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Objective

Given a local volatility process

dS

S
= σ(S , t) dWt ,

with σ(S , t) depending only on the underlying level S and the time
t, we want to compute implied volatilities σBS(K ,T ) such that

CBS(S ,K , σBS(K ,T ),T ) = E
[
(ST − K )+

]
or in words, we want to efficiently compute implied volatility from
local volatility.

This can of course be done with numerical PDE

but numerical PDE is slow,
too slow for efficient calibration to implied vols.
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Motivations

The condition for no static arbitrage can be simply expressed
as the non-negativity of local variance.

It’s very hard in general to eliminate static arbitrage in a given
parameterization of the implied volatility surface.

Knowing how to get implied volatility from local volatility
helps us get accurate approximations to implied volatility in
more complex models such as SABR.

Efficient calibration of complex models becomes practical.
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Local volatility in terms of implied volatility

Define the Black-Scholes implied total variance:

w(K ,T ) := σ2
BS (K ,T ) T

In terms of the log-strike k := log K/F and the local variance
vL := σ2 (K ,T ), the Dupire equation becomes

∂C

∂T
=

vL

2

{
∂2C

∂k2
− ∂C

∂k

}
Then, by taking derivatives of the Black-Scholes formula and
simplifying, we obtain equation (1.10) in [3]:

vL =
∂w
∂T(

1− k
2 w

∂w
∂k

)2 − 1
4

(
1
4 + 1

w

) (
∂w
∂k

)2
+ 1

2
∂2w
∂k2

(1)
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Special Case: No Skew

If the skew ∂w
∂k is zero, (1) reduces to

vL =
∂w

∂T

In this special case, the local variance reduces to the forward
Black-Scholes implied variance. The solution is of course

w (T ) =

∫ T

0
vL (t) dt
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Inverting the equation

We have a formula (1) for getting local volatility from implied.

All we need to do is to invert this formula!

This is certainly not easy and has not so far proved to be
possible in closed-form.

In the limit of small time however, equation (1) can been
solved.
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The BBF approximation

Recall equation (1) for local variance in terms of implied:

vL =
∂w
∂T(

1− k
2 w

∂w
∂k

)2 − 1
4

(
1
4 + 1

w

) (
∂w
∂k

)2
+ 1

2
∂2w
∂k2

Noting that w ∼ O(T ), in the limit of small T , to leading order in
T we may write

vL ≈
∂w
∂T(

1− k
2 w

∂w
∂k

)2
(2)

Further supposing that to lowest order in T , w ≈ σBS(k , 0)2 T
and making the change of variable

u =
1

σBS(k, 0)
,
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we may rewrite (2) as

σ(k , 0)2 ≈
1
u2(

1 + k
u
∂u
∂k

)2

or rearranging
∂

∂k
(k u) =

1

σ(k , 0)

giving us the BBF approximation of Berestycki, Busca and Florent
[2]:

1

σBS(K ,T )
≈ 1

σ0(k)
:=

1

ln K/S0

∫ K

S0

dS

S σ(S , 0)
=

∫ 1

0

dα

σ(α k, 0)
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First order term

In [5], choosing to expand σBS(·) as

σBS(k,T ) = σ0(k) + σ1(k) T + O(T 2),

substituting into (1) and matching powers of T , Pierre
Henry-Labordère (H-L) obtains the first order correction:

σ1(k) =
σ0(k)3

k2

{
ln

√
σ(0, 0)σ(k , 0)

σ0(k)

−
∫ k

0

∂tσ(y , t)|t=0

σ(y , 0)

∂

∂y

(
y

σ0(y)

)2

dy

}

where σ0(k) is the lowest-order (BBF) approximation derived
earlier.
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Heat kernel expansion

In [4], we compute implied volatility for short times using the heat
kernel expansion up to second order.

σBS(k,T ) ≈ σ0(k) + σ1(k) T + σ2(k) T 2

The first two terms, σ0 and σ1 agree with BBF and H-L
respectively. σ2 is somewhat too complicated to reproduce here!
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Henry-Labordère’s approximation

Henry-Labordère also presents a heat kernel expansion based
approximation to implied volatility in equation (5.40) on page 140
of his book [5]:

σBS(K ,T ) ≈ σ0(K )

{
1 +

T

3

[
1

8
σ0(K )2 +Q(fav ) +

3

4
G(fav )

]}
(3)

with

Q(f ) =
C (f )2

4

[
C ′′(f )

C (f )
− 1

2

(
C ′(f )

C (f )

)2
]

and

G(f ) = 2 ∂t log C (f ) = 2
∂t σ(f , t)

σ(f , t)

where C (f ) = f σ(f , t) in our notation, fav = (S0 + K )/2 and the
term σ0(K ) is the BBF approximation from [2].
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Parameter Averaging

Given an SDE with time-dependent parameters, the idea of
parameter averaging is to optimally choose average
parameters for a similar SDE with time-independent
parameters and an easy-to-compute solution.

