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Outline

@ Local volatility in terms of implied volatility.
@ Implied volatility in terms of local volatility.
e The BBF approximation.
o The heat kernel approach.
o BBF to higher orders.
@ An exact path-integral representation for implied volatility
e The most-likely-path approximation.
@ Parameter averaging
@ Numerical tests with a realistic volatility surface.
@ Summary and conclusions.
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Objective

Given a local volatility process

dés == O'(S, t) th,

with o(S, t) depending only on the underlying level S and the time
t, we want to compute implied volatilities ogs(K, T) such that

Ces(S,K,o8s(K, T), T)=E [(ST — K)+]
or in words, we want to efficiently compute implied volatility from

local volatility.

@ This can of course be done with numerical PDE

e but numerical PDE is slow,
e too slow for efficient calibration to implied vols.
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Motivations

@ The condition for no static arbitrage can be simply expressed
as the non-negativity of local variance.

e It's very hard in general to eliminate static arbitrage in a given
parameterization of the implied volatility surface.
@ Knowing how to get implied volatility from local volatility
helps us get accurate approximations to implied volatility in
more complex models such as SABR.

o Efficient calibration of complex models becomes practical.



Local volatility in terms of implied volatility
Define the Black-Scholes implied total variance:
w(K,T) =035 (K, T) T
In terms of the log-strike k := log K/F and the local variance

vy := 0% (K, T), the Dupire equation becomes

oC _w [O’C _aC
OT 2 | 9k2 0Ok

Then, by taking derivatives of the Black-Scholes formula and
simplifying, we obtain equation (1.10) in [3]:

ow
oT
VL= w2 w2 w (1)
(L-a 50 5 G+u) (50 +35%
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Special Case: No Skew

If the skew %",‘(’ is zero, (1) reduces to

ow
oT

Vi =

In this special case, the local variance reduces to the forward
Black-Scholes implied variance. The solution is of course

-
W(T):/0 v (t) dt
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Inverting the equation

@ We have a formula (1) for getting local volatility from implied.
o All we need to do is to invert this formula!
e This is certainly not easy and has not so far proved to be
possible in closed-form.
@ In the limit of small time however, equation (1) can been
solved.



The BBF approximation

Recall equation (1) for local variance in terms of implied:

ow
VL = k ow)2 1 617— 1 Ow 2 1902w
(-2 98) —3 G+ (50) +35¢

Noting that w ~ O(T), in the limit of small T, to leading order in

T we may write

ow

ow

v =~ ) (2)
k Ow
(1-3% 95%)

Further supposing that to lowest order in T, w =~ ogs(k,0)?> T
and making the change of variable
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we may rewrite (2) as

or rearranging
0 1

ak k9 = 200

giving us the BBF approximation of Berestycki, Busca and Florent

[2]:

1N1._1Kd5_/1da
oss(K,T) ~ ao(k) ~ InK/So Js, So(S5,0)  Jo o(ak,0)
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First order term

In [5], choosing to expand ops(-) as
os(k, T) = oo(k) + o1(k) T + O(T?),

substituting into (1) and matching powers of T, Pierre
Henry-Labordeére (H-L) obtains the first order correction:

oo(k)3 {m #(0,0) o (k, 0)
k2 oo (k)

_/k 6t0(y,t)|t:oa< y >2 dy

o o(y,0) 9y \ooly)

where o(k) is the lowest-order (BBF) approximation derived
earlier.

o1(k)
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Heat kernel expansion

In [4], we compute implied volatility for short times using the heat
kernel expansion up to second order.

U,gs(/(7 T) ~ Jo(k) + Ul(k) T+ 02(/() T?

The first two terms, og and o1 agree with BBF and H-L
respectively. oy is somewhat too complicated to reproduce here!



