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Figure 1: 3M Implied vs Realized Vols for Gold



1. Motivation
• Volatility is the key ingredient of option pricing:

1. In efficient markets, option prices reflect the market expected volatility.

2. What if most dealers are short volatility?

3. What if risk management procedures in banks impose limits on the volatility
exposure?

4. What if there is no volatility market for the underlying? (e.g. proprietary
trading strategies/indices).

5. In periods of market stress option prices can be prohibitively high. Is there a
way to take exposure to the underlying in an option without "over-paying" ?

• Target Volatility Options (TVOs) are a partial answer to the problems above. They
are tyically used as follows:

1. to express a joint view on the performance of the asset and its volatility.

2. to cheapen the price of an option in the same way as Asian, Barrier and other
Exotics.

3. to control the risk of the underlying strategy.

4. to allow dealers to buy/sell options on an underlying with no (or illiquid)
volatility market.



2. Notation and assumptions

• The asset price is characterized by the following dynamics,

dSt = σtStdWt, (1)

where Wt is a standard Brownian motion.

• We shall set interest rates to zero.

• The stochastic volatility process σt is assumed to be independent from Wt.

• Let Xt be the rescaled log-price,

Xt ≡ log(St/S0), (2)

so that . . .

〈X〉t ≡
∫ t

0

σ2
udu. (3)

• Assume that for any t, 〈X〉t is strictly positive.

• We are interested of calculating quantities of the type:

CTVt (K) ≡ Et

[
σ̄
√
T√

〈X〉T
(ST −K)+

]
, (4)



where σ̄ is the Target Volatility.



3. TVO pricing via Taylor expansion

• Suppose one wishes to calculate the price of an ATM Call TVO at inception:

CTV0 (S0) ≡ E0

[
σ̄
√
T√

〈X〉T
(ST − S0)+

]
(5)

• Using the independence assumption and Bachelier approximation formula, we have:

CTV0 (S0) = E0

[
σ̄
√
T√

〈X〉T
E[(ST −K)+ | Fσ]

]

= E0

[
σ̄
√
T√

〈X〉T
CBS(S0, S0, 〈X〉T )

]

≈ S0E0

[
σ̄
√
T√

〈X〉T

√
〈X〉T

2π

]

= S0σ̄

√
T

2π

≈ CBS(S0, S0, σ̄
2T ).

• The TVO price is approximately the Black-Scholes price of a vanilla call with
implied volatility σ̄.



• The idea above can be extended to a generic strike K and valuation time t.

• Expanding the Black-Scholes price around the strike K, we have

C(K) = C(S0) + C(1)(K − S0) +

∞∑
n=0

C(n+2)(S0)
(K − S0)n+2

(n+ 2)!
(6)

• Derivatives higher than the second, can be deduced using the formula

Cn+2(S0) =
1√
2π

exp

(
− σ̂

2

8

)
Pn(d−)

Sn+1
0 σ̂n+1

(−1)n. (7)

• Here Pn(d−) satisfies the following recursive equation,

Pn(d−) = (d− + nσ̂)Pn−1(d−)− P ′n−1(d−), (8)

where
σ̂ = σ

√
t, (9)

and

d− ≡ log(S0/K)

σ
√
t

− σ
√
t

2
(10)



• Solving the equation above, rearranging things slightly and putting σ̂ as a common
factor, we have:

C(K) = S0{N
(
σ̂

2

)
−N

(
− σ̂

2

)
}

− N

(
− σ̂

2

)
(K − S0)

+ exp(−σ̂2/8) lim
n

g(n)∑
j=0

σ̂−(1+2j)Wn,j(K),

where

Wn,j(K) ≡ 1√
2π

n∑
k=2j

(−1)kC(f(k)− j, k)
(K − S0)k+2

Sk+1
0 (k + 2)!

