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Agenda

• Poisson random measures and point processes

• Jump-diffusion SDEs

• Reduction to SDE with autonomous random measure driving term (Gih-
man & Skorohod)

• Examples in which finite-activity processes are reduced to infinite-activity
processes.

• Solution of SDEs with state-dependent jump compensator

• A quick introduction to Piecewise-Deterministic processes

• The Doléans exponential

• Application to change of measure for PDPs.

• Concluding remarks
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Poisson random measures and point processes

(Y,Y) is a measurable space. Let M be the set of (Z+∪{+∞})-valued integer-
valued measures on (Y,Y) and M be the smallest σ-field in M such that μ 7→
μ(B) is measurable ∀B ∈ Y .

An (M,M)-valued random variable is a Poisson random measure with Lévy
measure ν if

(i) For B ∈ Y , μ(B) has Poisson distribution with parameter ν(B), i.e. if
μ(B) < ∞ then

P[μ(B) = n] = e−ν(B) (ν(B))n

n!
,

while μ(B) + ∞ a.s. if μ(B) = ∞.

(ii) μ(B1), μ(B2), . . . are independent for disjoint B1, B2, . . ..
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Construction is simple given any σ-finite measure ν. We take disjoint B1, B2, . . .
such that ν(Bn) < ∞ and

⋃
Bn = Y and define for each n on some probability

space independent r.v. as follows

(a) A random variable pn with Poisson(ν(Bn)) distribution.

(b) a sequence ξn,j, j = 1, 2, . . . of r.v. Bn-valued with P[ξn,j ∈ dx] = ν(dx)/ν(Bn).

We now define

μ(B) =
∞∑

n=1

pn∑

j=1

1pn≥11B∩Bn
(ξn,j).

A stationary (or, homogeneous) Poisson point process on a measurable space
(Z,Z) with Lévy measure ν is simply a Poisson random measure μ on Y =
R+ × Z with Lévy measure dt × dν). We define

N(t, A) = μ([0, t] × A), N̂(t, A) = tν(A).

The for ν(A) < ∞, t 7→ N(t, A) is a Poisson process with rate ν(A) and
Ñ(t, A) = N(t, A) − N̂(t, A) is the Poisson martingale.
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Figure 1: Poisson Random Measure

Jump-diffusion SDEs

Conventionally, the SDE takes the form

X(t) = X(0) +

∫ t

0
b(X(s))ds +

∫ t

0
σ(X(s))dW (s) (1)

+

∫ t

0

∫

Z\Z0

γ(X(s−), z)N(ds, dz) +

∫ t

0

∫

Z0

γ(X(s−), z)Ñ(ds, dz)

where Z0 ∈ Z is such that ν(Z\Z0) < ∞. We require

‖σ(x)‖2 + ‖b(x)‖2 +

∫

Z0

‖γ(x, z)‖2ν(dz) ≤ K(1 + ‖x‖)2.
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To get a strong solution we need the Lipschitz condition

‖σ(x) − σ(y)‖2 + ‖b(x) − b(y)‖2 +

∫

Z0

‖γ(x, z) − γ(y, z)‖2ν(dz) ≤ K‖x − y‖)2.

The argument is as follows:

1. The random points (s, p) such that p ∈ Z\Z0 occur at isolated times s = τj

with 0 < τ1 < τ2 ∙ ∙ ∙ . Call these points (τj, pj).

2. Conventional Picard iteration shows (1) has a unique solution X1(t) on
[0, τ1[.

3. We define X(τ1) = X(τ1−) + γ(X(τ1−), p1).

4. Now restart from X(τ1).

The basic question that concerns us is

Is it sufficiently general to consider an SDE driven by an autonomous
Poisson point process rather than a point process with solution-dependent
compensator?

Various people have answered “yes” to this question ...
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The Gihman and Skorohod (“SDEs”, 1972) argument

Take a small time interval ]t, t + h]. Given Xt = x an Euler step for the
Brownian motion is σ(x)(W (t+h)−W (t)) ∼ N(0, σ2(t, x)h). Correspondingly
the Poisson martingale increment is

I ≡
∫

Z0

γ(t, x, z)Ñ(h, dz).

