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Credit portfolio models

Bottom-up models: Model individual default rates + “default
correlation” structure.

» Static (copula) models. Li (2001).

» Dynamic reduced form models: Factor model with affine processes
as factors. Duffie and Géarleanu (2001).

» Multi-name structural models.
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Bottom-up models: Model individual default rates + “default
correlation” structure.
» Static (copula) models. Li (2001).
» Dynamic reduced form models: Factor model with affine processes
as factors. Duffie and Géarleanu (2001).
» Multi-name structural models.
Top-down models: Model loss process (L;) of the portfolio as an
increasing jump process by specifying its intensity (\¢).
> Local intensity model: A\ = F(t, L:). Cont and Minca (2008),
Herbertsson (2008), Laurent et al (2007).
» Two factor spread/default model: Ay = F(t, L¢, X¢). Arnsdorff and
Halperin (2008), Lopatin and Misirpashaev (2007).
> Self-exciting defaults. Giesecke and Goldberg (2008), Errais et al.
(2008).



» Although dynamic models are more realistic, they are typically more
difficult to estimate. The main obstacle in their implementation has
been the lack of stable calibration methods.

» Common practice to calibrate dynamic models: Black-box
optimization applied to non-convex, non-linear least squares
minimization.

» Problem: Convergence and stability are not guaranteed.

» Alternative: Calibration of portfolio default intensity via entropy
minimization by Cont and Minca (2008).



» Although dynamic models are more realistic, they are typically more
difficult to estimate. The main obstacle in their implementation has
been the lack of stable calibration methods.

» Common practice to calibrate dynamic models: Black-box
optimization applied to non-convex, non-linear least squares
minimization.

» Problem: Convergence and stability are not guaranteed.

» Alternative: Calibration of portfolio default intensity via entropy
minimization by Cont and Minca (2008).

» We develop a simple method to recover the portfolio default
intensity based on an analytical inversion formula and quadratic
programming and compare it with alternative calibration methods:
parametric method by Herbertsson (2008) and entropy minimization
method by Cont and Minca (2008).

» Comparisons reveal a large amount of model uncertainty in pricing
and hedging.
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Figure 1: Application of the inversion formula to recover the local intensity function.



Credit portfolio loss CDO market Data ‘
models
Simulation Quadratic .
programming

Expected tranche
notionals

Inversion formula

Local intensity

function
Model Hedging CDO Pricing exotic

comparison tranches financial products




Local intensity function and Markovian projection

» An equally weighted credit portfolio consisting of n names.
» N;: number of defaults by time t.

> J: loss given default, assumed to be constant.

» L, = 0N;: credit portfolio loss at time t.

» Assumption: (N;) admits an intensity (A;).

> Interest rates are independent from default times.

Definition 1
Consider a loss process satisfying the above setting with

vt e (0, T"], E[A] < o0.

The local intensity function a: [0, T*] x {0,1,..,n} — Ry att =01s
defined as

a(t, i) = EQN|N;— =i, Fo). (1)

If Q(Ne— = i|Fp) =0, we set a(t, i) = 0 by convention. We call
N .= a(t, N;_) the effective intensity of the loss process.
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Mimicking marked point processes with Markovian jump
processes

Proposition 1 (Cont and Minca (2008))

Consider any non-explosive jump process (L) with an intensity (\:) and
i.i.d. jumps with distribution G. Define (L;) as the Markovian jump
process with jump size distribution G and intensity (a(t, N;_)). Then, for
any t € [0, T*], Ly and L; have the same distribution conditional on Fo.
In particular, the flow of marginal distributions of (L;) only depends on
the intensity (\:) through its conditional expectation a(.,.).



Mimicking marked point processes with Markovian jump
processes

Proposition 1 (Cont and Minca (2008))

Consider any non-explosive jump process (L) with an intensity (\:) and
i.i.d. jumps with distribution G. Define (L;) as the Markovian jump
process with jump size distribution G and intensity (a(t, N;_)). Then, for
any t € [0, T*], Ly and L; have the same distribution conditional on Fo.
In particular, the flow of marginal distributions of (L;) only depends on
the intensity (\:) through its conditional expectation a(.,.).

