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Credit portfolio models

Bottom-up models: Model individual default rates + “default
correlation” structure.

◮ Static (copula) models. Li (2001).

◮ Dynamic reduced form models: Factor model with affine processes
as factors. Duffie and Gârleanu (2001).

◮ Multi-name structural models.
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Credit portfolio models

Bottom-up models: Model individual default rates + “default
correlation” structure.

◮ Static (copula) models. Li (2001).

◮ Dynamic reduced form models: Factor model with affine processes
as factors. Duffie and Gârleanu (2001).

◮ Multi-name structural models.

Top-down models: Model loss process (Lt) of the portfolio as an
increasing jump process by specifying its intensity (λt).

◮ Local intensity model: λt = F (t, Lt). Cont and Minca (2008),
Herbertsson (2008), Laurent et al (2007).

◮ Two factor spread/default model: λt = F (t, Lt , Xt). Arnsdorff and
Halperin (2008), Lopatin and Misirpashaev (2007).

◮ Self-exciting defaults. Giesecke and Goldberg (2008), Errais et al.
(2008).
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Motivation

◮ Although dynamic models are more realistic, they are typically more
difficult to estimate. The main obstacle in their implementation has
been the lack of stable calibration methods.

◮ Common practice to calibrate dynamic models: Black-box
optimization applied to non-convex, non-linear least squares
minimization.

◮ Problem: Convergence and stability are not guaranteed.

◮ Alternative: Calibration of portfolio default intensity via entropy
minimization by Cont and Minca (2008).
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◮ Although dynamic models are more realistic, they are typically more
difficult to estimate. The main obstacle in their implementation has
been the lack of stable calibration methods.

◮ Common practice to calibrate dynamic models: Black-box
optimization applied to non-convex, non-linear least squares
minimization.

◮ Problem: Convergence and stability are not guaranteed.

◮ Alternative: Calibration of portfolio default intensity via entropy
minimization by Cont and Minca (2008).

◮ We develop a simple method to recover the portfolio default
intensity based on an analytical inversion formula and quadratic

programming and compare it with alternative calibration methods:
parametric method by Herbertsson (2008) and entropy minimization
method by Cont and Minca (2008).

◮ Comparisons reveal a large amount of model uncertainty in pricing
and hedging.
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Roadmap

Figure 1: Application of the inversion formula to recover the local intensity function.
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Local intensity function and Markovian projection

◮ An equally weighted credit portfolio consisting of n names.
◮ Nt : number of defaults by time t.
◮ δ: loss given default, assumed to be constant.
◮ Lt = δNt : credit portfolio loss at time t.
◮ Assumption: (Nt) admits an intensity (λt).
◮ Interest rates are independent from default times.

Definition 1

Consider a loss process satisfying the above setting with

∀t ∈ (0, T ∗], E [λt ] < ∞.

The local intensity function a : [0, T ∗] × {0, 1, .., n} 7→ R+ at t = 0 is
defined as

a(t, i) := EQ[λt |Nt− = i ,F0]. (1)

If Q(Nt− = i |F0) = 0, we set a(t, i) = 0 by convention. We call
λeff

t := a(t, Nt−) the effective intensity of the loss process.
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Mimicking marked point processes with Markovian jump

processes

Proposition 1 (Cont and Minca (2008))

Consider any non-explosive jump process (Lt) with an intensity (λt) and
i.i.d. jumps with distribution G. Define (L̃t) as the Markovian jump
process with jump size distribution G and intensity (a(t, Ñt−)). Then, for
any t ∈ [0, T ∗], Lt and L̃t have the same distribution conditional on F0.
In particular, the flow of marginal distributions of (Lt) only depends on
the intensity (λt) through its conditional expectation a(., .).
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Mimicking marked point processes with Markovian jump

processes

Proposition 1 (Cont and Minca (2008))

Consider any non-explosive jump process (Lt) with an intensity (λt) and
i.i.d. jumps with distribution G. Define (L̃t) as the Markovian jump
process with jump size distribution G and intensity (a(t, Ñt−)). Then, for
any t ∈ [0, T ∗], Lt and L̃t have the same distribution conditional on F0.
In particular, the flow of marginal distributions of (Lt) only depends on
the intensity (λt) through its conditional expectation a(., .).