Suppressing (t, x) dependence, suppose
∫

Z0

|γ(z) − γ(n)(z)|2ν(dz) → 0

where γ(n) are piecewise constant, γ(n) = γn
k for z ∈ An

k . Then I = limL2
In

where In =
∑

k γn
k Ñ(h,An

k). The ch. fn. of In is

φn(u) = E[exp(iu
∑

k

γn
k Ñ(h,An

k))]

=
∏
E[exp(iuγn

k Ñ(h,An
k))]

=
∏

exp
(
eiuγn

k − 1 − iuγn
k )hν(An

k)
)

= exp

(

h

∫
(eiuγ(n)

− 1 − iuγ(n))ν(dz)

)
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Hence the ch.fn. of I is

log φt,x(u) = h

∫
(eiuγ(t,x,z) − 1 − iuγ(t, x, z))ν(dz)

where γ satisfies ∫

Z0

|γ(t, x, z)|2ν(dz) < ∞.

Changing variables to ζ = γ(t, x, z) gives

log φt,x(u) = h

∫
(eiuζ − 1 − iuζ)ν ◦ γ−1

t,x (dζ).

Claim: If Z = Rd and ν̂(t, x, dζ) is an ‘arbitrary’ family of σ-finite measures
then there exists a measurable function γ : R+ × Rd × Rd → Rd such that
λ ◦ γ−1

t,x (dζ) = ν̂(t, x, dζ), where λ is Lebesgue measure.

Proof (not given by G&S) – standard fact in measure theory + measurable
selection.

Question: what about other measurable spaces?
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Example: Non-homogeneous Poisson process

Consider a Poisson process X(t) with arrival rate η(t). This is a Poisson ran-
dom measure with Z = R+, ν(dz) = δ{1}(dz) and compensator N̂(t, A) =

11∈A

∫ t

0 η(s)ds.

To realize it in terms of a homogeneous Poisson random measure, we take
Z = R+ and ν = Lebesgue measure. Then

X(t) =

∫ t

0

∫

R+

γ(t, z)N(ds, dz)

where γ = 1[0,η(t)](z). (The Poisson rate is the shaded area in the figure.)

Z = R+

t

η(.)

Figure 2: Realization of non-homogeneous Poisson process
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Modelling prices of defaultable assets

Many people have studied reduced-form default models in which default times
have hazard rate h(X(t)) depending on a factor process X(t) which could be
autonomous or could be part of the solution of an SDE (the ‘self-exciting’ case).
This leads us to consider non-homogeneous point processes as above but with
compensator η(t) = h(X(t)).

Suppose X(t) has continuous paths and h(∙) is not a bounded function (it could
be, for example, affine). Then the resulting point process certainly has finite
activity.

However, if we wish to realize it in terms of an autonomous driving Poisson
point process, this will have to have infinite activity (since there is no uniform
upper bound to η(∙).)
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SDEs with state-dependent jump measure

There are two approaches:

(i) Strong solutions. The Picard iteration approach seems well suited: at each
stage we define Xn(t) in terms of the already defined Xn−1(∙) so the point
process will simply have a ‘random compensator’.

(ii) Weak solutions We have the freedom to change the compensator by abso-
lutely continuous change of measure.

We examine the latter in the context of Piecewise-deterministic Markov pro-
cesses (=jump-diffusions without the diffusion!)
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Piecewise-deterministic Markov processes

Γ

X0

Xt

Figure 3: PDP sample function

A PDP (Xt) is a random motion in a state space E ⊂ Rd consisting of
possibly disconnected components in Rd. The process is specified by four ‘local
characteristics’:

• Vector field X in E,

• jump rate λ : E → R+,

• transition measures Q : E → P(E), R : Γ → P(E)

P(E) is the set of probability measures on E and Γ is a subset of the boundary
∂E, defined below.
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Start with an open set E0 ⊂ Rd, let X be a C1 vector field on E0 and let
ζ(t, x) be the integral curve of X , i.e. ζ(t, x) is the solution of the ordinary
differential equation

d

dt
f(ζ(t, x)) = X f(ζ(t, x)), ζ(0, x) = x, f ∈ C1(E0).