» The local intensity function is an analogue to the local volatility
function

(0°!(t, K))? = E®[07|Fo, St = K]

for stochastic volatility models.
» Gydngy (1986) shows a mimicking theorem for Ito processes.

» Bentata and Cont (2009) show a more general mimicking theorem
for discontinuous semimartingales.



Forward equations for marginal distribution

For a Markovian jump process, the transition probabilities
Q(Nt = i|Fo) = q(T,i) can be computed by solving a Fokker-Planck
equation: for T € (0, T*],

aTq(TvO) = _a(TvO)q(T70)v
orq(T,i) = —a(T,)g(T,)+a(T,i—1)q(T,i-1), i=1,..,n—1,
orq(T,n) = a(T,n—1)q(T,n—1),

with initial condition ¢(0,0) =1, g(0,/) =0fori=1,...,n.
» With the transition probabilities, we can compute the prices of index
default swaps and CDO tranches.
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Expected tranche notionals

Definition 2

Consider the equity tranche of a synthetic CDO with detachment point
K. The expected remaining notional value of this equity tranche at time
T is equal to

P(T,K) := EY[(K — L7)"|F].

We follow the notation in Cont and Savescu (2008) and call this quantity
the expected tranche notional with maturity T and strike K.
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Expected tranche notionals

Definition 2

Consider the equity tranche of a synthetic CDO with detachment point
K. The expected remaining notional value of this equity tranche at time
T is equal to

P(T,K) := EY[(K — L7)"|F].

We follow the notation in Cont and Savescu (2008) and call this quantity
the expected tranche notional with maturity T and strike K.

The mark-to-market value of a CDO tranche [a, b] with upfront payment
Ue:b] and periodic spread sl is equal to:

MTMPE = U8 (b —a) + s 7 D(0, 6:)(t; — 1) [P(t;, b) — P(t;, 2)]
>0

—ZD(O t;) [P(t;,a) — P(tj, b) — P(tj-1,3) + P(tj-1, b)]

which is linear in the expected tranche notionals.
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Expected tranche notionals

Property 1 (Static arbitrage constraints)

Ki < Ko,
(f) K — P(T,K) is continuous and piecewise linear on [(i — 1)d, id],
i=1,..,n.

All constraints are linear in the expected tranche notionals.
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Expected tranche notionals - forward differential equations

Cont and Savescu (2008) show that the expected tranche notionals can
be computed directly from the local intensity function by solving a
system of forward differential equations: for T € (0, T*], i =1,...,n,

i—1
OrP(T,id) = —a(T,0)P(T,8) = > a(T,k)VEP(T,(k — 1))
1
with initial condition P(0,i0) = ié

x
Il

where Vi is the forward difference operator in strike:
VkF(T,id) = F(T,(i+1)8)— F(T,id)

for any function F : [0, T*] x (id)i=0,....n—1 — R.
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Inversion formula

Theorem 3 (Inversion formula)

Consider a portfolio loss process Ly = 6Ny where (N;) admits an intensity
(At) and

vt € (0, T, EQ[\|Fo] < oo,

the local intensity function defined by (1) is given by

—97P(T,9) o
P(T,d) ’ -
aT,i)= ZVkIrP(T.1%) —_y  h_q (2)
V2 P(T, (i —1)8)’ T ’
0, i =n,

for all T € (0, T*], and P(T,i8) = EQ[(i — L1)*|Fo).
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Inversion formula

Theorem 4 (Local intensity implied by expected tranche notionals)

Let {P(T,i6)}7e[0,7+,i=0,...,n be a (complete) set of expected tranche
notionals verifying Property 1 and define the function
a:(0,T*] x{0,1,..,n} by

_8TP(T7§) I_O
P(T,s) -
a(T,i)= ZVeOrP(T) 4 . 4 (3)
Vi P(T, (i —1)5)’ T ’
0, i =n,

for all T € (0, T*]. If a(.,.) is bounded, there exists a Markovian point
process (M;) with intensity ~; = a(t, M:_) defined on some probability
space (0,3, (Gt), Qo) such that