Henry-Labordere's approximation
Henry-Labordére also presents a heat kernel expansion based

approximation to implied volatility in equation (5.40) on page 140
of his book [5]:

7os(K. T) oK) {1+ 7 g oo(K)? + Q8 + 3 615 |}

3 |38
(3)
with 2 2
_C(f? [ C(f) 1 /C(f)
o= [C(ﬂ_z(cm)]
and .
G(f) = 28, log C(f) = QM

where C(f) = f o(f, t) in our notation, f,, = (So + K)/2 and the
term oo(K) is the BBF approximation from [2].
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Parameter Averaging

@ Given an SDE with time-dependent parameters, the idea of
parameter averaging is to optimally choose average
parameters for a similar SDE with time-independent
parameters and an easy-to-compute solution.

e For example, in [7], given an SDE of the form
dS: = o(t) {b(t) St + (1 — b(t)) So} dW,

Vladimir Piterbarg explains how to choose average parameters
& and b for the shifted-lognormal process

(1£;t =0 {:z;j;t %‘ (1 - Z;) f;o } Cibq/t

@ European options are then priced using the closed-form shifted
lognormal formula with average parameters.
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Quadratic Parameter Averaging

Given the time-dependent SDE
t
dX; = o(t) {1 +b(t) (Xt —1)+ c(2) (Xt — 1)2} i Xo =1,
Andersen and Hutchings [1] derive optimal choices of average
parameters &, b and ¢ for the quadratic SDE

dXt:&{1+E(Xt—1)+;(xt—1)2}

which has a known closed-form solution for a restricted set of
parameters.
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Optimal parameter choices

Average volatility is given by

_2:1/T
TO

average skew by
-
:/ b(t) wp(t) dt
0

with

. a(t)2u(t)2 e [ e
o0 = a1 SECK
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and average curvature by

i
a:/ o(t) we(t) dt
0

with

(1-“)2 ( )*
fo t)* dt

we(t) =



Integral representation of implied volatility

As usual, we assume that the stock price S; satisfies the SDE

where the volatility o; may be random.
For fixed K and T, define the Black-Scholes gamma

_ d?
MBs(S:,a(t)) = 852 Cgs(St, K,a(t), T —t)

and further define the “Black-Scholes forward implied variance”
function [ 2 o2 (5..5( ))]

E|o MBs(S:, o(t

r (1) = 7S Teson @
E [St rss(st,a(t))]

where

T
F2(t) = /t vk, 7(u) du (5)
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Keller-Ressel and Teichmann

In [6], Martin Keller-Ressel and Josef Teichmann show by explicit
construction that the forward implied variances

v, 7 (t) =: 5% + (t) in (4) exist and give a pretty construction in
terms of a staté—switching process.

Specifically, consider the price process g[ given by

gtT = S, fort<Tt
dS] = ST o, dW; fort > 7.

They show that choosing 0 = G, 7(7) generates the market price
C(K, T) of the option with strike K and expiration T thus
justifying our earlier terminology “Black-Scholes forward implied

variance” for vk 1(t).
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Path-by-path, for any suitably smooth function f (S;, t), applying
[té's Lemma, we have

£(Sr.T)— F(S0,0) = /OTdf

T [ of of 0? o Of
_ /0 {85td5t+6tdt+25tastzdt}

With f(-) as the Black-Scholes valuation formula Cgs(-), we
obtain:

C(So,K,T) = E[(ST—K)]
= E[Cgs(ST,K,5(T),0)]
= Cgs (S0, K,5(0), T)

T (9Cgs 0Css 1 0°Cgs
E - 22
+ UO { 35, dS; + ot dt+20t5t 952 dt}]
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Cgs (St, K,a(t), T — t) must satisfy the Black-Scholes equation
so:

0Cgs 1 , 0?Cpgs
=—= t) S
ot gk (8) 3¢ 5
Using this equation to substitute for the time derivative agfs, we
obtain:
C(So, K, T) = Cas(SK,5(0),T)

05 £ 9S?
= Cgs(SO,K O'( ) T)

+E / - {O't VK, T } 528 Cas dt] (6)

+E / {5C35d5t+ {atvaT()}sﬁ CBSdt}]
0

£ 082
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The last term in (6) gives the expected realized profit on a sale of
a call option at an implied volatility of &, delta-hedged using the
deterministic forward variance function vk 7.