For example, in [7], given an SDE of the form

dSt = σ(t) {b(t) St + (1− b(t)) S0} dWt ,

Vladimir Piterbarg explains how to choose average parameters
σ̄ and b̄ for the shifted-lognormal process

dSt = σ̄
{
b̄ St +

(
1− b̄

)
S0

}
dWt

European options are then priced using the closed-form shifted
lognormal formula with average parameters.
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Quadratic Parameter Averaging

Given the time-dependent SDE

dXt = σ(t)

{
1 + b(t) (Xt − 1) +

c(t)

2
(Xt − 1)2

}
; X0 = 1,

Andersen and Hutchings [1] derive optimal choices of average
parameters σ̄, b̄ and c̄ for the quadratic SDE

dXt = σ̄

{
1 + b̄ (Xt − 1) +

c̄

2
(Xt − 1)2

}
which has a known closed-form solution for a restricted set of
parameters.
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Optimal parameter choices

Average volatility is given by

σ̄2 =
1

T

∫ T

0
σ(t)2 dt,

average skew by

b̄ =

∫ T

0
b(t) wb(t) dt

with

wb(t) =
σ(t)2 ν(t)2∫ T

0 σ(t)2 ν(t)2 dt
; ν(t)2 :=

∫ t

0
σ(s)2 ds
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and average curvature by

c̄ =

∫ T

0
c(t) wc(t) dt

with

wc(t) =
σ(t)2 ν(t)4∫ T

0 σ(t)2 ν(t)4 dt
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Integral representation of implied volatility

As usual, we assume that the stock price St satisfies the SDE

dSt

St
= σt dZt

where the volatility σt may be random.
For fixed K and T , define the Black-Scholes gamma

ΓBS(St , σ̄(t)) :=
∂2

∂S2
t

CBS(St ,K , σ̄(t),T − t)

and further define the “Black-Scholes forward implied variance”
function

vK ,T (t) =
E
[
σ2

t S2
t ΓBS(St , σ̄(t))

]
E
[
S2

t ΓBS(St , σ̄(t))
] (4)

where

σ̄2(t) :=
1

T − t

∫ T

t
vK ,T (u) du (5)
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Keller-Ressel and Teichmann

In [6], Martin Keller-Ressel and Josef Teichmann show by explicit
construction that the forward implied variances
vK ,T (t) =: σ̄2

K ,T (t) in (4) exist and give a pretty construction in
terms of a state-switching process.

Specifically, consider the price process S̃τt given by

S̃τt = St for t < τ

dS̃τt = S̃τt στ dWt for t ≥ τ.

They show that choosing στ = σ̄K ,T (τ) generates the market price
C (K ,T ) of the option with strike K and expiration T thus
justifying our earlier terminology “Black-Scholes forward implied
variance” for vK ,T (t).
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Path-by-path, for any suitably smooth function f (St , t), applying
Itô’s Lemma, we have

f (ST ,T )− f (S0, 0) =

∫ T

0
df

=

∫ T

0

{
∂f

∂St
dSt +

∂f

∂t
dt +

σ2
t

2
S2

t

∂2f

∂S2
t

dt

}
With f (·) as the Black-Scholes valuation formula CBS(·), we
obtain:

C (S0,K ,T ) = E
[
(ST − K )+]

= E [CBS (ST ,K , σ̄(T ), 0)]

= CBS (S0,K , σ̄(0),T )

+E
[∫ T

0

{
∂CBS

∂St
dSt +

∂CBS

∂t
dt +

1

2
σ2

t S
2
t

∂2CBS

∂S2
t

dt

}]
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CBS (St ,K , σ̄(t),T − t) must satisfy the Black-Scholes equation
so:

∂CBS

∂t
= −1

2
vK ,T (t) S2

t

∂2CBS

∂S2
t

Using this equation to substitute for the time derivative ∂CBS
∂t , we

obtain:

C (S0,K ,T ) = CBS (S0,K , σ̄(0),T )

+E

[∫ T

0

{
∂CBS

∂St
dSt +

1

2

{
σ2

t − vK ,T (t)
}

S2
t

∂2CBS

∂S2
t

dt

}]
= CBS (S0,K , σ̄(0),T )

+E

[∫ T

0

1

2

{
σ2

t − vK ,T (t)
}

S2
t

∂2CBS

∂S2
t

dt

]
(6)
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The last term in (6) gives the expected realized profit on a sale of
a call option at an implied volatility of σ̄, delta-hedged using the
deterministic forward variance function vK ,T .