VT €[0,T*], Vie{0,..,n}, P(T,is)=E®[(5i— sMt)"|Go].
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Inversion formula

» The inversion formula is an analogue to the Dupire (1994) formula
for diffusion models:

2 9rC(T,K)
2 == > >
(T, K) (T R) T>0,K>0

where C(T, K) is the call price with maturity T and strike K.
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Inversion formula

» The inversion formula is an analogue to the Dupire (1994) formula
for diffusion models:

2 01C(T,K)
AT, K)= —S—5——"—+~, T>0,K>0
U( ) ) K28I?<C(T7K)’ i ) -
where C(T, K) is the call price with maturity T and strike K.

» A similar formula, but expressed in terms of the marginal
distribution, has been shown by Schénbucher (2005):

=Y 0rQ(Lr = i8] Fo)
Q(Lt = id|Fo) ’
However, expressing the value of CDO tranche in terms of marginal

distribution is more difficult while it can be expressed in terms of a
small set of expected tranche notionals.

a(T,i) i=0,.,n—1, Te(0,TY.
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Recovery of expected tranche notionals

» Given a set of CDO tranche spreads, we want to recover expect
tranche notionals {P(t;,i6)}j=1, . mi=1,..,» which must satisfy:
» Static arbitrage constraints
> Mark-to-market value constraints

18 /31



Recovery of expected tranche notionals

» Given a set of CDO tranche spreads, we want to recover expect
tranche notionals {P(t;,i6)}j=1, . mi=1,..,» which must satisfy:
» Static arbitrage constraints
> Mark-to-market value constraints

» Both static arbitrage and the mark-to-market value constraints are
linear in the expected tranche notionals.

» Recovering the expected tranche notional can be achieved by solving
a linear system of inequalities:

Ap=b, (Market CDO)
Bp<e (Static arbitrage)

where p is a vector of expected tranche notionals.
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» Given a set of CDO tranche spreads, we want to recover expect
tranche notionals {P(t;,i6)}j=1, . mi=1,..,» which must satisfy:
» Static arbitrage constraints
> Mark-to-market value constraints

» Both static arbitrage and the mark-to-market value constraints are
linear in the expected tranche notionals.

» Recovering the expected tranche notional can be achieved by solving
a linear system of inequalities:

Ap=b, (Market CDO)
Bp<e (Static arbitrage)

where p is a vector of expected tranche notionals.

» However, the linear system may have infinitely many solutions.
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Recovery of expected tranche notionals

> In order to guarantee a unique solution, we solve the following
convex optimization problem with linear constraints:

min f(p)
p
s.t. Ap=Db (Market CDO)
Bp<e (Static arbitrage)
where
m n ] - ) 2

o) = D5 wi (P(.i0) — Py, i0))

j=0 i=1

where (w;) are weights, and {P(t;,6)} is a reference set of
expected tranche notionals.

» This is a quadratic programming problem.
» The calibration algorithm is non-parametric.
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Local intensity function calibration algorithm

Algorithm 1

1. Compute matrices A and b using observed CDO tranche spreads,
and matrix B and e according to static arbitrage constraints.

2. Solve quadratic programming problem and obtain a set of
arbitrage-free expected tranche notionals which is consistent with
the CDO tranche spreads.

3. Convert the calibrated expected tranche notionals into local intensity
function using formula in Theorem 2.
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Application to iTraxx |G data

> We apply our algorithm to iTraxx IG S9 data on 20 September 2006
and 25 March 2008.
» We also compare the results to

(1) Parametric model by Herbertsson (2008),
(2) Entropy-minimization method by Cont and Minca (2008).

Tranche 0%-3% 3%-6% 6%-9% 9%-12% 12%-22% 22%-100%
Market bid | 37.7% 441.6 270.2 174.4 97.4 42.8
Market ask | 39.7% 466.6 290.2 189.4 110.7 46.9

QP 38.4% 451.9 279.0 181.1 103.2 443

Entropy 38.6% 453.3 279.5 181.2 103.4 44.6

Parametric | 38.7% 454.1 280.2 181.9 104.1 44.8

Table 1: CDO tranche spreads of 5Y iTraxx Europe IG Series 9 on 25 March 2008. Quotes are
given in bps except for equity tranches which are quoted as upfront in percent with 500bps
periodic coupons.

