. Hughston & A. Macrina (2009) Lévy Random Bridges and the
Modelling of Financial Information. www.arXiv.org, No. 0912.3652

Another usual ingredient of information-based asset pricing is a deterministic
discount bond system {PtT}0≤t≤T .
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Under Q the price St of an asset with cash flow XT at T is expressed by

St = PtTEQ [XT | Ft] . (1)

Since Ft is generated by a time-inhomogeneous Markov process {LsT}0≤s≤t, we
have that

St = PtTEQ [XT |LtT ] . (2)

The conditional expectation can be worked out by use of the Bayes formula.

We shall further develop information-based asset pricing by constructing
stochastic discount bond systems.
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Information-sensitive pricing kernels

Stochastic discount bond systems can be constructed by modelling the pricing
kernel (stochastic discount factor) that we denote {πt}0≤t.

The price PtT at time t of a discount bond with unit payoff at maturity T is

PtT =
EP [πT | Ft]

πt
, (3)

where P is the real probability measure.

Next we model the pricing kernel {πt} and the filtration {Ft} following the
scheme of information-based asset pricing.

We fix a time U > T and introduce a random variable XU with real probability
density p(x).

The random variable XU may represent a macroeconomic factor (e.g. the GDP
level of a country at time U) revealed at time U .
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Suppose that at time t < U , market investors have access only to incomplete
information about the macroeconomic factor XU .

We model this incomplete information by an information process {LtU} with the
property that LUU = G(XU), where G(x) is an invertible function.

So we assume that the market filtration is given by Ft = σ ({LsU}0≤s≤U).

Let the bond price process {PtT}0≤t≤T<U be adapted to {Ft}.

We consider a pricing kernel {πt} that is modelled by a function of the value
LtU at time t, and possibly time t:

πt := π(t, LtU). (4)

The function π(t, x) shall be chosen such that the pricing kernel is guaranteed
to be a positive supermartingale.

Armed with the models for the pricing kernel and the market filtration, the price
PtT of the discount bond is
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PtT =
EP [π(T, LTU) |LtU ]

π(t, LtU)
. (5)

Here we have recalled that the market filtration {Ft} is generated by {LtU}
which is taken to be a time-inhomogeneous Markov process.

To obtain explicit models for the bond price PtT , we need to explicitly construct
(i) pricing kernel models and (ii) information processes {LtU}.

One method to construct information-based pricing kernels is presented in:

L. P. Hughston & A. Macrina (2009) Pricing Fixed-Income Assets in an
Information-Based Framework. www.arXiv.org, No. 0911.1610.

However, in this talk, we consider another method.
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Weighted heat kernel approach with time-inhomogeneous
Markov processes

Heat kernel methods for the construction of pricing kernels are proposed in:

J. Akahori, Y. Hishida, J. Teichmann & T. Tsuchiya (2009) A Heat Kernel
Approach to Interest Rate Models. www.arXiv.org, No. 0910.5033

In their paper, they make use of time-homogeneous Markov processes.

However, it is possible to modify this heat kernel method in order to construct a
weighted heat kernel approach for time-inhomogeneous Markov processes {LtU}.

This work is included in:

J. Akahori & A. Macrina (2010) Heat Kernel Interest Rate Models with
Time-Inhomogeneous Markov Processes. (Working paper)

In what follows, we present the main results.
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We consider a time-inhomogeneous Markov process {LtU}0≤t≤U , and introduce
a real-valued measurable function p(u, t, x).

A so-called propagator {p(u, t, LtU)} associated with the process {LtU} has the
property that

E [p (u, t, LtU) |LsU ] = p (u + t− s, s, LsU) , (6)

for s < t, 0 < u, and 0 < u + t < U .

An example of a propagator is

p(u, t, LtU) = E [F (u + t, Lu+t,U) |LtU ] , (7)

where F (t, x) is taken to be a measurable positive function.

Next we introduce a so-called weight function w(t, u) that is positive and
measurable, and has the property that

w(t, u− s) ≤ w(t− s, u), (8)

where t, u ∈ [0, U) and s ≤ t ∧ u.
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A weighted heat kernel is then defined by

g(t, LtU) =

∫ U−t

0

p(u, t, LtU) w(t, u) du, (9)

for 0 ≤ t < U < ∞. In the case of the propagator (7), we have

g(t, LtU) =

∫ U−t

0

E [F (u + t, Lu+t,U) |LtU ] w(t, u) du. (10)

It can be proved that {g(t, LtU)} is a positive supermartingale by showing that

E [g(t, LtU) |LsU ] =

∫ U−s

t−s

p(s, u, LsU) w(t, u− t + s) du (11)