The ‘active boundary’ of E0 is the set of points in ∂E0 which are hit by some
integral curve, i.e.,

Γ = {z ∈ ∂E0 : z = lim ζ(tn, x) for some x, t ∈ E0 × R+ and sequence tn ↑ t}.

We now define E = E0\Γ, and t∗(x) = inf{t : ζ(t, x) ∈ Γ} (with inf ∅ = +∞).

Construction: Starting at x ∈ E, Xt = ζ(t, x) for t ∈ [0, T1) where the first
jump time T1 is a random variable whose distribution function is

F (t, x) = P(T1 ≤ t) = 1 − 1(t<t∗(x))e
−
∫ t

0
λ(ζ(s,x))ds.

Thus T1 has hazard rate λ(Xs) on [0, t∗(x)), with a mandatory jump at t∗(x) if
T1 has not occurred by then.
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The sample path is right-continuous, so XT1− = ζ(T1, x).

If XT1− ∈ E then XT1
∈ E is a random variable whose conditional distribution

given T1 is given by the transition measure Q:

P[XT1
∈ A|T1] = Q(A, ζ(T1, x)), A ∈ B(E).

If XT1− ∈ Γ then the recipe is the same, but using the transition measure R.

Having determined XT1
we restart the process from x′ = XT1

, so that Xt =
ζ(t − T1, x

′) for t ∈ [T1, T2), where the ‘gap’ T2 − T1 is determined by the same
recipe as used above to determine T1.

Continuing in this way we obtain an increasing sequence of random time Tn

and, for any n, Xt = ζ(t − Tn, XTn
) for t ∈ [Tn, Tn+1). It is assumed that

limn Tn = ∞ a.s., a condition that is generally easily checked in applications.
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The extended generator
The main general result of PDP theory is that the process just described is a

homogeneous strong Markov process whose extended generator is the operator
(A,D(A)) given by

Af(x) = X f(x) + λ(x)

∫

E

(f(y) − f(x))Q(dy, x), f ∈ D(A).

By definition, the extended generator has the property that for f ∈ D(A) the
process

Cf
t = f(Xt) − f(x) −

∫ t

0
Af(Xs)ds (2)

is a local martingale. The domain D(A) can be precisely characterized. Suffi-
cient conditions under which f ∈ D(A) are

The function t 7→ f(ζ(t, x)) is continuously differentiable (3)

Ex

∑

i

|f(XTi∧t) − f(XTi∧t−)| < ∞ for(t, x) ∈ R+ × E (4)

f(x) =

∫

E

f(y)R(dy, x), x ∈ Γ. (5)
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The key point here is that f ∈ D(A) only if the boundary condition (5) is
satisfied for all x ∈ Γ.

Stochastic integrals Let (Ft)t∈R+ be the natural filtration of a PDP, complete
with all null sets of F∞. For A ∈ B(E), define counting processes p, p∗ as follows

p(t, A) =
∞∑

j=1

1(t≥Tj)1(XTj
∈A),

p∗(t) =
∞∑

j=1

1(t≥Tj)1(XTj−∈Γ)

These count the number of times the process jumps into a given set A, and the
number of times the boundary is hit, respectively. p∗ is a predictable process
(i.e. measurable with respect to the predictable σ-field in Ω × R+). Hence the
process p̃ defined as follows is also predictable.

p̃(t, A) =

∫

(0,t]
Q(A,Xs)λ(Xs)ds +

∫

(0,t]
R(A,Xs−)dp∗(s).
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For each fixed A, p̃ is the predictable compensator of p, i.e. the process

q(t, A) = p(t, A) − p̃(t, A)

is a local martingale. In fact, these local martingales span the filtration Ft, in
that there is a 1-1 correspondence between Ft-local martingales and stochastic
integrals with respect to this family of fundamental local martingales. The
appropriate class of integrands is the set L1

loc(p) of functions g : E×R+×Ω → R
such that

g is a measurable function on the product space;

for each y ∈ E, the function (t, ω) 7→ g(y, t, ω) is predictable

for k = 1, 2 . . . we have E

[
k∑

j=1

|g(XTj
, Tj, ω)|

]