◮ The local intensity function is an analogue to the local volatility
function

(σlocal(t, K ))2 = EQ[σ2
t |F0, St = K ]

for stochastic volatility models.
◮ Gyöngy (1986) shows a mimicking theorem for Ito processes.
◮ Bentata and Cont (2009) show a more general mimicking theorem

for discontinuous semimartingales.
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Forward equations for marginal distribution

For a Markovian jump process, the transition probabilities
Q(NT = i |F0) = q(T , i) can be computed by solving a Fokker-Planck
equation: for T ∈ (0, T ∗],

∂Tq(T , 0) = −a(T , 0)q(T , 0),

∂Tq(T , i) = −a(T , i)q(T , i) + a(T , i − 1)q(T , i − 1), i = 1, ..., n − 1,

∂Tq(T , n) = a(T , n − 1)q(T , n − 1),

with initial condition q(0, 0) = 1, q(0, i) = 0 for i = 1, ..., n.

◮ With the transition probabilities, we can compute the prices of index
default swaps and CDO tranches.
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Expected tranche notionals

Definition 2

Consider the equity tranche of a synthetic CDO with detachment point
K . The expected remaining notional value of this equity tranche at time
T is equal to

P(T , K ) := EQ[(K − LT )+|F0].

We follow the notation in Cont and Savescu (2008) and call this quantity
the expected tranche notional with maturity T and strike K .
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Expected tranche notionals

Definition 2

Consider the equity tranche of a synthetic CDO with detachment point
K . The expected remaining notional value of this equity tranche at time
T is equal to

P(T , K ) := EQ[(K − LT )+|F0].

We follow the notation in Cont and Savescu (2008) and call this quantity
the expected tranche notional with maturity T and strike K .

The mark-to-market value of a CDO tranche [a, b] with upfront payment
U [a,b] and periodic spread s [a,b] is equal to:

MTM
[a,b] = U

[a,b](b − a) + s
[a,b]

X

tj >0

D(0, tj)(tj − tj−1) [P(tj , b) − P(tj , a)]

−
m
X

j=1

D(0, tj) [P(tj , a) − P(tj , b) − P(tj−1, a) + P(tj−1, b)]

which is linear in the expected tranche notionals.
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Expected tranche notionals

Property 1 (Static arbitrage constraints)

(a) P(T , K ) ≥ 0,

(b) P(T , 0) = 0,

(c) P(0, K ) = K,

(d) K 7→ P(T , K ) is convex,

(e) P(T2, K1) − P(T1, K1) ≥ P(T2, K2) − P(T1, K2) for any T1 ≤ T2,
K1 ≤ K2,

(f) K 7→ P(T , K ) is continuous and piecewise linear on [(i − 1)δ, iδ],
i = 1, ..., n.

All constraints are linear in the expected tranche notionals.
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Expected tranche notionals - forward differential equations

Cont and Savescu (2008) show that the expected tranche notionals can
be computed directly from the local intensity function by solving a
system of forward differential equations: for T ∈ (0, T ∗], i = 1, ..., n,

∂TP(T , iδ) = −a(T , 0)P(T , δ) −
i−1∑

k=1

a(T , k)∇2
KP(T , (k − 1)δ)

with initial condition P(0, iδ) = iδ

where ∇K is the forward difference operator in strike:

∇KF (T , iδ) := F (T , (i + 1)δ) − F (T , iδ)

for any function F : [0, T ∗] × (iδ)i=0,...,n−1 7→ R.
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Inversion formula

Theorem 3 (Inversion formula)

Consider a portfolio loss process Lt = δNt where (Nt) admits an intensity
(λt) and

