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Background

Practitioners often perform sensitivity analysis of derivatives by
“bumping” /perturbating a variable, repricing the derivative and
taking the difference.

When applied to the “delta” of a path-dependent option, this
amounts adding a jump/shift of size € today to the current path w
and recomputing the price F; in the new path w + €l(; 7

Fe(w + €l 1)) — Fe(w)

€
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Dupire's functional calculus

Bruno Dupire (2009) formalized this notion and defines, for a
functional F : [0, T] x D([0, T],R) — R defined on cadlag paths,

F 1y 17) — F
V() = fig S Aen) = Rl

e—0 €

Dupire and argues that this is the correct hedge ratio for
path-dependent options: if the option price F is twice differentiable
in the functional sense and F, VF,V2F are continuous in
supremum norm, then

T
FT:E[FT]+/ VXFt.dSt
0
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Summary

Dupire’s assumptions apply to integral functionals

fo (t))dt but not to stochastic integrals or functionals
mvoIvmg quadratlc variation.
We show that these ideas can be in fact extended, in a
mathematically rigorous fashion, to a much larger class of
functionals including stochastic integrals.
We develop a non-anticipative pathwise calculus for functionals
defined on cadlag paths.
This leads to a non-anticipative calculus for path-dependent
functionals of a semimartingale, which is (in a precise sense) a
“non-anticipative” equivalent of the Malliavin calculus.
In particular we extend Dupire’s hedging/martingale representation
formula to all square-integrable martingales.
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Framework

o Consider a R%valued Ito process on (Q, B, B:, P):

X(¢) = /Ot,u(u)du + /Ota(u).qu

1 integrable, o square integrable ;-adapted processes.
@ Quadratic variation process
[X](t) = [, to.o(u)du = [5 A(u)du
o D([0, T],R9) space of cadlag functions.
o Fy = FX: natural filtration / history of X
o Co([0, T],R¥) space of continuous paths.
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Functional notation

For a path x € D([0, T],R9), denote by
o x(t) € R? the value of x at t
o xt =X [0,q] = (x(u),0 < u < t) € D([0, £], RY) the restriction
of x to [0, t].
We will also denote x;_ the function on [0, t] given by

xe—(u) =x(u) u<t  x_(t)=x(t-)

For a process X we shall similarly denote
e X(t) its value and
e X; = (X(u),0 <u<t)its path on [0, t].
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Path dependent functionals

In stochastic analysis, statistics of processes and mathematical
finance, one is interested in path-dependent functionals such as
o (weighted) averages along a path Y(t) = fot f(X(t))p(t)dt
@ Quadratic variation and p-variation:

t/n—1
k 1
p
(ORI Ix(4 )

e Exponential functionals: Y(t) = exp(X(t) — [X](t)/2 )
@ Functionals of quadratic variation: e.g. variance swaps and
volatility derivatives

t
(XI(t) — K)-+ /0 FX(O)AIX] (6 X(2). [X]:)



Outline

We define pathwise derivatives for functionals of the type

Y(t) = F:({X(v),0 < u<t},{A(u),0 < u<t}) = Fe(Xe, Ae)
where A = 0.0 and F; : D([0, t],R9) x D([0,t],S;) — R represents the
dependence on the path of X and its quadratic variation process.

Using this pathwise derivative, we derive a functional change of variable formula
which extends the Ito formula in two ways: it allows for path-dependence and
for dependence with respect to the quadratic variation of X.

This pathwise derivative admits a closure V x on the space of square integrable
stochastic integrals w.r.t. X, which is shown to be a stochastic derivative i.e. an
inverse of the lto stochastic integral.

We derive a (constructive) martingale representation formula and an integration
by parts formula for stochastic integrals.
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Outline

I: Pathwise calculus for non-anticipative functionals.
Il: An Ito formula for functionals of semimartingales.
I1l: Weak derivatives and relation with Malliavin calculus.

