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1. Introduction

In practical asset management relatively little use of sophisticated

quantitative techniques and dynamic models, other than for

pricing/hedging derivatives

• Cultural barriers

• Unrealistic objective functions

• Transaction costs

• Model parameters: investment strategies are largely influenced by

drift or growth rate of assets, whereas derivative asset analysis is

only concerned with volatility
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Portfolio Optimization and Drift

Drift is a key input in any optimal portfolio strategy. Consider

e.g. classical Merton problem:

• dSt = µStdt+ σStdWt, short rate r

• investor maximizes E(u(VT )) for u(x) = 1
θx

θ, θ < 1 (CRRA).

Then optimal proportion of wealth in risky asset equals

h
(0)
t =

1
(1− θ)σ2

(µ− r)

and h(0) is a key building block of optimal strategies also in more

complicated models.
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Portfolio Optimization and Drift cont.

Drifts are hard to estimate empirically:

• Drift estimation needs data over long time horizons (other than

volatility estimation). Consider e.g.

dXt = µdt+ dWt, 0 ≤ t ≤ T.

MLE-estimator for µ given by µ̂ = 1
T (XT −X0).

⇒ Problems with stationarity

• Compounded by the fact that for typical return series drift is

dominated by volatility
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Implications

• Academic literature: Consider dynamic models with drift driven by

unobservable factors and apply filtering techniques.

? Linear Gaussian models: Lakner (1998), Nagai, Peng (2002),

Brendle (2006)

? Hidden market models: Sass, Haussmann (2004),

Gabih,Wunderlich (2010), Rieder, Bäuerle (2005), Nagai,

Rungaldier (2008), . . .

• Practitioners use static Black-Litterman-model (Litterman 2003)

where Bayesian updating is used to combine subjective views such

as “asset 1 will grow at least 5%” with empirical or implied return

estimates.

In the present paper we combine the two approaches by including

expert opinions in dynamic models with partial observation
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2. The Model

• (Ω,G = (Gt)t∈[0,T ], P ) filtered probability space (full information)

• N + 1 securities (S0
t , S

1
t , . . . , S

N
t ). Bond S0 ≡ 1; stock price

dynamics given by Black-Scholes model with random drift

dSi
t = Si

t

(
ai(Xt)dt+

N∑
j=1

σijdW j
t

)
, Si

0 = si, i = 1, · · · , N. (1)

• Factor process X is a a finite-state Markov chain with state space

X = {x1, · · · , xK}, generator matrix Q (HMM).

• Volatility σ = (σij)1≤i,j≤N is assumed to be a constant invertible

matrix and W is G-Brownian motion.

• Returns dRt = dSt
St

= a(Xt) dt+ σ dWt

5



Investor information

Investor is not informed about factor process Xt, he only observes

• Stock price S or equivalently stock return Rt

• Expert opinions revealed at discrete time points Tn such as

? own views about future performance

? news, recommendations of analysts or rating agencies

=⇒ Model with partial information. Investor needs to “learn” the

drift from observable quantities.
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Expert Opinions

Modelled by marked point process I = (Tn, Zn) ∼ I(dt, dz)

• At random points in time Tn ∼ Poi(λ) investor observes r.v. Zn

• Zn depends on current state XTn, density f(XTn, z) (Zn)n

cond. independent given FX
T = σ(Xs : s ∈ [0, T ])

Examples

• Absolute view. Zn = a(XTn) + σεn, εn ∼ N(0, 1).
The view “S will grow by 5%” is modelled by the observation

Zn = 0.05; σ models confidence of investor

• Relative view (2 assets) Zn = a1(XTn)− a2(XTn) + σ̃εn

Investor filtration. F with Ft = σ(Ru : u ≤ t; (Tn, Zn) : Tn ≤ t)
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The optimization problem

• Admissible Strategies. (described via portfolio weights)

H(t) = {(hs)s∈[t,T ] ∈ Rn, F-adapted,

∫ T

t

||hs||2 <∞}

• Wealth dV h
t = V h

t h>t (a(Xt) dt+ σdWt), V h
0 = v0

• Utility function U(x) = xθ

θ , (power utility), θ ∈ (−∞, 1) \ {0};
U(x) = log(x), θ = 0.

• Value function. Jh(t, v) = Et,v[ U(V h
T ) ] for h ∈ H(t) and

J(t, v) = sup{Jh(t, v) : h ∈ H(t)}.