∀t ∈ (0, T ∗], EQ[λt |F0] < ∞,

the local intensity function defined by (1) is given by

a(T , i) =






−∂TP(T , δ)

P(T , δ)
, i = 0,

−∇K∂T P(T , iδ)

∇2
KP(T , (i − 1)δ)

, i = 1, ..., n − 1,

0, i = n,

(2)

for all T ∈ (0, T ∗], and P(T , iδ) = EQ[(δi − LT )+|F0].
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Inversion formula

Theorem 4 (Local intensity implied by expected tranche notionals)

Let {P(T , iδ)}T∈[0,T∗],i=0,...,n be a (complete) set of expected tranche
notionals verifying Property 1 and define the function
a : (0, T ∗] × {0, 1, .., n} by

a(T , i) =






−∂TP(T , δ)

P(T , δ)
, i = 0,

−∇K∂T P(T , iδ)

∇2
KP(T , (i − 1)δ)

, i = 1, ..., n − 1,

0, i = n,

(3)

for all T ∈ (0, T ∗]. If a(., .) is bounded, there exists a Markovian point
process (Mt) with intensity γt = a(t, Mt−) defined on some probability
space (Ω0,G, (Gt), Q0) such that

∀T ∈ [0, T ∗], ∀i ∈ {0, ..., n}, P(T , iδ) = EQ0 [(δi − δMT )+|G0].
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Inversion formula

◮ The inversion formula is an analogue to the Dupire (1994) formula
for diffusion models:

σ2(T , K ) =
2

K 2

∂T C (T , K )

∂2
KC (T , K )

, T ≥ 0, K ≥ 0

where C (T , K ) is the call price with maturity T and strike K .
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Inversion formula

◮ The inversion formula is an analogue to the Dupire (1994) formula
for diffusion models:

σ2(T , K ) =
2

K 2

∂T C (T , K )

∂2
KC (T , K )

, T ≥ 0, K ≥ 0

where C (T , K ) is the call price with maturity T and strike K .

◮ A similar formula, but expressed in terms of the marginal
distribution, has been shown by Schönbucher (2005):

a(T , i) =
−

∑i

k=0 ∂T Q(LT = iδ|F0)

Q(LT = iδ|F0)
, i = 0, ..., n − 1, T ∈ (0, T ∗].

However, expressing the value of CDO tranche in terms of marginal
distribution is more difficult while it can be expressed in terms of a
small set of expected tranche notionals.
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Recovery of expected tranche notionals

◮ Given a set of CDO tranche spreads, we want to recover expect
tranche notionals {P(tj , iδ)}j=1,...,m;i=1,...,n which must satisfy:

◮ Static arbitrage constraints
◮ Mark-to-market value constraints
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◮ Recovering the expected tranche notional can be achieved by solving
a linear system of inequalities:

Ap = b, (Market CDO)

Bp ≤ e (Static arbitrage)

where p is a vector of expected tranche notionals.

◮ However, the linear system may have infinitely many solutions.
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Recovery of expected tranche notionals

◮ In order to guarantee a unique solution, we solve the following
convex optimization problem with linear constraints:

min
p

f (p)

s.t. Ap = b (Market CDO)

Bp ≤ e (Static arbitrage)

where

f (p) =
m∑

j=0

n∑

i=1

wij

(
P(tj , iδ) − P̃(tj , iδ)

)2

where (wij) are weights, and {P̃(tj , iδ)} is a reference set of
expected tranche notionals.

◮ This is a quadratic programming problem.

◮ The calibration algorithm is non-parametric.
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Local intensity function calibration algorithm

Algorithm 1

1. Compute matrices A and b using observed CDO tranche spreads,
and matrix B and e according to static arbitrage constraints.

2. Solve quadratic programming problem and obtain a set of
arbitrage-free expected tranche notionals which is consistent with
the CDO tranche spreads.