IV: Numerical computation of functional derivatives

V: Functional Kolmogorov equations. Pricing equations for
path-dependent options.
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Functional representation of non-anticipative processes

Functional representation of non-anticipative processes

A process Y adapted to F; may be represented as a family of
functionals

Y(t,.): Q= D([0, T],RY) — R

with the property that Y(t,.) only depends on the path stopped at
t: Y(t,w) = Y(t,w(.At) ) so

Wio,g = Wipo,g = Y(tw) = Y(t,w)
Denoting wt = wj[g,¢], We can thus represent Y as
Y(t,w) = Fi(ws)for some F; : D([0,t],RY) — R

which is F;-measurable.
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Functional representation of non-anticipative processes

Non-anticipative functionals on the space of cadlag
functions

This motivates the following definition:

Definition (Non-anticipative functional)

A non-anticipative functional on the (canonical) path space
Q = D([0, T],RY) is a family F = (F¢)¢ejo,7] Where

F:: D([0,t],RY) = R

is F¢-measurable.

F = (Ft)tepo, 7] naturally induces a functional on the vector bundle
Ute[O,T] D([O7 t]7Rd)-
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Functional representation of non-anticipative processes

Functional representation of predictable processes

An Fi-predictable process Y may be represented as a family of
functionals

Y(t,.): Q= D([0, T],RY) — R
with the property
Wio,e[ = W\/[O,t[ = Y(t,w) = Y(t,u)
We can thus represent Y as
Y(t,w) = Fe(we-—) for some F; : D([0, t],RY) — R

where we_(u) = w(u),u < t and we_(t) = w(t—).

So: an Fi-predictable Y can be represented as Y (t,w) = F(w;-)
for some non-anticipative functional F.

Ex: integral functionals Y (t,w) = [ g( (u)du
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Functional representation of non-anticipative processes

Functional representation of non-anticipative processes

The previous examples of processes have a non-anticipative
dependence in X and a “predictable” dependence on A since they
only depend on [X] = [; A(u)du.

We will thus consider processes which may be represented as

Y(t) = Fe({X(u),0 < u < t}, {A(1),0 < u < t}) = Fe(Xe, Ae)

where the functional F; : D([0, t], RY) x D([0,t],5]) = R
represents the dependence of Y(t) on the path of X and A = to.0
and is “predictable with respect to the 2nd variable™:

Vt, V(x,v) € D([0, t],Rd)xD([O, t], 5;), Fi(xt, vi) = Fe(xe, vee)

F = (Ft)te[o,7] may then be viewed as a functional on the vector
bundle T = ;0,77 D([0, t], RY) x D([0, t], SJ).



Functional representation of non-anticipative processes

Horizontal extension of a path

0.2 0.4 0.6 0.8 1 12
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Functional representation of non-anticipative processes

Horizontal extension of a path

Let x € D([0, T] x RY), x; € D([0, T] x RY) its restriction to [0, t].
For h > 0, the horizontal extension x; 5 € D([0, t + h], R9) of x; to
[0, t + h] is defined as

xe.n(u) = x(u) uel0,t]; xe p(u) = x(t) u €|t t+ hj
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Functional representation of non-anticipative processes

dx metric on T = J,¢(o 17 D([0, t],R?) x D([0,t], S])

Extends the supremum norm to paths of different length.
For T>t' =t+h>t>0, (x,v) € D([0,t],R?) x S;" and
(x',v') € D([0, t + h],RY) x S,

t+h
doo( (x,v), (X', V) ) = sup Pxp(u) — X' (u)]
u€el0,t+h]
+ sup |ven(u) = V(W) + h
u€l0,t+h]
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Functional representation of non-anticipative processes

Continuity for non-anticipative functionals

A non-anticipative functional F = (F).c[o,7] is said to be
continuous at fixed times if for all t € [0, T,
F:: D([0,t],RY) x S; - R

is continuous w.r.t. the supremum norm.

Definition (Left-continuous functionals)

Define (C?’o as the set of non-anticipative functionals
F = (F¢, t € [0, T[) which are continuous at fixed times and
Vte [0, T[, Ve>0,¥(x,v)e D(0,t,R?) x S,
In>0,Yhe[0,t], Y(x,v)eV(x,v)e D(0,t— h,R?) xS _p,
doo ((x, V), (X', V")) < = |Fe(x,v) — Fe_p(X', V)| < €
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Functional representation of non-anticipative processes

Boundedness-preserving functionals

We call a functional “boundedness preserving” if it is bounded on
each bounded set of paths:

Definition (Boundedness-preserving functionals)

Define B([0, T)) as the set of non-anticipative functionals F on
T([0, T]) such that for every compact subset K of R?, every
R>0and tg < T