≤
∫ U−s

0

p(s, u, LsU) w(s, u) du, (12)

= g(s, LsU), (13)

for s ≤ t.
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Applying the pricing kernels constructed by weighted heat kernels, the bond
price PtT can be expressed by

PtT =

∫ U−t

T−t p(u, t, LtU) w(T, u− T + t) du∫ U−t

0 p(u, t, LtU) w(t, u) du
. (14)

In the case that the propagator is given by (7), we have

PtT =

∫ U−t

T−t E [F (u + t, Lu+t,U) |LtU ] w(T, u− T + t) du∫ U−t

0 E [F (u + t, Lu+t,U) |LtU ] w(t, u) du
(15)

Explicit formulae for the bond price are obtained by specifying the functions
F (t, x) and w(t, u), and the information process {LtU}.
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Bond pricing with Brownian bridge information

We consider the case where {LtU}0≤t≤U is a so-called Brownian bridge
information process:

LtU = σXU t + βtU , (16)

where XU is taken to be independent of the Brownian bridge process {βtU}.

We assume that the market filtration is defined by

Ft = σ
(
{LsU}0≤s≤t

)
. (17)

Remarks:
(i) {LtU} is a time-inhomogeneous {Ft}-Markov process.
(ii) XU is FU -measurable.
(iii) The information flow rate σ in (16) is constant.
(iv) Var[βtU ] = t(U − t)/U .
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We recall that the bond price can be expressed by

PtT =
E [π(T, LTU)|LtU ]

π(t, LtU)
. (18)

In order to work out the conditional expectation, we assume with no loss of
generality, that

π(t, LtU) = Mt g(t, LtU), (19)

where the (P, {Ft})-martingale {Mt} is defined by

dMt

Mt
= − σU

U − t
E [XU |LtU ] dWt, (20)

for 0 ≤ t < U and where

Wt = LtU +

∫ t

0

LsU

U − s
ds− σU

∫ t

0

1

U − s
E [XU |LsU ] ds. (21)

The martingale {Mt} induces a change of measure from P to the so-called
bridge measure B under which {LtU} has the distribution of a Brownian bridge.
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The bond price can thus be expressed as follows:

PtT =
EP [π (T, LTU) |LtU ]

π(t, LtU)
, (22)

=
EP [MT g(T, LTU)|LtU ]

Mt g(t, LtU)
, (23)

=
EB [g(T, LTU)|LtU ]

g(t, LtU)
. (24)

We emphasize that the pricing kernel {π(t, LtU)} is a P-supermartingale if
{g(t, LtU)} is a supermartingale under B (and vice versa).

We now may make use of

g(t, LtU) =

∫ U−t

0

EB [F (u + t, Lu+t,U) |LtU ] w(t, u) du, (25)
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and hence of

PtT =

∫ U−t

T−t EB [F (Lt+u,U) |LtU ] w(T, u− T + t) du∫ U−t

0 EB [F (Lu+t,U) |LtU ] w(t, u) du
. (26)

The information process {LtU}0≤t<U has the distribution of a Brownian bridge
under B so that the conditional expectation can be worked out explicitly.

Example: quadratic family

Let F (x) = x2, and w(t, u) = U − t− u.

A calculation shows that

EB
[
(Lu+t,U)2

∣∣ LtU

]
=

u(U − t− u)

U − t
+

(
U − t− u

U − t

)
L2

tU . (27)

With this intermediate result at hand, we can write the weighted heat kernel
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process as follows:

g(t, LtU) =

∫ U−t

0

EB [F (Lu+t,U) |LtU ] w(t, u) du, (28)

=

∫ U−t

0

[
u(U − t− u)

U − t
+

(
U − t− u

U − t

)
L2

tU

]
(U − t− u)du.

(29)

The integral in the expression for the weighted heat kernel can be calculated in
closed form, so that we obtain the supermartingale

g(t, LtU) =
1

12
(U − t)3 +

1

4
(U − t)2 L2

tU . (30)

The bond price PtT at time t, derived in this example, is thus given by

PtT =

1
12 (U − T )3 + 1

4
(T−t)(U−T )3

(U−t) + 1
4

(U−T )4

(U−t)2
L2

tU

1
12 (U − t)3 + 1

4 (U − t)2 L2
tU

. (31)

The simulation of the bond price is straightforward since the process {LtU},
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LtU = σ XU t + βtU , (32)

is Gaussian conditional on the outcome of the underlying economic factor XU .