» All calibrated spreads are well-within bid-ask.



Local intensity function
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Figure 2: Local intensity functions based on different calibration approaches. Data: 5Y iTraxx
Europe IG S9 on 20 September 2006 (top) and 25 March 2008 (bottom).

» Different calibration methods yield significantly different local intensity
functions.

» For each method, the local intensity functions are similar for different
dataset.
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Stability analysis

To examine the stability of the calibration methods, we apply a 1%
proportional shift to all CDO market spreads, recalibrate the local intensity
function to the shifted CDO spreads and measure the magnitude of the
changes using the Frobenius norm:

n q 1/2
<ZZ (T}, 1) —a(T;, f)|2>

i=0 j=0
where {a(Tj,i)} and {3(Tj, i)} are, respectively, the local intensity functions
calibrated to the original and perturbed CDO tranche spreads.

QP Parametric  Entropy Min
20-Sep-06 | 56.2 32116.2 2.0x 1072
25-Mar-08 | 673.2 728.3 20x 107!

Table 2: Frobenius norm of the changes in the local intensity function with respect to 1%
proportional increase in the CDO spreads. Data: 5Y iTraxx Europe IG S6 on 20 September 2006
and S9 on 25 March 2008.

» Non-parametric methods are more stable than the parametric method.

» Similar findings in studies using equity derivatives: Cont and Tankov
(2004).
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Forward starting tranche spreads

A forward tranche with attachment-detachment interval [a, b] can be valued as
the forward value of a tranche with adjusted interval [a’, b'] where

a’ =min(1,a+ L;) and b’ = min(1, b+ L;). This dependence of the payoff on
the loss makes the forward tranche path dependent.

20 September 2006 25 March 2008
QP Parametric Entropy Min QP Parametric Entropy Min
0% - 3% 12.05 12.25 14.26 53.46 36.92 65.92
3% - 6% 2.72 17.89 33.62 93.79 290.65 482.23
6%- 9% 2.46 3.18 7.46 92.46 142.25 236.22
9% - 12% 2.21 0.79 4.14 91.45 63.45 170.80
12% - 22% 1.59 0.36 4.03 89.36 34.49 165.59
22% - 100% 0.03 0.15 0.69 37.99 13.38 27.60

Table 3: Spreads of forward starting tranches which start in 1 year and mature 3 years
afterwards. Data: 5Y iTraxx Europe |G S6 on 20 September 2006 and S9 on 25 March 2008.

» Forward tranches spreads can be different by more than double, even the

local intensity functions are calibrated to the same market CDO spreads
= Substantial model uncertainty




Hedge ratios

In the local intensity framework, the market is complete and the self-financing
strategy to replicate the payoff of a CDO tranche involves trading the
underlying index default swap. The corresponding hedge ratio, which is known
as the jump-to-default ratio, is defined by:

v N + 1) — VIR )
Vindex(t7 Nt + 1) _ Vindex(t-7 Nt)

where v'(t, m) denotes the mark-to-market value conditional on m defaults
being occurred by time t.

20 September 2006 25 March 2008
QP Parametric ~ Entropy Min QP Parametric ~ Entropy Min
0% - 3% 6.29 20.97 6.32 1.03 3.62 1.60
3% - 6% 2.12 5.16 3,51 1.69 331 233
6%- 9% 1.63 2.00 2.23 1.68 2.65 2.15
9% - 12% 1.52 1.02 1.72 1.68 2.08 1.97
12% - 22% 1.47 0.48 1.39 1.68 1.48 1.76
22% - 100% | 0.67 0.22 0.61 0.81 0.66 0.75

Table 4: Jump-to-default ratios computed from the calibrated local intensity functions. Data:
5Y iTraxx Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.