EICK,R,to > 0; vt < to, V(Xa V) S D([Ov t]v K) X Sta

sup |v(s)| < R = [Fe(x,v)| < Ck,ryto
s€[0,t]
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Functional representation of non-anticipative processes

Measurability and continuity

A non-anticipative functional F = (F;) applied to X generates an
Fi—adapted process

Y(t) = Fe({X(v),0 < u <t} {A),0 <u<t}) = F(Xt, At)

Let (x,v) € D([0, T],R?) x D([0, T], S}). If F e CV°,
@ the path t — Fy(x¢—, vi_) is left-continuous.
o Y(t) = F«(Xt, At) defines an optional process.

e If A is continuous, Y (t) = Fi(X¢, At) is a predictable process.
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Horizontal derivative
Vertical derivative of a functional
Spaces of regular functionals

Pathwise derivatives of functionals

Examples
Obstructions to regularity
Non-uniqueness of functional representation

Horizontal derivative

Definition (Horizontal derivative)

We will say that the functional F = (F¢).ejo, 77 on T([0, T]) is
horizontally differentiable at (x, v) € D([0, t],RY) x S; if

D:F (x,v) = lim Feirn(Xe,hs veon) — Fe(xe, ve)

exists
h—0+ h

We will call (1) the horizontal derivative D:F of F at (x, v).

DF = (D+tF)¢c[o, 7] defines a non-anticipative functional.
If Fe(x,v) = f(t,x(t)) with f € CH1([0, T] x R?) then
DiF (x,v) = 0:f(t, x(t)).
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Pathwise derivatives of functionals

Examples
Obstructions t

Non-uniquenes

Vertical perturbation of a path

Figure: For e € RY, the vertical perturbation x¢ of x; is the cadlag path
obtained by shifting the endpoint:

x£(u) = x(u) for u < t and x£(t) = x(t) + e.
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Horizontal derivative

Vertical derivative of a functional

Spaces of regular functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Pathwise derivatives of functionals

Definition (Dupire 2009)

A non-anticipative functional F = (F¢).c[o, 7 is said to be
vertically differentiable at (x,v) € D([0, t]),RY) x D([0, t], S ) if
R?Y — R
e — Ft(Xte7 Vt)

is differentiable at 0. Its gradient at O is called the vertical
derivative of F; at (x,v)

ViF: (x,v) = (0iFt(x,v), i =1..d) where

Fe(xP¥, v) — F
8,-Ft(x, V) _ ATO t(Xt 7V)h t(Xa V)
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Horizontal derivative

Pathwise derivatives of functionals Vertical derivative of a functional
of

Non-uniqueness of functional representation

Vertical derivative of a non-anticipative functional

o V,F: (x,v).eis simply a directional (Gateaux) derivative in
the direction of the indicator function 14 e.

e Note that to compute VF; (x,v) we need to compute F
outside Cp: even if x € Co, /' ¢ Gp.

o V,F: (x,v) is 'local’ in the sense that it is computed for t
fixed and involves perturbating the endpoint of paths ending
at t.
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Horizontal derivative

Vertical derivative of a functional

Spaces of regular functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Pathwise derivatives of functionals

Spaces of differentiable functionals

Definition (Spaces of differentiable functionals)

For j, k > 1 define (Cjb’k([O, T]) as the set of functionals F € C°
which are differentiable j times horizontally and k times vertically
at all (x,v) € D([0,t],R9) x S;", t < T, with
@ horizontal derivatives D’F, m < j continuous on
D([0, T]) x S; for each t € [0, T
o left-continuous vertical derivatives: Vn < k, VI F € F°.
e D"F,V1F € B([0, T]).

We can have F € C}([0, T]) while F; not Fréchet differentiable
for any t € [0, T].
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. - X Horizontal derivative
Pathwise derivatives of functionals \/ert‘zu < fative

| deri ve of a functional

Spaces of regular functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Examples of regular functionals

Y = eXp(X — [X]/2) = F(X’A) where
Ft(Xt, Vt) = eX(t)féfot V(u)du

F e (Ct’oo with:

1 )
DtF(X, V) = —EV(t)Ft(X, V) viFt(Xt; Vt) = Ft(Xh Vt)

Rama Cont & David Fournié Functional Ito calculus



Horizontal

Vert of a functional

Spaces of r r functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Pathwise derivatives of functionals