• Investor problem. Find optimal strategy h∗ ∈ H(0) such that

J(0, v0) = Jh∗(0, v0)
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3. Filtering and Reduction to Complete Information

HMM Filtering, only return observation

• Investor Filtration F = (Ft)t∈[0,T ] with Ft = σ(Ru : u ≤ t) ⊂ Gt

• Filter pk
t := P (Xt = xk|Ft), 1 ≤ k ≤ K

• Innovation process. Put â(Xt) := E[a(Xt)|Ft] =
K∑

j=1

pj
taj. Then

W̃t := σ−1( Rt −
∫ t

0
â(Xs)ds ) is an F-BM

• HMM filter

pk
0 = πk

dpk
t =

K∑
j=1

Qjkpj
tdt+ pk

t

(
ak −

K∑
j=1

pj
taj

)>
(σ>)−1dW̃t

Well-known result: Lipster-Shiriaev, Wonham, Elliott, . . .
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b) HMM Filtering, including expert opinions

Extra information has no impact on filter pt between ‘information

dates’, but there is Bayesian updating at t = Tn. Recall that

f(XTn, z) is density of Zn given XTn. Hence

pk
Tn
∝ pk

Tn−f(xk, Zn) with normalizer
K∑

j=1

pj
Tn−f(xj, Zn).

Denote by µ(dt×dz) := I(dt×dz)− λdt
∑K

k=1 p
k
t−f(xk, z) dz the

F-compensated random measure of I. Then

dpk
t =

K∑
j=1

Qjkpj
tdt+ pk

t

(
a(xk)−

K∑
j=1

pj
ta(xj)

)>
(σ>)−1dW̃t

+ pk
t

∫
Z

( f(xk, z)∑K
j=1 p

j
t−f(xj, z)

− 1
)
µ(dt× dz)
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Filter: Example
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Reduction to an OP Under Full Information

Consider K + 1-dimensional state process (Vt, pt)

Wealth dV h
t = V h

t h>t
∑K

k=1 p
k
t a(xk) dt+ σdW̃t), V h

0 = v0

Filter dpk
t =

K∑
j=1

Qjkpj
tdt+ pk

t

(
ak −

K∑
j=1

pj
taj

)>
(σ>)−1dW̃t

+pk
t−

∫
Z

(
f(xk,z)

f(pt−,z)
− 1

)
µ(dt× dz), pk

0 = πk

Value Jh(t, v, p) = Et,v,p[ U(V h
T ) ] for h ∈ H(t)

J(t, v, p) = sup
h∈H(t)

Jh(t, v, p)

Problem Find h∗ ∈ H(0) such that J(0, v0, π) = Jh∗(0, v0, π)
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4. Logarithmic Utility

For U(x) = log x one has

U(V h
T ) = log v0 +

∫ T

0

(
h>s â(Xs)−

1
2
h>s σσ

>hs

)
ds+

∫ T

0

h>s σdW̃s

E[U(V h
T )] = log v0 + E

[ ∫ T

0

(
h>s â(Xs)−

1
2
h>s σσ

>hs

)
ds

]
+ 0

Optimal Strategy h∗t = (σσ>)−1â(Xt).

Certainty equivalence principle. h∗ is obtained by replacing in the

optimal strategy under full information hfull
t = (σσ>)−1a(Xt) the

unknown drift a(Xt) by its filter â(Xt)
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5. Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))

U(V h
T ) =

vθ
0

θ
Zh

T exp
{
−

∫ T

0

b(θ)(ps, hs)ds
}

where Zh
T := exp

{
θ

∫ T

0

h>s σdW̃s −
θ2

2

∫ T

0

h>s σσ
>hsds

}
and b(θ)(p, h) := −θ

(
h>Ap− 1− θ

2
h>σσ>h

)
Change of measure: assume E[Zh

T ] = 1 and define
Ph(A) = E[Zh

T1A] for A ∈ FT . Then Wh
t = W̃t− θ

∫ t

0
σ>hsds is an

F-Brownian motion under Ph

Expected utility E[U(V h
T )] = vθ

0
θ E

h
[
exp

{
−

∫ T

0
b(θ)(ps, hs)ds

}]
Expectation depends only on filter p and strategy h
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Power Utility cont.
Filter dynamics under Ph.

dpk
t =

K∑
j=1

Qjkpj
tdt+ d>k (pt) dWh

t + θd>k (pt)σ>htdt

+pk
t−

∫
Z

( f(xk, z)
f(pt−, z)

− 1
)
µ(dt× dz)

Admissible strategies. A(t) = H(t) ∩ {h : E(Zh
T ) = 1}.