Figure 1. Sovereign discount bond price process. The parameters are chosen to
be T = 1 and U = 2 for constant XU = 1. We take σU = 0.025 (red), σU = 0.5
(yellow), σU = 1.75 (green), and σU = 5 (blue).
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The short rate process {rt} can be worked out by calculating the instantaneous
forward rate associated with the bond price {PtT}0≤t≤T<U .

The result is:

r(t, LtU) =
L2

tU
1
4 (U − t)

[
1
3(U − t) + L2

tU

], (33)

for 0 ≤ t < U . We emphasize that this is a positive interest rate model.

The market price of risk {λt} associated with the quadratic family is

λ(t, LtU) =
σU

U − t
EP [XU |LtU ]−

1
2(U − t)2LtU

1
12 (U − t)3 + 1

4 (U − t)2 L2
tU

. (34)
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Example: exponential quadratic family

Let F (x) = exp
(

1
2 γt+u x2

)
, where γt+u is deterministic.

In this case the propagator takes the form

EB [
exp

(
1
2 γt+u L2

t+u,U

)
|LtU

]
=

1√
1− u γt+u at+u

exp

(
γt+u a2

t+u

2 (1− u γt+u at+u)
L2

tU

)
, (35)

where at+u = (U − t− u)/(U − t).

By setting γt+u = (U − t− u)−1, and by choosing the weight function to be

w(t, u) = (U − t− u)η−
1
2 (η > 1

2), (36)

we obtain an analytical expression for the supermartingale {g(t, LtU)}:

g(t, LtU) =
1

η − 1
2

(U − t)η exp

(
L2

tU

2(U − t)

)
. (37)
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The supermartingale (37) leads to a deterministic bond price, even though the
related pricing kernel is stochastic.

However we can modify slightly the supermartingale {g(t, LtU)}:

Let f0(t) and f1(t) be positive, decreasing and differentiable functions.

Consider the supermartingale

g̃(t, LtU) = f0(t) + f1(t)(U − t)γ exp

(
L2

tU

2(U − t)

)
. (38)

Then the associated bond price system has stochastic dynamics:

PtT =
f0(T ) + f1(T )(U − T )γ−1/2(U − t)1/2 exp

(
L2

tU
2(U−t)

)
f0(t) + f1(t)(U − t)γ exp

(
L2

tU
2(U−t)

) , (39)

for t ∈ [0, U) and u ∈ [0, U − t].

We note that further examples can be constructed: a semi-analytic formula is
obtained for the exponential linear family defined by F (x) = exp(−µ x).
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Credit-risky discount bonds with stochastic discounting

In the last part of this talk, we give an idea how the information-based asset
pricing framework can be extended so as to incorporate stochastic discounting.

In particular we aim at generalizing the information-based credit-risk models
presented in

D. C. Brody, L. P. Hughston & A. Macrina (2007) Beyond hazard rates: a new
framework for credit-risk modelling. In Advances in Mathematical Finance,
Festschrift Volume in Honour of Dilip Madan, edited by R. Elliott, M. Fu,
R. Jarrow & J.-Y. Yen. Birkhäuser, Basel and Springer, Berlin.

We proceed as follows:

We fix two dates T and U , where T < U , and attach two independent factors
XT and XU to these dates.

The payoff of the credit-risky bond is modelled by making use of the random
variable XT .
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We assume that XT is a discrete random variable that takes values in
{x0, x1, . . . , xn} with a priori probabilities {p0, p1, . . . , pn}, where

0 ≤ x0 < x1 < . . . < xn−1 < xn ≤ 1. (40)

We assume that the economic factor XU is a continuous random variable.

With XT and XU we associate the independent information processes
{LtT}0≤t≤T and {LtU}0≤t≤U defined by

LtT = σ1 tXU + βtU , LtU = σ2 tXT + βtT . (41)

The market filtration {Ft} is generated by {LtT} and {LtU}:

Ft = σ ({LsT}0≤s≤t, {LsU}0≤s≤t) (42)

The price BtT at t ≤ T of a defaultable discount bond with payoff HT at
T < U is given by

BtT =
EP[πTHT | Ft]

πt
. (43)
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Let the pricing kernel {πt} be defined by

πt = Mt g(t, LtU) (44)

and let the payoff of the credit-risky bond be given by

HT = H (XT , LTU) . (45)

The formula for the price BtT of the credit-risky bond is then worked out by
applying the weighted heat kernel approach for the pricing kernel, and eventually
by specifying the payoff function H(XT , LTU).

However, we leave this task for another time...

Meantime these results can be found in:

A. Macrina & P. A. Parbhoo (2009) Security Pricing with Information-Sensitive
Discounting. In: Recent Advances in Financial Engineering 2009. Proceedings of
the KIER-TMU International Workshop on Financial Engineering 2009 (World
Scientific).
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