Examples of regular functionals

Example (Cylindrical functionals)

For g € Go(RY),
Fe(xe, ve) = [x(t)—x(tn=)] Leze,  &(x(t1—), x(f2=).... x(tn—))

.. 1,2
is in C,
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Horizontal derivative

Vertical derivative of a functional

Spaces of regular functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Pathwise derivatives of functionals

Examples of regular functionals

Example (Integrals w.r.t quadratic variation)

For g € Go(RY), = [o g(X())d[X](t) = Fe(X¢, A¢) where

Fe(xt, ve) :/0 g(x(u))v(u)du

F e Cllj’oo, with:

DiF(xt, vi) = g(x(t))v(t) VI Fi(xe, vi) =0
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Horizontal derivative

Vertical derivative of a functional

Spaces of regular functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Pathwise derivatives of functionals

Obstructions to regularity

Example (Jump of x at the current time)

Fe(xt, vi) = x(t) — x(t—) has regular pathwise derivatives:
DtF(Xt, Vt) = 0 VXFt(Xta Vt) =1

But F ¢ F U FP.

| A

Example (Jump of x at a fixed time)

Fe(xt, vi) = Lesto(x(to) — x(to—))
F € F°° has horizontal and vertical derivatives at any order, but
VxFi(xe, v¢) = 1=y, fails to be left (or right) continuous.
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Pathwise derivatives of functionals Horizontal ) . )
of a functional
r functionals
Examples
Obstructions to regularity
Non-uniqueness of functional representation

Obstructions to regularity

Example (Maximum)
Fe(xt, vt) = sups<¢ x(s)
F € F*° but is not vertically differentiable on

{(xt, vt) € D([0, t],RY) x S¢,  x(t) = sup x(s)}.

s<t
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. - X Horizontal
Pathwise derivatives of functionals . )
a functional

functionals

ions to regularity
Non-uniqueness of functional representation

Non-uniqueness of functional representation

Take d = 1.
FO(xe, vt) = Ot v(u)du
F*(xe, ve) = (Iimn Zio |X(i§rnl) —X(%)F) 1, Y icean (X(GE) —x(F))2 <00
F2 = | L (P -Saxs)P | 1 1
(i) = | lim D7 Ix(55) = x(a) = S IAXE) | Lo Lnp<oe
s<t
VZ(X) J2(“X)
Then

FA(Xe, Ae) = FH(Xe, Ar) = FZ(Xe, Ar) = [X](2)

1,2
Yet FO e CL? but F1, F2 ¢ Fe®,



. - X Horizontal
Pathwise derivatives of functionals . )
a functional

functionals

S ions to regularity
Non-uniqueness of functional representation

Non-uniqueness of functional representation

F1, F? € CY! coincide on continuous paths

Vi< T, V(x,v) € G([0,t],RY) x D([0, 1], ),
Fl(x,v) = FZ(x,v)

then
P(Vt € [0, T], FY(Xt, As) = F?(Xe, Ar) ) =1

Yet, V4 F depends on the values of F computed at discontinuous
paths...
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Horizontal derivative

Vertical derivative of a functional

Spaces of regular functionals

Examples

Obstructions to regularity

Non-uniqueness of functional representation

Pathwise derivatives of functionals

Derivatives of functionals defined on continuous paths

If F*, F? € CY! coincide on continuous paths

Vi< T, Y(x,v)e G[0,t,R?) x D([0,t],ST),
Ftl(va):Fl?(va)

then their pathwise derivatives also coincide:

Vi< T, VY(x,v)e€ G([0,t],RY) x D([0, ], 5;),
VXFtl(x, v) = VXFE(X, v), DtFtl(x, v) = Dtth(x, v)
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A pathwise change of variable formula

Quadratic variation for cadlag paths

Follmer (1979): f € D([0, T],R) is said to have finite quadratic
variation along a subdivision 7, = (t§ < k) T) if the
measures:
k(n)—1
€= Y (F(thy) — (7))
i=0

where §; is the Dirac measure at t, converge vaguely to a Radon
measure £ on [0, T] such that

[F1(£) = £(10,8]) = [F1°(t) + D (Af(s))?
0<s<t

where [f]€ is the continuous part of [f]. [f] is called the quadratic
variation of f along the sequence ().
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A pathwise change of variable formula