< ∞.
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For g ∈ L1
loc(p) and t > 0 we define the stochastic integral M g pathwise by

M g =

∫ t

0
g(y, t)q(dy, dt)

=

∫ t

0
g(y, t)p(dy, dt) −

∫ t

0
g(y, t)p̃(dy, dt)

=
∑

Ti≤t

g(XTi
, Ti) −

∫ t

0
Qg(Xs−, s)λ(Xs−)ds −

∫ t

0
Rg(Xs−, s)dp∗(s). (6)

We use the notation Qg(x, t, ω) =
∫

E g(y, t, ω)Q(dy, x) and similarly for Rg.

With this definition, M g is a local martingale for each g ∈ L1
loc(p).
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Proposition 1 For the PDP (Xt) with extended generator (A,D(A)) we have
(i) For f ∈ D(A) the local martingale Cf of (2) is given by Cf = MBf , where

Bf(y, t, ω) = f(y) − f(Xt−(ω)). (7)

(ii) (PDP ‘Ito formula’) If a function f : E → R satisfies conditions (3) and
(4) then

f(Xt) − f(X0) =

∫ t

0
Af(Xs)ds +

∫ t

0

∫

E

Bf(y,Xs−)q(dy, ds) +

∫ t

0
Cf(Xs−)dp∗s,

(8)
where Cf(x) = Rf(x) − f(x).
(iii) (Martingale representation) If M is an Ft-local martingale then M = M g

for some g ∈ L1
loc(p).

Note: The multiplicity of (Ft) is determined by the support of Q(∙, x) and
R(∙, x).
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The Doléans theorem for semimartingales (Section II.8 of Protter’s book)

We are given a filtered probability space (Ω,F , (Ft),P).

Theorem 1 Let M be an Ft-semimartingale with M0 = 0. Then there exists a
unique semimartingale Z, denoted Z = E(M), satisfying the equation

Zt = 1 +

∫ t

0
Zs−dMt. (9)

Z is given explicitly by

Zt = eMt− 1
2 [M,M ]ct

∏

0<s≤t

(1 + ΔMs)e
−ΔMs, (10)

where the infinite product converges.

In (10), [M,M ]ct denotes the quadratic variation of the continuous martingale
part M c of M . In this talk, M c = 0 and the product in (10) contains only a
finite number of terms.
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When M is a local martingale, Z is a positive local martingale and hence a
supermartingale, so that E[ZT ] ≤ 1. By standard arguments, it is a martingale
on any finite time interval [0, T ] provided E[ZT ] = 1. We may then define a
measure Q on FT by its Radon-Nikodym derivative

dQ
dP

= E(M)T . (11)

Theorem 2 Let M,N be local martingales. Define Z = E(M), assume E[ZT ] =
1 and define Q by (11). Let A be a predictable process and define Xt = Nt−At.
Then X is a Q-local martingale iff A is the predictable compensator of [M,N ].
Here, [M,N ] is the cross-variation process defined by

[M,N ] =
1

4
([M + N,M + N ] − [M − N,M − N ]).

Proof: It is standard that X is a Q-local martingale iff XZ is a P-local
martingale. By the Ito product formula

d(XZ) = X−dZ + Z−dN − Z−dA + d[Z,N ],

and from (9)
[Z,N ] = [Z ∙ M,N ] = Z ∙ [M,N ].
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Thus
d(XZ) = X−dZ + Z−dN + Z−(d[M,N ] − dA),

and XZ is a local martingale iff [M,N ] − A is a local martingale. �
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When is the Doléans exponential a martingale?

