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In many models for credit risk, it is implicitly assumed that the intensity contains
all the needed information. Our goal is to present a more general setting.
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Mathematical Model

Mathematical Model

A filtered probability space (Ω,A,F,P) is given, as well as a random time τ . The
default process is Ht = 11τ≤t, the associated filtration is H = (Ht = σ(t ∧ τ), t ≥ 0).
The filtration G is defined as Gt = Ft ∨Ht. The G-intensity of τ is the process λG

such that

Mt = Ht −
∫ t

0

λGs ds

is a G-martingale. There exists an F-adapted process λF such that

Mt = Ht −
∫ t∧τ

0

λFsds

If X ∈ FT , and Gt = P(τ > t|Ft), then

E(X11T<τ |Gt) = 11t<τ
1
Gt
E(XGT |Ft)

One can think that the knowledge of λ and G will allow us to have the knowledge
of the conditional law of τ . We shall show that this is not the case.
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Intensity models

Intensity models
Models with a given intensity are constructed as follows.
Let λ be a given F-adapted positive process and Θ a random variable independent
of F∞, with unit exponential law. Then

τ = inf{t :
∫ t

0

λsds ≥ Θ}

has intensity equal to λ.

In that model, P(τ > u|Ft) = E(e−Λu |Ft) and immersion property holds:

P(τ > t|Ft) = P(τ > t|F∞) = eΛt

E(X|Ft) = E(X|Gt), ∀X ∈ F∞

Under immersion property, one has

pt(u)du := P(τ ∈ du|Ft) = E(λue−Λu |Ft)du

and we note that pt(u) = pu(u), ∀t ≥ u.
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Intensity models

We now construct probabilities Q equivalent to P such that τ has intensity λ, and
where immersion does not hold, hence, for t > u, the density pQt (u) is not
determined in terms of the intensity.

Let pt(u)du = P(τ ∈ du|Ft) and z(u) a family of processes such that
(i) (zt(u), t ≥ u) are positive F-martingales.
Define, for z positive F-adapted process

ZGt = zt11{τ>t} + zt(τ)11{τ≤t}

and let

ZFt := E(ZGt |Ft) = ztGt +
∫ t

0

zt(u)pt(u)du

be its F-projection. Assume that
(ii) ZF is a F-martingale.
Then, ZG is a positive G-martingale.
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Intensity models

Proof: (we assume here that G is continuous.) Let s < t.

E(ZGt |Gs) = E(zt11τ>t|Gs) + E(zt(τ)11s<τ≤t|Gs) + E(zt(τ)11τ≤s|Gs) = I1 + I2.

For I1, we apply the standard formula

I1 = 11τ>s
1

Gs
E(ZtGt|Fs) + 11τ>s

1
Gs
E(zt(τ)11s<τ≤t|Fs),

For I2, we obtain

I2 = E(zt(τ)11τ≤s|Gs) = 11τ≤sE(zt(u)|Fs)u=τ = 11τ≤s(zs(u))u=τ = 11τ≤szs(τ),

where the first equality holds under the immersion hypothesis and the second
follows from (i). It thus suffices to show that I1 = Zs11τ>s.
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Intensity models

It thus suffices to show that I1 = zs11τ>s where

I1 = 11τ>s
1

Gs
E(ztGt|Fs) + 11τ>s

1
Gs
E(zt(τ)11s<τ≤t|Fs),

Condition (ii) yields

E(ztGt|Fs) + E(zt(τ)11τ≤t|Fs)− E(zs(τ)11τ≤s|Fs) = zsGs.

Therefore,

I1 = 11τ>s
1

Gs

(
zsGs + E((zs(τ)− zt(τ))11τ≤s|Fs)

)
= zs11τ>s,

where the last equality holds since

E((zs(τ)− zt(τ))11τ≤s|Fs) = 11τ≤sE((zs(u)− zt(u))|Fs)u=τ = 0.