Value functions.

V (t, p) = Et,p

(
exp

{
−

∫ T

t

b(θ)(ph
s , hs)ds

})
, h ∈ A(t)

J(t, p) = sup{Jh(t, p) : h ∈ A(t)}

New Problem. Find h∗ ∈ A(0) such that J(0, π) = Jh∗(0, π).
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HJB-Equation and Optimal Strategy

Formal HJB equation

Jt(t, p) + sup
h∈Rn

{
LhJ(t, p)− b(θ)(p, h)J(t, p)

}
= 0,

J(T, p) = 1

where Lh generator of the Markov process ph
t

Optimal Strategy

h∗ = h∗(t, p) =
1

(1− θ)
(σσ>)−1

{
Ap︸ ︷︷ ︸

myopic strategy

+
1

J(t, p)
σ

K∑
k=1

dk(p) Jpk(t, p)︸ ︷︷ ︸
correction

}

Certainty equivalence principle does not hold !
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HJB-Equation (cont.)

Plugging in h∗ into the HJB equation and substituting J = G1−θ we

derive a transformed HJB-Equation for G = G(t, p)

Gt +
1
2
tr[α>(p)α(p)D2G] + Φ>(p)∇G+ Ψ(p)G

+
λ

1− θ

∫
Z

G1−θ(t, p+ ∆(p, z))−G1−θ(t, p)
G−θ(t, p)

f(p, z)dz = 0,

The functions α, φ, ψ, ∆ are defined in the paper. Note that the

equation has a linear diffusion part but nonlinear integral term.
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6. Approximative computation of optimal strategy

• Numerical solution of HJB equation via finite differences (only for

K small)

• Policy improvement (possibly via Monte Carlo)

• Linearized HJB-equation (possibly via Monte Carlo)

18



Policy Improvement

Start from myopic strategy h
(0)
t = 1

1−θ(σσ
>)−1Apt with value

function

J (0)(t, p) := Jh(0)
(t, p) = Et,p

[
exp

(
−

∫ T

t

b(θ)(ph(0)

s , h(0)
s )ds

)]
.

Motivated by fixed point interpretation of HJB, consider the problem

max
h

{
LhJ (0)(t, p)− b(θ)(p, h)J (0)(t, p)

}
with maximizer

h(1)(t, p) = h(0)(t, p) +
1

(1− θ)J (0)(t, p)
(σ>)−1

K∑
k=1

dk(p) J
(0)

pk (t, p).

For the corresponding value function J (1)(t, p) := Jh(1)
(t, p) one has

Lemma. h(1) is an improvement of h(0) i.e. J (1)(t, p) ≥ J (0)(t, p).
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Policy Improvement (cont.)

Policy improvement requires Monte-Carlo approximation of value

function Jh(0)
(t, p).

• Generate N paths of ph(0)

s starting at time t with p = pt

• Estimate expectation Et,p(·)

• Approximate partial derivatives J
(0)

pk (t, p) by finite differences

• Compute first iterate h(1)
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Numerical Results

For t = Tn nearly full information =⇒ correction ≈ 0
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Outlook

• Framework that allows for a consistent integration of views/expert

opinions into a dynamic portfolio optimization framework (‘dynamic

Black-Litterman’)

• Feasible approximations to optimal strategy via dynamic

programming

• Outlook/open points

? further testing of our approximations

? numerical experiments: value of information

? verification theorems or viscosity characterization

? Similar analysis for linear Gaussian case and Kalman filtering

22



References

References

[1] Lakner, P. (1998): Optimal trading strategy for an investor:

the case of partial information. Stochastic Processes and their
Applications 76, 77–97.

[2] 2003Litterman (2003)Litterman, R. (2003) Modern Investment
Management: An Equilibrium Approach, Wiley, New Jersey.

[3] Nagai, H. and Runggaldier, W.J. (2008): PDE approach to

utility maximization for market models with hidden Markov

factors. In: Seminar on Stochastic Analysis, Random Fields
23



and Applications V (R.C.Dalang, M.Dozzi, F.Russo, eds.).

Progress in Probability, Vol.59, Birkhäuser Verlag, 493–506.
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