, (11)

C(j, n) is the jth term of the polynomial Pn, and

f(k) =

{
k
2 , k even;
k−1

2 , k odd.
(12)

and
g(n) =

{
−n− 1, n even;
−n, n odd. (13)



• It is convenient express the volatility terms as functionals of exponential of the
variance

1√
x
N

(
−
√
x

2

)
=

1

2
√
π

∫ ∞
0

e−(z+1/8)x√
z + 1/8

dz, (14)

and

x−r =
1

rΓ(r)

∫ ∞
0

e−z
1/rxdz, (15)

• Letting σ̂ =
√
〈X〉T in the expansion above and substituting it in the TVO pricing

formula

CTV0 (K) = E0

[
σ̄
√
T√

〈X〉T
CBS(S0,K, 〈X〉T )

]
(16)

we obtain,

CTV0 (K) ≈ σ̄
√
T

2S0√
π
I

1/2,0
0 +

S0 +K

2
√
π

Φ
1,1/8
0 +

g(n)∑
j=0

W̃n,j(K)I
j+1,1/8
0

 ,



where the following quantities have been defined

Ir,a0 ≡
∫ ∞

0

E0

[
eλ

r,a(z)〈X〉T
]
dz

Φr,a0 ≡
∫ ∞

0

E0

[
eλ

1,1/8(z)〈X〉T
]

√
z + 1/8

dz,

λr,a(z) ≡ −(z1/r + a), (17)

and

W̃n,j ≡ Wn,j(K)

(j + 1)Γ(j + 1)
. (18)



• Alternatively, for short dated maturities, we can use the Bachelier approximation
for the ATM term,

CTV0 (K) ≈ S0σ̄

√
T

π
+ σ̄
√
T

K − S0

2
√
π

Φ
1,1/8
0 +

g(n)∑
j=0

W̃n,j(K)I
j+1,1/8
0

 . (19)

• The expressions above can be calculated in closed-form for a variety of models (e.g.
affine stochastic volatility models).



4. TVO pricing via Taylor expansion, t > 0

• The pricing problem at t > 0 is similar, but some symmetry is lost:

Ct(K) ≡ Et

[
σ̄
√
T√

〈X〉T
(ST −K)+

]
(20)

= Et

[
σ̄
√
T√

εt + 〈X〉T − 〈X〉t
CBS(St,K, 〈X〉T − 〈X〉t)

]
, (21)

where εt ≡ 〈X〉t.

• The Black-Scholes equation can again be expanded via Taylor . . . but this time we
have to deal with objects of the following form:

q1(x) ≡ N(−
√
x/2)√

ε+ x
, (22)

q2(x) ≡ x−(j+1/2)

√
ε+ x

. (23)



• We could consider the numerator and denominator in (22) and (23) as separate
objects and write them in terms of their integral representation.

• However, this leads to convergence issues when one tries to derive a robust price
for the claim

• A less elegant but more effective solution is to use a Taylor expansion in ε.

• Some algebra shows that

N(−
√
x

2 )
√
ε+ x

≈
N(−

√
ε+x
2 )

√
ε+ x

+
e−(ε+x)/8

√
2π

n∑
j=0

ω(j, n)(ε+ x)−(j+1) + O(n+ 1) (24)

where

ω(j, n) ≡
n−1∑
k=j

(−1)k+1γ(j, k + 1)
εk+1

k + 1!
(25)

and γ(j, k) is the jth coefficient of the kth derivative of the Taylor expansion.

• Similarly, we have

x−(j+1/2)

√
ε+ x

≈
n∑
k=0

ζ(k, j)(ε+ x)−(j+k+1) + O(n+ 1). (26)



• In the expression above, we have defined:

ζ(k, j) =
(−1)kεk

k!

k−1∏
i=0

(j + i+ 1/2). (27)

• These results can used in the pricing equation of the TVO at time t. The final
result is a linear combination of terms of the form

Ir,a,bt =

∫ ∞
0

e−(z1/r+b)εtEt

[
eλ

r,a(〈X〉T−〈X〉t)
]
dz,

Φ1,a
t =

∫ ∞
0

e−(z+a)εt

√
z + a

Et

[
eλ

1,a(〈X〉T−〈X〉t)
]
dz,

for some non-negative real constants a and b and the coefficient

λr,a ≡ −(z1/r + a). (28)

• As usual, we can compute a model dependent price, for the TVO, but we can also
do better . . .