For the last equality in the formula above, we have again used condition (i).
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Intensity models

We assume (w.l.g.) that ZG0 = 1.
Let Q be the probability measure defined on Gt by dQ = ZGt dP.
We assume that zt(t) = zt (so that the RN density has no jump at time τ).
Then, for t ≥ θ,

pQt (θ) = pt(θ)
zt(θ)
ZFt

,

and the Q-conditional survival process is defined by

Q(τ > t|Ft) = e−Λt
zt

ZFt
= NQ

t e−Λt

(in particular, the Q-intensity and the P-intensity are the same.
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Intensity models

Proof: For t > u,

Q(τ > u|Ft) =
1

E(ZGt |Ft)
E(ZGt 11u<τ |Ft)

E(ZGt 11u<τ |Ft) = E(ZGt 11t<τ |Ft) + E(ZGt 11u<τ≤t|Ft) = ztGt + E(zt(τ)11u<τ≤t|Ft)

= ztGt +
∫ t

u

zt(v)pt(v)dv

and the density follows by differentiation. The form of the intensity (λGt = pGt (t)

GGt
)

follows. Indeed, if Gt = µt −At is the Doob-Meyer decomposition of G,
At =

∫ t

0
pu(u)du and the intensity is λtdt = dAt

Gt
.
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Intensity models

Construction of a random time with given conditional law

Let p(u) a family of positive F-martingales such that
∫ ∞

0

pt(u)du = 1, ∀t

One can construct (on an extended space) a probability Q and a random time τ

such that

Q|Ft = P|Ft

Q(τ ∈ du|Ft) = pt(u)du

as follows:
- Construct Q∗ and τ such that τ is independent from F∞ and Q(τ ∈ du) = p0(u)du

- Set dQ|Ft∨σ(τ) = (pt(τ))−1dQ∗
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Intensity models

Construction of a random time with given Conditional Survival
Probability

Construct (on an extended space) a probability Q and a random time τ such that

Q|Ft = P|Ft

Q(τ > t|Ft) = Gt

where G is a given F-supermartingale. One recall that any supermartingale admits
a multiplicative decomposition decomposition as Gt = NtDt = Nte

−Λt where D

(resp. Λ) is decreasing (resp. increasing) In what follows, we assume that G is
continuous, and 0 ≤ Gt < 1 for t > 0.
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Intensity models

Construction of a random time with given Conditional Survival
Probability

Let us start with a model in which P(τ > t|Ft) = e−Λt , where Λt =
∫ t

0
λsds and let

N be an F-local martingale such that 0 ≤ Nte
−Λt ≤ 1.

There exists a G-martingale L such that, setting dQ = LdP
(i) Q|F∞ = P|F∞
(ii) Q(τ > t|Ft) = Nte

−Λt

The G-adapted process L

Lt = `t11t<τ + `t(τ)11τ≤t

is a martingale if for any u, (`t(u), t ≥ u) is a martingale and if E(Lt|Ft) is a
F-martingale. Then, (i) is satisfied if

1 = E(Lt|Ft) = `tGt +
∫ t

0

`t(u)λue−Λudu

and (ii) implies that ` = N and `t(t) = `t.
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Intensity models

It remains to find a family of martingales `(u) such that

`u(u) = Nu

1 = Nte
−Λt +

∫ t

0

`t(u)λue−Λudu

We choose

`t(u) =
Nu

1−Gu
(1−Gt) exp

(
−

∫ t

u

Gs

1−Gs
λsds

)

Then, Q[τ ≤ u|Ft] = Mu
t for 0 ≤ u ≤ t ≤ ∞ where

Mu
t = (1−Gt) exp

(
−

∫ t

u

Gs

1−Gs
λsds

)
0 ≤ u ≤ t ≤ ∞,

One can also construct other martingales Mu which give a solution (i.e., families of
[0, 1]-valued martingales such that u → Mu

t is decreasing and M t
t = 1−Gt).
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Intensity models

Cox processes

Let λ be a strictly positive F-adapted process, and Λt =
∫ t

0
λsds.