Change of variable formula for cadlag paths

Let (x,v) € D([0, T] x R?) x D([0, T] x R™) where x has finite
quadratic variation along (7,) and

sup  [x(t) = x(t=)[ + [v(t) = v(t=)| = 0

te[0, T]—mn
Denote
k(n)—1
X(tir1=) 1 6,0 (8) + x(T)1ry(t)
i=0
k(n)—1
= > V() () V(Try(t), AT =t —t]

i=0
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A pathwise change of variable formula

A pathwise change of variable formula for functionals

Theorem (C. & Fournié (2009))
For any F € (Ct’2([0, T|), the Follmer integral, defined as

T k(n)—1
- nAx n n
/0 VaFelxe—, ve-)d"x = lim_ Z VP (xpn20, v ) (x(#41) — x(4))

exists and Fr(x7,vr) — Fo(xo, W) / D Fi(Xu—, vu—)du

-
1
—|—/ Etr (tV>2(Ft(XL,_,vu )d[x]<( / VxFe(xe—, vi—)d" x
0
+ Z [Fu(Xus Vi) — Fu(Xu—, vu—) — Vi Fu(Xu—, vu—)-Ax(u)]
u€lo,T]
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Functional Ito formula

Functional Ito formula

This pathwise formula implies a functional change of variable
formula for semimartingales:

Theorem (Functional Ito formula)
Let F € C.2([0, T[). Foranyte [0, T[,
t
Fe(Xe Ar) — Fo(Xo, Ao) = / DyF (X, Au)du +
0
t t 1
/ Vi Fu(Xu, Au).dX(u) + / St (*VaFu(Xu, Ad) d[X](u))  as.
0

0

In particular, Y (t) = F¢(X¢, A¢) is a semimartingale.
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Functional Ito formula

Functional Ito formula

o If Fe(Xs, Ar) = F(t, X(t)) where f € CH2([0, T] x RY) this
reduces to the standard Ito formula.

@ Y = F(X) depends on F and its derivatives only via their
values on continuous paths: Y can be reconstructed from the

second-order jet of F on
Te = Urep,r Co([0, ], RY) x D([0, T],S5) € T.
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Functional Ito formula

Sketch of proof

Consider first a cadlag piecewise constant process:
n
X(t) = Z Lt teia[(B) 0k ¢k Ft, — measurable
k=1

Each path of X is a sequence of horizontal and vertical moves:

Xepyy = (Ko )Ptk h = teg1 — ti

ka+1(ka+17Afk+1) - Ftk(th?Atk) =
Ftk+1(th+1’ Afk+1) - ka+1 (th+1v Atkyhk)—i_
Feoor(Xtii1s Areobe) = Froor (Xt b Aeoby )+ vertical move
Feoor(Xew her Ateb) — Feo (Xt s Aey) horizontal move
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Functional Ito formula

Sketch of proof

Horizontal step: fundamental theorem of calculus for
¢(h) = Ftk-i-h(ka,h’Afk,h)

Ftk+1 (thvhk’ Atlmhk) - Ftk(th7Atk)

— $(he) — $(0) = /t DX, At

frozen
—~ =
Vertical step: apply Ito formula to ¢(u) = Fy, (Xti,hk’ Atehy)
Freos Xers Aton) = Friy (Xeon Ane) = (X (tie1) — X)) — 4(0)
tey1

1
- VFe(Xe, Aty )-dX + §tr(V)2<Ft(Xt, At n)d[X])

ty
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Functional Ito formula

Sketch of proof

General case: approximate X by a sequence of simple predictable
processes ,X with ,X(0) = X(0):

T T
FT(,,XT)—FO(XO):/ DtF(,,Xt)dH—/ Vx F(nX¢).dX
0 0

+% /oTtr[tV)%F(nXt) A(t)] dt

The (Cllj’z assumption on F implies that all derivatives involved in
the expression are left continuous in dy, metric, which allows to
control their convergence as n — oo using dominated convergence
+ the dominated convergence theorem for stochastic integrals.
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Functional Ito formula

Definition (Vertical derivative of a process)

Define C2’2(X) the set of processes Y which admit a
e il
representation in C,*:

C,2(X) ={Y,3F e CL2([0, T]), Y(t) = Fe(Xe, Ar) as.}
If det(A) > 0 a.s. then for Y € C})’z(X), the predictable process:
VX Y(t) = VXFt(Xty At)

is uniquely defined up to an evanescent set, independently of the
choice of F € (Cll)’z. We call VxY the vertical derivative of Y with
respect to X.
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Functional Ito formula

Vertical derivative for Brownian functionals

In particular when X is a standard Brownian motion, A = /:

Definition

Let W be a standard d-dimensional Brownian motion. For any
Y € Ci’2(W) with representation Y (t) = Fi(Ws, t), the
predictable process

VwY(t) = ViF (W, t)

is uniquely defined up to an evanescent set, independently of the
choice of the representation F € (Cllf.
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Martingale representation formula

Martingale representation formula

Consider now the case where X(t) = fot o(t).dW(t) is a Brownian
martingale. Consider an Fr-measurable functional

H = H(X(t),t € [0, T]) = H(XT) with E[|H|?] < oo and define
the martingale Y(t) = E[H|F].

IfY € Cp?(X) then

Y(T) =E[Y(T)]+ J) VxY(t)dX(t)
= E[H] + [} VxY(t)o(t)dW/(t)

This is a non-anticipative version of Clark’s formula (under weaker
assumptions).
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Martingale representation formula

A hedging formula for path-dependent options

Consider now a (discounted) asset price process

S(t) = fota(t).dW(t) assumed to be a square-integrable
martingale under a pricing measure Q. Let

H = H(S(t),t € [0, T]) with E[|H|?] < oo be a path-dependent
payoff. The price at date t is then Y (t) = E[H|F;].

Theorem (Hedging formula)

IfY € C2(S) then

H =EYH]+ [ VsY(t)dS(t) Q- a.s.

The hedging strategy for H is given by the vertical derivative of
the option price with respect to S:
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Martingale representation formula

A hedging formula for path-dependent options

So the hedging strategy for H may be computed pathwise as

h(w)) — t(w
o(6) = Tx e o) = fimg YEREE) - Y(0Xe)

where
e Y(t, X¢(w)) is the option price at date t in the scenario w.
o Y(t,X!(w)) is the option price at date t in the scenario
obtained from w by moving up the current price ( “bumping”
the price) by h.
So, the usual “bump and recompute” sensitivity actually gives..
the hedge ratio!
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Martingale representation formula

Pathwise computation of hedge ratios

Consider for example the case where X is a (component of a )
multivariate diffusion. Then we can use a numerical scheme (ex:
Euler scheme) to simulate X.
Let ,X be the solution of a n-step Euler scheme and \A’,, a Monte
Carlo estimator of Y obtained using ,X.

o Compute the Monte Carlo estimator Y,(t, nX/(w))

@ Bump the endpoint by h.

o Recompute the Monte Carlo estimator Y, (t, ,X/'(w)) (with

the same simulated paths)
@ Approximate the hedging strategy by

— Y h(w —A,, . n thw
e ) = Ttk ) = Falts XU ()
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Martingale representation formula

Numerical simulation of hedge ratios

— Y h(w —A,, on thw
ot ) Yokt X)) Tt X0()

For a general Ci’z(S) path-dependent claim, with a few regularity
assumptions

V1/2>e> 0,02 ¢|pn(t) — 4(t) = 0  P—as.
This rate is attained for h = cn~1/4+¢/2
By exploiting the structure further (Asian options, lookback
options,...) one can greatly improve this rate.
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An integration by parts formula
Martingale Sobolev space

Weak derivative

Relation with Malliavin derivative

Weak derivative and integration by parts formula

A non-anticipative integration by parts formula

T2(X) = { [y ¢dX, ¢ Fe—adapted, E[[; |6(t)[2d[X](t)] < oo}
Theorem

Let Y € C;?(X) be a (P, (F:))-martingale with Y (0) = 0 and ¢
an F—adapted process with E[fOT lo()|12d[X](t)] < oo. Then

E <Y(T) /OT¢dX> —E (/OTVXY.¢d[X]>

This allows to extend the functional Ito formula to the closure of
C;Q(X) N Z?(X) wrt to the norm

-
ElY(T)? = E[/o IV Y (£)[2dX](2) ]
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An integration by parts formula
Martingale Sobolev space

Weak derivative

Relation with Malliavin derivative

Weak derivative and integration by parts formula

Martingale Sobolev space

Definition (Martingale Sobolev space)

Define W12(X) as the closure in Z2(X) of
D(X) = C;%(X) N T3(X).