5. TVO pricing using Laplace Transforms, the t > 0
case

• Let’s consider the pricing problem of a put TVO, where the pay-off is expressed in
terms of the log-strike k and the log-terminal value sT

Pt(k) ≡ Et

[
σ̄
√
T√

〈X〉T
(ek − esT )+

]
(29)

• For any complex α such that Re(α) > 1, the Laplace transform of P (k) is equal to

P̂t(α) ≡
∫ ∞

0

e−αkPt(k)dk

= σ̄
√
TS1−α

t Et

[
1√

εt + 〈X〉T − 〈X〉t
e(1−α)(XT−Xt)

α(α− 1)

]
.

• The denominator admits the familiar representation

1√
ε+ x

=
2√
π

∫ ∞
0

e−z
2(ε+x)dz. (30)



• Using the independence of σ and Wt together with Fubini’s theorem, we can write
P̂ (α) in terms of St and the quadratic variation

P̂t(α) = 2σ̄

√
T

π
S1−α
t

∫ ∞
0

e−z
2〈X〉tEt

[
eλz,α(〈X〉T−〈X〉t)

]
α(α− 1)

dz (31)

where λz,α = −(z2 + α(1− α))

• If we don’t mind model dependence, we can calculate explicitly the quantities inside
the expectation for a variety stochastic volatility models (e.g., affine models).

• The price of the TVO options can be obtained by numerically inverting the closed
form Laplace transform (31).



6. Robust pricing...

• Carr-Lee provide a way to express the exponential of the quadratic variation in
terms of the terminal value of the underlying. For any complex λ we have:

Et[e
λ(〈X〉T−〈X〉t)] = Et

[
e(XT−Xt)p(λ)

]
= Et

(
ST
St

)p(λ)

, (32)

where

p(λ) =
1

2
±
√

1

4
+ 2λ. (33)

• Breeden-Litzenberger and Carr-Madan show that sufficiently smooth pay-off can
be expressed as porfolio of call and put pay-offs:

f(S) = f(k) + f
′
(k)[S − k] +

∫ ∞
k

f
′′
(x)(S − x)+dx+

∫ k

0

f
′′
(x)(x− S)+dx (34)



6.1. Robust pricing using Laplace transform

• We can use the result by Carr and Lee, to express the Laplace transform of the
TVO in terms of XT

P̂t(α) = 2σ̄

√
T

π
S1−α
t

∫ ∞
0

e−z
2〈X〉tEt

[
ep
±
z,α(XT−Xt)

]
α(α− 1)

dz (35)

, where

p±z,α = 1/2±
√

1/4− 2(z2 + α(1− α)). (36)

• Inverting the Laplace transform and applying Fubini’s theorem twice, we can derive
two alternative representations for the price of the TVO:

Pt(k) =
σ̄
√
T

π3/2
Et

[∫ ∞
0

e−z
2〈X〉t

∫ ∞
−∞

e(a+iu)k S1−a−iu
t

(a+ iu)(a+ iu− 1)

(
ST
St

)p±z,α
dudz

]
,

(37)



or equivalently

Pt(k) =
4eakσ̄

√
T

π3/2
Et

[∫ ∞
0

e−z
2〈X〉t

∫ ∞
0

Re(
S1−a−iu
t (ST /St)

p±z,α

(a+ iu)(a+ iu− 1)
)cos(uk)dudz

]
,

(38)
where we have set α = a+ iu.

• To achieve pricing robustness, we would like to express the price of a TVO as a
weighted portfolio of quoted vanilla calls CMt (K)and puts PMt (K) plus some other
term.

• To this end, we can define the function f(S) as follows and use it in the Carr-Madan
representation

f(S) ≡ 4eakσ̄
√
T

π3/2

∫ ∞
0

e−z
2〈X〉t

∫ ∞
0

Re(
S1−a−iu
t (S/St)

p±z,α

(a+ iu)(a+ iu− 1)
)cos(uk)dudz. (39)

• In particular, if we set the ATM strike St as the separator between calls and puts
and take the t-conditional expectation of f(ST ), we obtain:

Pt(k) =
σ̄
√
T√
〈X〉t

(K − St)+ +

∫ ∞
St

f
′′
(x)CMt (x)dx+

∫ St

0

f
′′
(x)PMt (x)dx. (40)



• ...which does not exist, because the integral in the second derivative of f(S) does
not converge.