The major work here is by Jean Mémin around 1980. The multiplicative de-
composition of local martingales described below is covered in Protter’s book.

Mémin’s Additive Decomposition of Local Martingales

Let M(t) be a local martingale. We define an additive decomposition M(t) =
M1(t) + M2(t). Indeed

M1(t) = L(t) − L̃(t)

where

L(t) =
∑

0<s≤t

ΔMs1{|ΔMs|≥ 1
2}

and L̃(t) is the compensator of L(t). Then M2(t) = M(t) − M1(t)
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Proposition Let M(t) be a local martingale with the additive decomposition
above and such that M0 = 0. Then

1. E(M) has the decomposition

E(M) = E(M2)E(M̃1)

where

M̃1(t) = M1(t) −
∑

0<s≤t

ΔM1(s)ΔM2(s)

1 + ΔM2(s)
, t < ∞

2. E(M2)M̃1 is a local martingale.

3. If ΔM(s) > −1 then ΔM̃1(s) > −1 for all finite s.

Corollary

Let N be a local martingale such that ΔN(s) > −1 for all finite s, and such
that E(N(∞) is uniformly integrable. Let P′ be the probability defined as

dP′

dP
= E(N)(∞)
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Let N1 be a local martingale with locally integrable variations and denote
by Ñ1 the P-semimartingale defined as

Ñ1(t) = N1(t) −
∑

0<s≤t

ΔN1(s)ΔN(s)

1 + ΔN(s)
, t < ∞

then Ñ1 is a P′ local martingale, with locally integrable variations. Moreover,
the P′ predictable compensator of

∑
0<s≤t |ΔÑ1(s)| is equal to the P predictable

compensator of
∑

0<s≤t |ΔN1(s)|.

Theorem Let M(t) be a local martingale with additive decomposition as above.
If the predictable compensator of the process

Y (t) = [M c,M c]t +
∑

0<s≤t

|ΔM1(s)| +
∑

0<s≤t

(ΔM2(s))
2 (12)

is bounded, then E(M)(t) is uniformly integrable.
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Change of measure for PDPs
We start by calculating the Doléans exponential when M is a local martingale

in the natural filtration of a PDP.

Lemma 1 For a PDP (Xt), let M g be the stochastic integral defined by (6) for
some g ∈ L1

loc(p). Then

E(M g)t =






∏

Ti≤t
XTi−

/∈Γ

(1 + g(XTi
, Ti))





 (13)

×






∏

Ti≤t
XTi−

∈Γ

(1 + g(XTi
, Ti) − Rg(XTi−, Ti)







× exp

(

−
∫ t

0
Qg(Xs, s)λ(Xs)ds

)

.
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Proof: Writing M g = M , we have from (10)

E(M)t = exp

(

Mt −
∑

s≤t

ΔMs

)
∏

s≤t

(1 + ΔMs).

Now

Mt =
∑

Ti≤t
Ti /∈Γ

g(XTi
, Ti) +

∑

Ti≤t
Ti∈Γ

(g(XTi
, Ti) − Rg(XTi−, Ti)) −

∫ t

0
Qg(Xs, s)λ(Xs)ds,

so

Mt −
∑

s≤t

ΔMs = −
∫ t

0
Qg(Xs, s)λ(Xs)ds,

and

(1 + ΔMTi
) = 1 + g(XTi

) if XTi− /∈ Γ,

(1 + ΔMTi
) = 1 + g(XTi

, Ti) − Rg(XTi−, Ti) if XTi− ∈ Γ.

The result follows. �
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We now investigate what happens to the PDP when we replace the original
measure P by a new measure dQ = E(M g)dP.

• In general, Xt will no longer be a PDP.

• We identify the class of integrands g for which Xt is a Q-PDP and identify
the new local characteristics.

• Under any absolutely continuous change of measure the vector field X must
remain the same.