3. Convert the calibrated expected tranche notionals into local intensity
function using formula in Theorem 2.
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Application to iTraxx IG data

◮ We apply our algorithm to iTraxx IG S9 data on 20 September 2006
and 25 March 2008.

◮ We also compare the results to

(1) Parametric model by Herbertsson (2008),
(2) Entropy-minimization method by Cont and Minca (2008).

Tranche 0%-3% 3%-6% 6%-9% 9%-12% 12%-22% 22%-100%

Market bid 37.7% 441.6 270.2 174.4 97.4 42.8
Market ask 39.7% 466.6 290.2 189.4 110.7 46.9

QP 38.4% 451.9 279.0 181.1 103.2 44.3
Entropy 38.6% 453.3 279.5 181.2 103.4 44.6

Parametric 38.7% 454.1 280.2 181.9 104.1 44.8

Table 1: CDO tranche spreads of 5Y iTraxx Europe IG Series 9 on 25 March 2008. Quotes are
given in bps except for equity tranches which are quoted as upfront in percent with 500bps
periodic coupons.

◮ All calibrated spreads are well-within bid-ask.
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Local intensity function
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Figure 2: Local intensity functions based on different calibration approaches. Data: 5Y iTraxx
Europe IG S9 on 20 September 2006 (top) and 25 March 2008 (bottom).

◮ Different calibration methods yield significantly different local intensity
functions.

◮ For each method, the local intensity functions are similar for different
dataset.
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Stability analysis

To examine the stability of the calibration methods, we apply a 1%
proportional shift to all CDO market spreads, recalibrate the local intensity
function to the shifted CDO spreads and measure the magnitude of the
changes using the Frobenius norm:

 

n
X

i=0

q
X

j=0

|a(Tj , i) − ba(Tj , i)|
2

!1/2

where {a(Tj , i)} and {ba(Tj , i)} are, respectively, the local intensity functions

calibrated to the original and perturbed CDO tranche spreads.

QP Parametric Entropy Min

20-Sep-06 56.2 32116.2 2.0 × 10−2

25-Mar-08 673.2 728.3 2.0 × 10−1

Table 2: Frobenius norm of the changes in the local intensity function with respect to 1%
proportional increase in the CDO spreads. Data: 5Y iTraxx Europe IG S6 on 20 September 2006
and S9 on 25 March 2008.

◮ Non-parametric methods are more stable than the parametric method.

◮ Similar findings in studies using equity derivatives: Cont and Tankov
(2004).
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Forward starting tranche spreads

A forward tranche with attachment-detachment interval [a, b] can be valued as

the forward value of a tranche with adjusted interval [a′, b′] where

a′ = min(1, a + Lt) and b′ = min(1, b + Lt). This dependence of the payoff on

the loss makes the forward tranche path dependent.

20 September 2006 25 March 2008
QP Parametric Entropy Min QP Parametric Entropy Min

0% - 3% 12.05 12.25 14.26 53.46 36.92 65.92
3% - 6% 2.72 17.89 33.62 93.79 290.65 482.23
6%- 9% 2.46 3.18 7.46 92.46 142.25 236.22

9% - 12% 2.21 0.79 4.14 91.45 63.45 170.80
12% - 22% 1.59 0.36 4.03 89.36 34.49 165.59
22% - 100% 0.03 0.15 0.69 37.99 13.38 27.60

Table 3: Spreads of forward starting tranches which start in 1 year and mature 3 years
afterwards. Data: 5Y iTraxx Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.

◮ Forward tranches spreads can be different by more than double, even the
local intensity functions are calibrated to the same market CDO spreads
⇒ Substantial model uncertainty
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Hedge ratios

In the local intensity framework, the market is complete and the self-financing
strategy to replicate the payoff of a CDO tranche involves trading the
underlying index default swap. The corresponding hedge ratio, which is known
as the jump-to-default ratio, is defined by:

v [a,b](t, Nt + 1) − v [a,b](t, Nt)

v index (t, Nt + 1) − v index(t, Nt)

where v ·(t, m) denotes the mark-to-market value conditional on m defaults

being occurred by time t.