From the definition (4) of vK ,T (t), we have that

E
[
S2

t ΓBS(St , σ̄(t))
]
vK ,T (t) = E

[
σ2

t S2
t ΓBS(St , σ̄(t))

]
so the second term in equation (6) vanishes and σ̄(0) is the
Black-Scholes implied volatility at time 0 of the option with strike
K and expiration T . So

σBS(K ,T )2 = σ̄(0)2 =
1

T

∫ T

0

E
[
σ2

t S
2
t ΓBS(St)

]
E
[
S2

t ΓBS(St)
] dt (7)

which expresses implied variance as the time-integral of expected
instantaneous variance σ2

t under some probability measure.
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Following Roger Lee, we may rewrite (7) more elegantly as

σBS(K ,T )2 = σ̄(0)2 =
1

T

∫ T

0
EGt [σ2

t ] dt (8)

thus interpreting the definition (4) of v(t) as the expectation of σ2
t

with respect to the probability measure Gt defined, relative to the
pricing measure P, by the Radon-Nikodym derivative

dGt

dP
:=

S2
t ΓBS(St , σ̄(t))

E
[
S2

t ΓBS(St , σ̄(t))
]

Note in passing that equations (4) and (7) are circular because the
gamma ΓBS(St) of the option on the rhs depends on σBS(K ,T ) on
the lhs via the forward implied variances vK ,T (t).
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Special case: Black-Scholes

Suppose σt = σ(t), a function of t only. Then

vK ,T (t) =
E
[
σ(t)2S2

t ΓBS(St)
]

E
[
S2

t ΓBS(St)
] = σ(t)2

The forward implied variance vK ,T (t) and the forward variance
σ(t)2 coincide. As expected, vK ,T (t) has no dependence on the
strike K or the option expiration T .
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Visualizing implied volatility

Equation (7) may be rewritten in the form

vK ,T (t) =

∫
dSt q (St ; S0,K ,T ) vL(St , t)

where

q (St , t; S0,K ,T ) :=
p (St , t; S0) S2

t ΓBS(St)

E
[
S2

t ΓBS(St)
]

and vL(St , t) = EP
[
σ2

t |St

]
is the local variance or alternatively in

terms of xt := log (St/S0):

vK ,T (t) =

∫
dxt q (xt , t; xT ,T ) vL(xt , t) (9)
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Visualizing implied volatility
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The figure shows how q (xt , t; xT ,T ) looks in the case of a 1 year
European option struck at 1.3 with a flat 20% volatility. We see
that q (xt , t; xT ,T ) peaks on a line x̃t joining the stock price today
with the strike price at expiration.
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The most-likely-path approximation

The density q(·) looks roughly symmetric around the peak. Then

q (xt , t; xT ,T ) ≈ q(x̃t , t; xT ,T ) +
1

2
(xt − x̃t)2 ∂

2q

∂x2
t

∣∣∣∣
xt=x̃t

Typically vL(xt , t) is not so far from linear in xt in the region where
q (xt , t; xT ,T ) is significant so we may further write

vL(xt , t) ≈ vL(x̃t , t) + (xt − x̃t)
∂vL

∂xt

∣∣∣∣
xt=x̃t

Substituting back into equation (9) gives

vK ,T (t) ≈ vL(x̃t , t) = σ(x̃t , t)2

and equation (7) becomes

σBS(K ,T )2 ≈ 1

T

∫ T

0
σ(x̃t , t)2 dt (10)
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The approximate formula in words

Equation (10) says that the Black-Scholes implied variance of
an option with strike K is given approximately by the integral
from valuation date (t = 0) to the expiration date (t = T ) of
the local variances along the path x̃t that maximizes the
Brownian Bridge-like density q (xt , t; xT ,T ).

Note that in practice, it’s not trivial to compute the path x̃t .

Adil Reghai describes an efficient fixed-point algorithm to do
this.
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A fixed point algorithm for finding the most likely path

For each log-strike k := log(K/S0), we approximate the most likely
path x̃t as

x̃t =
wt

wT
k (11)

with

wt =

∫ t

0
ds σ(x̃s)2

Obviously, this definition is circular. We solve by starting with the
straight line

x̃t =
t

T
k

as our initial guess and iterating until the path doesn’t change.
This iteration is extremely fast in practice.
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Adil Reghai’s formulation

In [8], Adil Reghai approximates the most-likely-path a little
differently as

S̃t ≈ E [St |ST = K ]

≈ S0

(
K

S0

)α
exp

{
wt (wT − wt)

2 wT

}
(12)

with
α =

wt

wT

as before.
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How well do these approximations work?