6.2. Robust pricing via Taylor

• The Carr-Lee formula can be used to express I ·t and Φ·t in the Taylor expansion
for t > 0 as a function of ST :

Ir,a,bt =

∫ ∞
0

e−(z1/r+b)εtEt

[
eλ

r,a(〈X〉T−〈X〉t)
]

= Et

∫ ∞
0

e−(z1/r+b)εtRe
(
ST
St

)pr,a(z)

dz

Φ1,a
t =

∫ ∞
0

e−(z+a)εt

√
z + a

Et

[
eλ

1,a(〈X〉T−〈X〉t)
]
dz = Et

∫ ∞
0

Re
e−(z+a)εt

√
z + a

Re
(
ST
St

)p1,a(z)

dz,

where
pr,a ≡ 1/2±

√
1/4− 2z1/r − 2a. (41)

• Since the price the price of the TVO is a linear combination of quantities like I ·t
and Φ·t, we only need to express the latter terms as a combination of traded calls
and puts.

• In particular, we can define the functions



Ĩr,a,b(S) ≡
∫ ∞

0

e−(z1/r+b)εtRe
(
S

St

)pr,a(z)

dz

Φ̃(S)1,a ≡
∫ ∞

0

e−(z+a)εt

√
z + a

Re
(
S

St

)p1,a(z)

dz.

• Ir,a,b(S) and Φ(S)1,a(S) are twice differentiable in S and are well defined in St.

• We can thus use the Carr-Madan representation to express the price of a TVO as
a function of traded instruments.



7. Numerical Results

• In the following numerical examples we assumed the following:

dSt = v
1/2
t StdWt, S0 = 100, (42)

where the instantaneous variance satisfies the the CIR SDE:

dvt = κ(θ − vt)dt+ ηv
1/2
t dZt, v0 = 0.2. (43)

Table 1: An overview of the performance of the different methods, maturity T=1.

Strike 60 80 100 120 140
Taylor n=4 9.8764 6.3718 3.9578 2.4086 1.4275

Laplace transform 9.7790 6.3622 3.9565 2.4135 1.4719
Bernstein polynomial n=30 10.3676 6.6147 3.9558 2.3117 1.4011

Monte Carlo 9.7550 6.3512 3.9557 2.4132 1.4682



7.1. Taylor expansion

Figure 2: Value of the TVO as a function of the time to maturity. K=110.



Table 2: Taylor prices for the TVO for T=1 using Bachelier approximation for the
ATM

Strike ATM value n=1 n=2 n=3 n=4 Monte Carlo
90 3.9878 4.9568 5.0656 5.0711 5.0709 5.0550
95 3.9878 4.4723 4.4995 4.5002 4.5002 4.4714
100 3.9878 3.9878 3.9878 3.9878 3.9878 3.9566
105 3.9878 3.5032 3.5305 3.5298 3.5298 3.4985
110 3.9878 3.0187 3.1276 3.1221 3.1219 3.0898



7.2. Laplace transform

Figure 3: Laplace transform Call TVO prices as a function of the strike, T=0.5.



Figure 4: Laplace transform Call TVO prices as a function of the strike, T=3.



Figure 5: Laplace Transform ATM prices for increasing maturity.



Table 3: Laplace transform vs Monte Carlo simulation, T=3.

Strike Inversion Monte Carlo
90 7.6715 7.6619
95 7.1843 7.1846
100 6.7389 6.7417
105 6.3286 6.3308
110 5.9473 5.9495



8. What’s next?

• Hedging . . . W.I.P.

• Non zero correlation case.

• Target volatility indices:

∆It
It

=
σ̄
√

∆T√
〈X〉t+∆t − 〈X〉t

∆St
St

(44)

≈ σ̄∆Wt (45)

• The price of call option on a TVO index is thus approximately

E0[(IT −K)+] = CBS(I0,K, σ̄) + Err(volvol, ρ,∆t) (46)
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