20 September 2006 25 March 2008
QP Parametric Entropy Min QP Parametric Entropy Min

0% - 3% 6.29 20.97 6.32 1.03 3.62 1.60
3% - 6% 2.12 5.16 3.51 1.69 3.31 2.33
6%- 9% 1.63 2.00 2.23 1.68 2.65 2.15

9% - 12% 1.52 1.02 1.72 1.68 2.08 1.97
12% - 22% 1.47 0.48 1.39 1.68 1.48 1.76
22% - 100% 0.67 0.22 0.61 0.81 0.66 0.75

Table 4: Jump-to-default ratios computed from the calibrated local intensity functions. Data:
5Y iTraxx Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.

◮ Jump-to-default ratios are also significantly different across calibration
methods ⇒ Substantial model uncertainty
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Comparison of credit portfolio loss models

We compare the local intensity functions of six different models:

1. Parametric local intensity model: Herbertsson (2008)

◮ λt = (n − Nt−)
PNt−

k=0 bk

◮ λeff
t = λt
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◮ λt = (n − Nt−)
PNt−

k=0 bk

◮ λeff
t = λt

2. Bivariate spread-loss model: Arnsdorf and Halperin (2008)

◮ λt = eXt (n − Nt−)
PNt−

k=0 bk

where dXt = κ(b − Xt)dt + σdWt

3. Shot-noise model: Gaspar and Schmidt (2008)
◮ λt = ηt + Jt

where (ηt) is a CIR process and (Jt) is a compound Poisson process
with exponential jump size.

◮ A semi-analytical expression for the local intensity function:

a(T , k) =

∂k

∂θk

˛

˛

˛

θ=−1

∂
∂T

1
θ
S(θ, T )

∂k

∂θk

˛

˛

˛

θ=−1
S(θ, T )

where S(θ,T ) is the Laplace transform of the cumulative portfolio
default intensity.
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Comparison of credit portfolio loss models

4. Gaussian copula model: Li (2000)
◮ Given a family of marginal default time distributions (Fi , i = 1, ..., n),

the joint distribution of the default times τi is modeled by first
defining latent factors Xi = ρZ0 +

p

1 − ρ2Zi , where Z0, Zi are i.i.d.
standard normal random variables. Defining the default times by

τi = F
−1
i (FXi

(Xi )),

where FXi
(.) denotes the distribution of Xi .
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(.) denotes the distribution of Xi .

5. Student-t copula model: Demarta and McNeil (2005)
◮ Same as the Gaussian copula case but replacing normal latent factors

by Xi =
p

ν/V
“

ρZ0 +
p

1 − ρ2Zi

”

where V ∼ χ2
ν .

6. Bottom-up affine jump-diffusion model: Duffie and Gârleanu
(2001)

◮ The default intensity for obligor i follows: λi
t = X i

t + aiX
0
t

where dX i
t = κi (bi − X i

t )dt + σi

p

X i
t dW i

t + dJ i
t
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Local intensity functions implied by credit portfolio loss

models
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Figure 3: Local intensity functions implied by credit portfolio loss models. Data: 5Y iTraxx
Europe IG S9 on 25 March 2008.

◮ Static copula models have similar effective intensities as the dynamic
affine jump-diffusion model
⇒ Market prices alone are insufficient to discriminate between these
model classes.
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Conclusion

◮ We derive an inversion formula for the local intensity function which
is an analogue to the Dupire (1994) local volatility function.

◮ Inversion formula + QP ⇒ a simple, efficient and stable calibration
algorithm for the effective default intensity.

◮ Even under the same modeling framework, there are substantially
differences in model-dependent quantities such as jump-to-default
ratios and forward tranche prices.
⇒ Model uncertainty

◮ We observe similar local intensity functions implied by models
defined in different manners, e.g. static copula models vs dynamic
affine jump-diffusion model.
⇒ Market prices alone are insufficient to discriminate between

these model classes.
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