We consider the following explicit local volatility models:

The square-root CEV model:

dSt = e−λ t σ
√

St dWt

The quadratic model:

dSt = e−λ t σ
{

1 + ψ (St − 1) +
γ

2
(St − 1)2

}
dWt

Parameters are: σ = 0.2, ψ = −0.5 and γ = 0.1. In each case
S0 = 1 and T = 1.

λ = 0 gives a time-homogeneous local volatility surface and
λ = 1 a time-inhomogeneous one.

We compare implied volatilities from the approximations and
the closed-form solution.
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Time-homogeneous Square Root CEV
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Note that all errors are tiny! Even BBF is a great approximation.
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Time-homogeneous Quadratic Model
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Of course, in this case, quadratic parameter averaging (QPA) is
exact.
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Time-inhomogeneous Square Root CEV
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Both quadratic parameter averaging (QPA) and most-likely-path
(MLP) are almost exact. The difference between the two MLP
formulations is negligible.
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Time-inhomogeneous Square Root CEV: zoomed view
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Both quadratic parameter averaging (QPA) and most-likely-path
(MLP) are almost exact.
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Time-inhomogeneous Quadratic Model
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Of course, in this case, quadratic parameter averaging (QPA) is
exact. MLP is very close!
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Observations so far

The small-time expansion of [4] is definitely a big
improvement over BBF in the time-inhomogeneous case.

The expansions depend on derivatives of the local volatility
function at t = 0 and so are unlikely to be applicable to a
realistic volatility surface.
These expansions do permit more accurate closed-form implied
volatility approximations for simple models.

However, the most-likely-path approximation (MLP) and
quadratic parameter averaging (QPA) are both much more
accurate.

QPA has the further advantage of permitting closed-form
approximations to implied volatilities.
MLP is an iterative procedure so closed-form approximations
using MLP are not realistic.

How do MLP and QPA fare with a realistic volatility surface?
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Figure 3.2: 3D plot of volatility surface

Here’s a 3D plot of the volatility surface as of September 15, 2005:
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k := log K/F is the log-strike and t is time to expiry.
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3D plot of approximate local volatility surface
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Local volatility surface parameterization

σ2(k, t) = a + b

ρ
(

k√
t
−m

)
+

√(
k√
t
−m

)2

+ σ2 t


with

a = 0.0012

b = 0.1634

σ = 0.1029

ρ = −0.5555

m = 0.0439

This surface is singular at t = 0 so small-time expansions
won’t work.

Each slice is SVI.



Introduction Small T Parameter averaging Integral representation Numerical tests Conclusion

Picture for the sceptical
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Orange lines are from PDE computations, red and blue points are
bid and offered vols respectively. Fits are not too bad!
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One slice of the implied volatility surface
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The exact implied volatility smile is from a PDE computation.
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Another slice of the implied volatility surface
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Further observations

MLP is again very close, even with this realistic
parameterization of the volatility surface.

In addition, MLP is very fast.

QPA is totally off.

Parameter averaging is thrown off by singular behavior at
t = 0.
The shape of the volatility smile is constrained by the form of
the quadratic volatility model.

MLP is the definite winner so far!
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Performance with longer-dated smiles
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Summary

Small-time expansions are useful for generating closed-form
expressions for implied volatility from simple models but
cannot be applied to realistic local volatility surfaces.

Parameter averaging seems to have problems reproducing
shorter-dated smiles when the volatility surface is singular at
T = 0, as is probably always the case in practice.

There is always a small chance of a large (non-diffusive) move
over any given short time interval and the volatility surface
should reflect this.
Markovian projection plus parameter averaging remains a
viable technique for fitting a given (relatively simple) model to
a given implied volatility surface.

Parameter averaging can only ever return the parameters of
the simple proxy model whose parameters are being
approximated; realistic volatility smiles cannot be resolved.
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Summary II

The most-likely-path technique is both easy to implement and
efficient in generating good numerical implied volatility
approximations for shorter-dated smiles.

Because the MLP technique is numerical, it cannot be used for
generating closed-form implied volatility approximations for a
given model.
However, MLP can be used for fitting low-dimensional
parameterizations of the local volatility surface to a given
implied volatility surface, ensuring no static arbitrage by
construction.

Parameter averaging seems to outperform most-likely-path for
longer-dated smiles.

As T increases, approximating the expectation in the integral
representation (7) by the value at one point becomes less and
less of a good approximation.
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