{VxY,Y € D(X)} is dense in £L?(X) and

. T
1,2 _ 2 ool.
WE2(X) {/0 6dX, E /0 16]2d[X] < oo}

So Wh2(X)=all square-integrable integrals with respect to X.
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An integration by parts formula
Martingale Sobolev space
Weak derivative

s . " Relation with Malliavin derivative
Weak derivative and integration by parts formula : !

Weak derivative

Theorem (Weak derivative on W12(X))

The vertical derivative Vx : D(X) + L£2(X) is closable on
WY2(X). Its closure defines a bijective isometry

Vx: WY(X) — L3X)
T
/ p.dX — ¢
0

characterized by the following integration by parts formula: for
Y € WH2(X), VxY is the unique element of L2(X) such that

i _
VZ e D(X), E[Y(T)Z(T)=E U Vx Y(t)VxZ(t)d[X](t)] .
0 i



An integration by parts formula
Martingale Sobolev space
Weak deriva

A . " Relation with Malliavin derivative
Weak derivative and integration by parts formula Slation wWith ialiavin Gervative

Computation of the weak derivative

For D(X) = C;’z(X) N Z?(X), the weak derivative may be
computed pathwise: for Y € WI’Z(X), VxY =Ilim,VxY" where
Y™ € D(X) is an approximating sequence with

E|lY"(T) = Y(T)|?"= 0
An example of such an approximation is given by a Monte Carlo
estimator Y (computed for example from an Euler scheme for X).

TV (£ Xe(w)) = fim fim (X)) = ¥7(t Xu(w))

n—00 h—0 h

In practice one may compute instead

- —Q A A M A “ L. "
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gration by parts formula
Sobolev space
erivative

Weak derivative and integration by parts formula Rellitiam e MEelllevin Clriveifie

Relation with Malliavin derivative

Consider the case where X = W. Then for Y € W12(W)
T
Y(T)=E[Y(T)] +/ VwY(t)dW(t)
0

If H= Y(T) is Malliavin-differentiable e.g. H= Y(T) € D!
then the Clark-Haussmann-Ocone formula implies

-
Y(T)=E[Y(T)] —i—/o PE[DH|F:]dW/(t)

where DD is the Malliavin derivative.
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gration by parts formula
> Sobolev space
ative
A . " Relati ith Malliavi ivati
Weak derivative and integration by parts formula e T ElliEwin Gl

Relation with Malliavin derivative

Theorem (Intertwining formula)

Let Y be a (P,(Ft)ieo,7)) martingale. If Y € C12(W) and
Y(T) = H € D2 then

E[DH|F] = (Vi Y)(t)  dt x dP — a.e.

i.e. the conditional expectation operator intertwines Vy, and ID:

E[D:H|Fe] = Vw (E[H|F])  dt x dP — ae.
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on by parts formula

A . " h Malliavi ivati
Weak derivative and integration by parts formula €lation w ElliEwin Gl

Relation with Malliavin derivative

The following diagram is commutative, in the sense of dt x dP
almost everywhere equality:

wh2(w) Y £2w)

TELIFD eepo, TELIFD e, 7

D12 B 120, 71 x Q)

Note however that Vx may be constructed for any Ito process X
and its construction does not involve Gaussian properties of X.
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Functional c
Example: a

Functional equations for martingales

Functional equation for martingales

Consider now a semimartingale X whose characteristics are
left-continuous functionals:

dX (t) = be(Xe, Ae)dt + o(Xe, Ar)dW (1)

where b, o are non-anticipative functionals on © with values in
R9-valued (resp. RY*") whose coordinates are in F$°.

Consider the topological support of the law of (X, A) in
(Go([0, TI,RY) x S, ||-[l0):

supp(X, A) = {(x, v), any neighborhood V of (x, v),P((X,A) € V) >0
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

A functional Kolmogorov equation for martingales

Theorem

Let F € C;”. Then Y(t) = Ft(Xe, Ar) is a local martingale if and
only if F satisfies

DtF(Xt, Vt) -+ bt(Xta Vt)vXFt(Xt, Vt)

1
+ St VEF (xe, ve)ortou(xe, ve)] = O,

for (x, v) €supp(X, A).