From the definition (4) of vk, 7(t), we have that
E [S? rgs(st, 5(1‘))] VK, T (t) =K [0‘? St2 rgs(st, 5‘(1’))]

so the second term in equation (6) vanishes and &(0) is the
Black-Scholes implied volatility at time 0 of the option with strike
K and expiration T. So

dt (7)

1 /TE[UESEFBs(St)]
T 0

T E [S2Tgs(St)]

which expresses implied variance as the time-integral of expected
instantaneous variance o2 under some probability measure.
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Following Roger Lee, we may rewrite (7) more elegantly as

1

)
ros(K. TP = 5(0F = 7 | ESIodlar (8)

thus interpreting the definition (4) of v(t) as the expectation of o2
with respect to the probability measure G; defined, relative to the
pricing measure P, by the Radon-Nikodym derivative

dG: _ S7Tss(St,d(t))
dP ~ E[S?Tas(S:.a(t))]

Note in passing that equations (4) and (7) are circular because the
gamma [ gs(S;) of the option on the rhs depends on ogs(K, T) on
the lhs via the forward implied variances vk 7 (t).
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Special case: Black-Scholes

Suppose o = o(t), a function of t only. Then

E [o(t)*STes(St)]

-7 2
E[5es(s)] O\

VK, T (t) =

The forward implied variance vy, 7(t) and the forward variance
o(t)? coincide. As expected, vk 7(t) has no dependence on the
strike K or the option expiration T.
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Visualizing implied volatility

Equation (7) may be rewritten in the form

VK, T (t) = /dSt q(5t; 50, K, T) VL(St, t)

where

St, t; So0) S T'es(St)

P
S¢,t,50,K, T) :=
q( t7tv 0, ’ ) E [51»2 rBS(St)]

and v/ (S;,t) =EP [a%\st] is the local variance or alternatively in
terms of x; := log (5¢/S0):

vk, 7 (t) = /dxt q (xe, t; x1, T) vi(xt, t) (9)
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Visualizing implied volatility
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The figure shows how g (x¢, t; x7, T) looks in the case of a 1 year
European option struck at 1.3 with a flat 20% volatility. We see

that g (x¢, t; x7, T) peaks on a line X; joining the stock price today
with the strike price at expiration.



The most-likely-path approximation

The density g(-) looks roughly symmetric around the peak. Then

L 2 0%q

q(Xt> t;XTa T) ~ CI(>~<t, t; XT, T) + = (Xt — )?t) 5
2 Ox§

Xt:)?t
Typically vi(x, t) is not so far from linear in x; in the region where
q (xt, t; xT, T) is significant so we may further write

vi(Xe, t) R ovi(Xe, t) + (xe — X¢) =—

Substituting back into equation (9) gives
vk, 7 (t) = v (%, t) = (%, t)?

and equation (7) becomes

1 T
obs(K, TV~ 7 /0 o (%, £)2 dt (10)
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The approximate formula in words

e Equation (10) says that the Black-Scholes implied variance of
an option with strike K is given approximately by the integral
from valuation date (t = 0) to the expiration date (t = T) of
the local variances along the path X; that maximizes the
Brownian Bridge-like density g (x¢, t; x7, T).

@ Note that in practice, it's not trivial to compute the path X;.

o Adil Reghai describes an efficient fixed-point algorithm to do
this.
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A fixed point algorithm for finding the most likely path

For each log-strike k := log(K/Sp), we approximate the most likely
path X; as
- Wi
= —k 11
Xt wr ( )
with

t
Wt:/ ds o(%)?
0

Obviously, this definition is circular. We solve by starting with the
straight line
t
==k
T
as our initial guess and iterating until the path doesn’t change.
This iteration is extremely fast in practice.
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Adil Reghai’s formulation

In [8], Adil Reghai approximates the most-likely-path a little
differently as

St ~ E[St’.ST:K]
_ K\*¢ we (Wt — wy)
~ 50 <50> exp {2WT} (12)

with

as before.



How well do these approximations work?

We consider the following explicit local volatility models:

@ The square-root CEV model:
dS. = e Mo /S, dW,
@ The quadratic model:
dS; = e Mo {1 F(Se—1) + %(st - 1)2} dW,

@ Parameters are: ¢ = 0.2, ¢y = —0.5 and 7 = 0.1. In each case
50 =land T =1.