Let Θ be a strictly positive random variable whose conditional distribution
w.r.t. F admits a density w.r.t. the Lebesgue measure, i.e., there exists a family
of Ft ⊗ B(R+)-measurable functions γt(u) such that P(Θ > θ|Ft) =

∫∞
θ

γt(u)du.

Let τ = inf{t > 0 : Λt ≥ Θ}.
Then τ admits the density

pt(θ) = λθγt(Λθ) if t ≥ θ and pt(θ) = E[λθγθ(Λθ)|Ft] if t < θ.
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Intensity models

Proof: By definition and by the fact that Λ is strictly increasing and absolutely
continuous, we have for t ≥ θ,

P(τ > θ|Ft) = P(Θ > Λθ|Ft) =
∫ ∞

Λθ

γt(u)du =
∫ ∞

θ

γt(Λu)dΛu =
∫ ∞

θ

γt(Λu)λudu,

which implies pt(θ) = λθγt(Λθ). The martingale property of p gives the whole
density.
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Intensity models

Conversely, if we are given a density p, and hence an associated process
Λt =

∫ t

0
λsds with λs = ps(s)

Gs
, then it is possible to find a threshold Θ such that τ

has p as density.

We denote by Λ−1 the inverse of the strictly increasing process λ.

We let Λt =
∫ t

0
ps(s)
Gs

ds and Θ = Λτ . Then Θ has a density γ with respect to F given
by

γt(θ) = E
[
pt∨Λ−1

θ
(Λ−1

θ )
1

λΛ−1
θ

|Ft

]
.
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Intensity models

Proof: We set Θ = Λτ and compute the density of Θ w.r.t. F

P(Θ > θ|Ft) = P(Λτ > θ|Ft) = P(τ > t, Λτ > θ|Ft) + P(τ ≤ t, Λτ > θ|Ft)

= E[−
∫ ∞

t

11{Λu>θ}dGu|Ft] +
∫ t

0

11{Λu>θ}pt(u)du

= E[
∫ ∞

t

11{Λu>θ}pu(u)du|Ft] +
∫ t

0

11{Λu>θ}pt(u)du

where the last equality comes from the fact that (Gt +
∫ t

0
pu(u)du, t ≥ 0) is an

F-martingale. Note that since the process Λ is continuous and strictly increasing,
also is its inverse. Hence

E
[ ∫ ∞

θ

pΛ−1
s ∨t(Λ

−1
s )

1
λΛ−1

s

ds|Ft

]
= E

[ ∫ ∞

Λ−1
θ

ps∨t(s)
1
λs

dΛs|Ft

]

= E
[ ∫ ∞

0

11{s>Λ−1
θ }ps∨t(s)ds|Ft

]
= E

[ ∫ ∞

0

11{Λs>θ}ps∨t(s)ds|Ft

]
,

which equals P(Θ > θ|Ft).
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Defaultable Zero-Coupon Bonds

Defaultable Zero-Coupon Bonds

A defaultable zero-coupon with maturity T associated with the default time τ is an
asset which pays one monetary unit at time T if (and only if) the default has not
occurred before T . We assume that P is the pricing measure.

D(t, T ) := P(τ > T | Gt) = 11{τ>t}
P(τ > T | Ft)

Gt
= 11{τ>t}

EP
(
NT e−ΛT | Ft

)

Gt

However, using a change of probability, one can get rid of the martingale part N ,
assuming that there exists p such that

P(τ > θ|Ft) =
∫ ∞

θ

pt(u)du
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Defaultable Zero-Coupon Bonds

Let P∗ be defined as
dP∗|Gt = Z∗t dP|Gt

where Z∗ is the (P,G)-martingale defined as

Z∗t = 11{t<τ} + 11{t≥τ}λτe−Λτ
Nt

pt(τ)

Then,
(a) Immersion property holds under P∗,
(b) dP∗|Ft = NtdP|Ft

(c) P∗ and P coincide on Gτ .
However, P∗ and P do not coincide on F∞
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Defaultable Zero-Coupon Bonds