» Jump-to-default ratios are also significantly different across calibration

methods = Substantial model uncertainty
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Comparison of credit portfolio loss models

We compare the local intensity functions of six different models:
1. Parametric local intensity model: Herbertsson (2008)

> A= (n— Neo) S35 b
- AT =
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Comparison of credit portfolio loss models

We compare the local intensity functions of six different models:
1. Parametric local intensity model: Herbertsson (2008)
> Ae=(n— Neo) Y05 be
> )\fff — )\t
2. Bivariate spread-loss model: Arnsdorf and Halperin (2008)
> A\ = eX‘(n - N:-) Qlt:?) by
where dX: = k(b — X¢)dt + odW,
3. Shot-noise model: Gaspar and Schmidt (2008)
> A=+
where (7:) is a CIR process and (J;) is a compound Poisson process
with exponential jump size.
» A semi-analytical expression for the local intensity function:

ok
20k

L se.7)
ok
Exg

a(T, k) =

S50, T

o200 T)

where 5(60, T) is the Laplace transform of the cumulative portfolio
default intensity.
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Comparison of credit portfolio loss models

4. Gaussian copula model: Li (2000)

> Given a family of marginal default time distributions (F;,i = 1, ..., n),
the joint distribution of the default times 7; is modeled by first
defining latent factors X; = pZo + /1 — p2Z;, where Zy, Z; are i.i.d.
standard normal random variables. Defining the default times by

i = F Y (Fx (X)),

where Fx;(.) denotes the distribution of X;.
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defining latent factors X; = pZo + /1 — p2Z;, where Zy, Z; are i.i.d.
standard normal random variables. Defining the default times by

i = F Y (Fx (X)),

where Fx;(.) denotes the distribution of X;.
5. Student-t copula model: Demarta and McNeil (2005)
» Same as the Gaussian copula case but replacing normal latent factors

by Xi = /v/V (pZo +4/1— pZZ,-) where V ~ x2.
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Comparison of credit portfolio loss models

4. Gaussian copula model: Li (2000)
> Given a family of marginal default time distributions (F;,i = 1, ..., n),
the joint distribution of the default times 7; is modeled by first
defining latent factors X; = pZo + /1 — p2Z;, where Zy, Z; are i.i.d.
standard normal random variables. Defining the default times by

i = F Y (Fx (X)),

where Fx;(.) denotes the distribution of X;.
5. Student-t copula model: Demarta and McNeil (2005)
» Same as the Gaussian copula case but replacing normal latent factors
by X; = \/v/V (pZo 11z pZZ,-) where V ~ 2.
6. Bottom-up affine jump-diffusion model: Duffie and Garleanu
(2001)

> The default intensity for obligor i follows: A :'Xt" + aiX?
where dX{ = r;(bj — X{)dt + o/ X[ dW; + dJ;
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Local intensity functions implied by credit portfolio loss

models

Herbertsson model Bivariate spread-loss model Shot-noise model

Time ) 0y 25 50 75 100 125 Time (yr) 25 50 75
No. of defaults No. of defaults

Gaussian copula model Student-t copula model

Time ) 0y 25 50 75 100 125 Time(yr) O 25 50 75 100 125 Time ) 0 Y, 25 50 75 100 125
No. of defaults No. of defaults No. of defaults

Figure 3: Local intensity functions implied by credit portfolio loss models. Data: 5Y iTraxx
Europe IG S9 on 25 March 2008.

» Static copula models have similar effective intensities as the dynamic
affine jump-diffusion model
= Market prices alone are insufficient to discriminate between these

model classes.
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Conclusion

» We derive an inversion formula for the local intensity function which
is an analogue to the Dupire (1994) local volatility function.

» Inversion formula + QP = a simple, efficient and stable calibration
algorithm for the effective default intensity.

» Even under the same modeling framework, there are substantially
differences in model-dependent quantities such as jump-to-default
ratios and forward tranche prices.
= Model uncertainty

» We observe similar local intensity functions implied by models
defined in different manners, e.g. static copula models vs dynamic
affine jump-diffusion model.
= Market prices alone are insufficient to discriminate between
these model classes.

31/31