In the notation of Theorem 2, take M = M g and N = MBf , where Bf is defined
by (7). From the ‘Ito formula’ (8) we have

Nt = f(Xt) − f(X0) −
∫ t

0
X f(Xs)ds −

∫ t

0
(Qf(Xs) − f(Xs))λ(Xs)ds(14)

−
∫ t

0
(f(Xs−) − Rf(Xs−))dp∗s.
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From (6) and (14) we see that when t = Ti and XTi− /∈ Γ then ΔMt =
g(Xt, t) and ΔNt = Δft = f(Xt) − f(Xt−), while if XTi− /∈ Γ then ΔMt =
g(Xt, t)−Rg(Xt−, t) and ΔNt = Δft = f(Xt)−Rf(Xt−). Hence the predictable
compensator of [M,N ] is

At =

∫ t

0

∫

E

(f(y) − f(Xs−)g(y, t))Q(dy,Xs)λ(Xs)ds (15)

−
∫ t

0

∫

E

(g(y) − Rg(Xs−))(f(y) − Rf(Xs−))R(dy,Xs−)dp∗s.)

From Theorem 2, N − A is Q-local martingale. From (14) and (15), the inte-
grand of dp∗ is (in compressed notation)

−f + Rf + R((g − Rg)(f − Rf)) = −f + R((1 + g − Rg)f.
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Thus

Nt − At = f(Xt) − f(X0) −
∫ t

0
X f(Xs)ds (16)

−
∫ t

0

∫

E

(f(y) − f(Xs−))(1 + g(y, t))Q(dy,Xs)λ(Xs)ds

−
∫ t

0
(f − R(1 + g − Rg)f)(Xs−)dp∗s.

On the other hand Xt is a PDP under Q if and only if the last two terms above
are given by

−
∫ t

0
(f(y) − f(Xs−))Q̃(dy,Xs)λ̃(Xs)ds −

∫ t

0
(f(Xs−) − R̃f(Xs−))dp∗s. (17)

where (X , λ̃, Q̃, R̃) are the Q-local characteristics of the process. We therefore
have the following result.
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Theorem 3 PDPs with local characteristics (X , λ,Q) and (X , λ̃, Q̃, R̃) have
mutually absolutely continuous probability laws if and only if there is a strictly
positive function β : E → R+ and a measurable function γ : E × E → R+,
satisfying

∫
E γ(y, x)Q(dy, x) = 1 for all x, such that

λ̃(x) = β(x)λ(x),

Q̃(A, x) =

∫

A

γ(y, x)Q(dy, x),

R̃(A, x) =

∫

A

η(y, x)R(dy, x).

The Radon-Nikodym derivative is

dQ
dP

∣
∣
∣
∣
FT

=
∏

Ti≤T
XTi−

/∈Γ

γ(XTi
, XTi−)β(XTi−)

∏

Ti≤T
XTi−

∈Γ

η(XTi
, XTi−) (18)

× exp

(

−
∫ T

0

∫

E

γ(y,Xs)Q(dy,Xs)β(Xs)λ(Xs)ds

)

.
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Proof: (Outline) Comparing the expressions in (16) and (17) we see that for
Xt to be a PDP under Q with local characteristics (X , λ̃, Q̃, R̃), the integrand
g must be given in for Xt− ∈ E by

g(y, t, ω) = γ(y,Xt−(ω))β(Xt−(ω)) − 1

where γ, β have the stated properties.
Turning to the boundary term, the only way in which the dp∗ integrand in

(16) can be expressed in the form f(x) − R̃f(x) is to suppose that

g(y, t, ω) = ξ(y,Xt−(ω)) for Xt− ∈ Γ

for some function ξ : E × Γ → R such that
∫

E

η(y, x)R(dy, x) = 0 ∀x ∈ Γ.

Then taking η(y, x) = 1+ξ(y, x) we have
∫

Γ η(y, x)R(dy, x) ≡ 1 and η = dR̃/dR.
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Concluding Remarks

It seems that there is a case for including state-dependent jump measures ex-
plicitly in SDEs intended for applications in, specifically, financial modelling.

In that case there’s quite a lot to do.

Thanks to John Hosking, Sébastien Lleo, Bernt Øksendal
and John Schoenmakers.
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