@ A = 0 gives a time-homogeneous local volatility surface and
A =1 a time-inhomogeneous one.

@ We compare implied volatilities from the approximations and
the closed-form solution.
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Time-homogeneous Square Root CEV
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Note that all errors are tiny! Even BBF is a great approximation.
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Time-homogeneous Quadratic Model
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Of course, in this case, quadratic parameter averaging (QPA) is
exact.
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Time-inhomogeneous Square Root CEV
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Both quadratic parameter averaging (QPA) and most-likely-path
(MLP) are almost exact. The difference between the two MLP
formulations is negligible.
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Time-inhomogeneous Square Root CEV: zoomed view
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Both quadratic parameter averaging (QPA) and most-likely-path
(MLP) are almost exact.
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Time-inhomogeneous Quadratic Model
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Of course, in this case, quadratic parameter averaging (QPA) is
exact. MLP is very close!



Observations so far

@ The small-time expansion of [4] is definitely a big
improvement over BBF in the time-inhomogeneous case.

e The expansions depend on derivatives of the local volatility
function at t = 0 and so are unlikely to be applicable to a
realistic volatility surface.

e These expansions do permit more accurate closed-form implied
volatility approximations for simple models.

@ However, the most-likely-path approximation (MLP) and
quadratic parameter averaging (QPA) are both much more
accurate.

o QPA has the further advantage of permitting closed-form
approximations to implied volatilities.

e MLP is an iterative procedure so closed-form approximations
using MLP are not realistic.

@ How do MLP and QPA fare with a realistic volatility surface?
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Figure 3.2: 3D plot of volatility surface

Here's a 3D plot of the volatility surface as of September 15, 2005:

‘Jon paydwy

k := log K/F is the log-strike and t is time to expiry.
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3D plot of approximate local volatility surface

aoueleA |ed07]
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Local volatility surface parameterization

k k 2
o?(k,t)=a+b{p (ﬁ—m> —i—\/(ﬁ—m) +o02t
with
a = 0.0012
b = 0.1634
o = 0.1029
p = —0.5555
m 0.0439

@ This surface is singular at t = 0 so small-time expansions
won't work.

@ Each slice is SVI.
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Picture for the sceptical
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Orange lines are from PDE computations, red and blue points are
bid and offered vols respectively. Fits are not too bad!



One slice of the implied volatility surface
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Another slice of the implied volatility surface
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Further observations

@ MLP is again very close, even with this realistic
parameterization of the volatility surface.

e In addition, MLP is very fast.
o QPA is totally off.

o Parameter averaging is thrown off by singular behavior at
t=0.

o The shape of the volatility smile is constrained by the form of
the quadratic volatility model.

@ MLP is the definite winner so far!



Performance with longer-dated smiles
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Summary

@ Small-time expansions are useful for generating closed-form
expressions for implied volatility from simple models but
cannot be applied to realistic local volatility surfaces.

@ Parameter averaging seems to have problems reproducing
shorter-dated smiles when the volatility surface is singular at
T =0, as is probably always the case in practice.

e There is always a small chance of a large (non-diffusive) move
over any given short time interval and the volatility surface
should reflect this.

e Markovian projection plus parameter averaging remains a
viable technique for fitting a given (relatively simple) model to
a given implied volatility surface.

@ Parameter averaging can only ever return the parameters of

the simple proxy model whose parameters are being
approximated; realistic volatility smiles cannot be resolved.
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Summary |

@ The most-likely-path technique is both easy to implement and
efficient in generating good numerical implied volatility
approximations for shorter-dated smiles.

e Because the MLP technique is numerical, it cannot be used for
generating closed-form implied volatility approximations for a
given model.

e However, MLP can be used for fitting low-dimensional
parameterizations of the local volatility surface to a given
implied volatility surface, ensuring no static arbitrage by
construction.

@ Parameter averaging seems to outperform most-likely-path for
longer-dated smiles.
e As T increases, approximating the expectation in the integral
representation (7) by the value at one point becomes less and
less of a good approximation.
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