Proof: We prove first that dP∗|Ft = NtdP|Ft

EP(Z∗t |Ft) = Gt +
∫ t

0

λue−Λu
Nt

pt(u)
pt(u)du = Nte

−Λt + Nt(1− e−Λt) = Nt

We compute the P∗ conditional law of τ . For t > θ,

P∗(θ < τ |Ft) =
1
Nt
EP(Z∗t 11{θ<τ}|Ft) =

1
Nt
EP(11{t<τ} + 11{t≥τ>θ}λτe−Λτ

Nt

pt(τ)
|Ft)

=
1
Nt

(
Nte

−Λt +
∫ t

θ

λue−Λu
Nt

pt(u)
pt(u)du

)
= e−Λθ

which proves that immersion holds true under P∗, and the intensity of τ is the same
under P and P∗. It follows that

E∗(X11{T<τ}|Gt) = 11{t<τ}
1

e−Λt
E∗(e−ΛT X|Ft) = EP(X11{T<τ}|Gt)

Note that, if the intensity is the same under P and P∗, its dynamics under P∗ will
involve a change of driving process, since P and P∗ do not coincide on F∞.
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Defaultable Zero-Coupon Bonds

Let us now study the pricing of a recovery. Let Z be an F-predictable bounded
process.

EP(Zτ11{t<τ≤T }|Gt) = 11{t<τ}
1
Gt
EP(−

∫ T

t

ZudGu|Ft)

= 11{t<τ}
1
Gt
EP(

∫ T

t

ZuNuλue−Λudu|Ft)

= 11{t<τ}
1

e−Λt
E∗(

∫ T

t

Zuλue−Λudu|Ft)

= E∗(Zτ11{t<τ≤T}|Gt)
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Defaultable Zero-Coupon Bonds

The problem is different for pricing a recovery paid at maturity, i.e. for X ∈ FT

EP(X11τ<T |Gt) = EP(X|Gt)− EP(X11τ>T |Gt)

= EP(X|Gt)− 11{τ>t}
1

e−Λt
E∗

(
Xe−ΛT | Ft

)

If both quantities EP(X11τ<T |Gt) and E∗(X11τ<T |Gt) are the same, this would
imply that EP(X|Gt) = E∗(X|Ft) i.e., immersion holds under P.
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Misspecification of the Information

Misspecification of the Information

In this section, we point out that the price of a derivative product written on a
default τ depends strongly on the other default and the hedging strategies have to
be constructed with the full observation. Let us study the following toy model

Two default times τ1, τ2 let G(t, s) = P(τ1 > t, tau2 > s)

We consider two filtrations H1 an H = H1 ∨H2

The price of a DZC is

D̄1(t, T ) = P(τ1 > T |H1
t ) = (1−H1

t )
G(T, 0)
G(t, 0)

D1(t, T ) = P(τ1 > T |Ht) = (1−H1
t )

(
(1−H2

t )
G(T, t)
G(t, t)

+ H2
t

∂2(T, τ2

∂2G(t, τ2)

)
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Misspecification of the Information

The un-informed agent knows only H1. He will hedge the contingent claim
C = h(τ1)11τ1>T + k11τ1>T thinking the market is complete, with an initial wealth
x = E(C) buying ζt DZC, so that

X̂T := x +
∫ T

0

ζsdD̂(t, T ) = C

and he will invest ζ0
t = Xt− ζtD̂(t, T ) in the savings account in a self financing way.

However, his "real" wealth will be Xt = ζ0
t + ζtD(t, T ) and the strategy is not

self-financing. The cost of refinancing is

dXt − ζtdD(t, T ) = dζ0
t + D(t, T )dζ0

t + d〈ζ, D(·, T )〉t
If he uses a self financing strategy, his terminal wealth will be
X∗

T = x +
∫ T

0
ζtdD(t, T ) and the associated cost is

C −X∗
T =

∫ T

0
ζt(dD̂(t, T )− dD(t, T )). One has E(C −X∗

T ) = 0
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Misspecification of the Information

Thank you for your attention
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