We call such functionals X —harmonic functionals.
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

Structure equation for Brownian martingales

In particular when X = W is a d-dimensional Wiener process, we
obtain a characterization of ‘regular’ Brownian local martingales:

Theorem

Let F € (Clb’z. Then Y(t) = Ft(W;) is a local martingale on [0, T]
if and only if

vt €0, T], (x,v) € Go([O, T],Rd),
DeF(xe) + 5 tr (V2F(x) ) =0.
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

Theorem (Uniqueness of solutions)

Let h be a continuous functional on (Co([0, T]) X ST, ||-||ec)- Any
solution F € (Ctl)’2 of the functional equation (1), verifying
V(x,v) € G([0, T]) x ST,

DtF(Xt, Vt)+ bt(Xt, Vt)VXFt(Xt, Vt)
+ %tr[VzF(xt, ve)ottor(xe, ve)] =0
Fr(x,v) = h(x,v), E[SUPte[o,T] |Fe(Xe, At)]] < o0

is uniquely defined on the topological support supp(X,A) of
(X, A): if FL,F?2 € C;%([0, T]) are two solutions then

V(Xa V) = Supp(XvA)7 Vt e [O) T]7 Ftl(xt7 Vt) = Ft2(Xt7 Vt)'
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

A universal pricing equation

Theorem (Pricing equation for path-dependent options)

Let 3F € C;?, Fe(X, Ar) = E[H|F:] then F is the unique
solution of the pricing equation

D F(xt, ve) + be(xe, ve) Vi F(xe, ve)
1
+§tr[v)2<F(Xt, Vt)O'ttO't(Xt, Vt)] = 0,

for (x, v) €supp(X, A).

This equations implies all known PDEs for path-dependent options:
barrier, Asian, lookback,...but also leads to new pricing equations
for other examples.
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Functional ch ization of martingales
Example: a weig 1 variance swap

Functional equations for martingales

A diffusion example

Consider a scalar diffusion
dX(t) = b(t, X(t))dt + o(t, X(t))dW(t) X(0) = xo

defined as the solution P*® of the martingale problem on
D([0, T], R¥) for

Lf = %gz(t,x)aff(t,x) + b(t, x)0xf(t, x)

where b and ¢ > a > 0 are continuous and bounded functions.
By the Stroock-Varadhan support theorem, the topological support
of (X, A) under P* is

{6 (0 (£ x(E))eepo, 1) 1x € Go(RY, [0, T]), x(0) = xo}.
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

Weighted variance swap

A weighted variance swap with weight function
g € Cp([0, T] x RY), we are interested in computing

)
Y(t) = £ /0 g(t, X(£)d[X](1) 7]

If Y = F(X, A) with F € Cp*([0, T]) then F is X-harmonic and
solves the functional Kolmogorov equation.

Taking conditional expectations and using the Markov property of
X:

Fi(xt, vt) = /0 g(u,x(u))v(u)du + f(t,x(t))
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

An example

t
Fi(xt, vt) = / g(u,x(u))v(u)du + f(t,x(t))
0
solves the functional Kolmogorov eq. iff f solves
1
EUZ(t,X)a)Z(f(t,X) + b(t, x)Oxf(t,x) + 0:F(t, x) = —g(t,x)o?(t, x)
with terminal condition f(T,x)=0

so that Y( T) = FT(XT,AT).
On the other hand, the (unique) C? solution of this PDE defines
a unique ((311)’2([0, T]) functional on supp(X,A).

Rama Cont & David Fournié Functional Ito calculus



Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

Weighted variance swap

Applying now the Ito formula to f(t, X(t)) we obtain that the
hedging strategy is given by

8(0) = 9 (t,%)

where f solves the PDE with source term:

%02(t,x)8)2(f(t,x) + b(t, x)0xf(t, x) + 0:f(t,x) = —g(t, x)o?(t, x)

with terminal condition f(T,x)=0
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales

Extensions and applications

@ The result can be extended to discontinuous functionals of
cadlag processes i.e. Y and X can both have jumps.

@ The result can be localized using stopping times: important
for applying to functionals involving stopped processes/ exit
times.

@ Pathwise maximum principle for non-Markovian control
problems.

@ Infinite-dimensional extensions.

@ O — I tradeoff for path-dependent derivatives.
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Functional characterization of martingales
Example: a weighted variance swap

Functional equations for martingales
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