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Term structure density approach

In 1996 Flesaker and Hughston made the observation that for a positive nominal
interest-rate system, the price {PtT}0≤t≤T of a T -maturity discount bond admits
the rational representation

PtT =

∫ ∞
T (−∂uP0u)Mtu du

∫ ∞
t (−∂uP0u)Mtu du

, (1)

where {Mtu}0≤t≤u is a family of positive unit-initialised martingales.

To model the interest rate system we thus need to specify the initial term
structure together with a family of positive martingales.

The expression appearing in the integrand of (1), namely,

ρ0(T ) ≡ −∂TP0T , (2)

defines a probability density function over R+ associated with an abstract
random variable Z associated with the bond maturity.

More generally, let us switch to the Musiela parameterisation and introduce the
tenor variable z = T − t.
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Then the term-structure density process is defined according to the prescription

ρt(z) = −∂zPt,t+z. (3)

Put the matter differently, the term-structure density approach is based on the
observation that there exists an abstract positive random variable Z whose
conditional density process is given by (3).

The bond price can then be expressed in the form

PtT =
E

ρ
t [1{Z > T}]

E
ρ
t [1{Z > t}] , (4)

where E
ρ
t [−] denotes expectation with respect to the conditional density (3).

Suppose that we assume that the market filtration {Ft} is generated by a family
of P-Brownian motions {Wt}.

Then the arbitrage-free dynamical equation satisfied by the term-structure
density process is given by the so-called Brody-Hughston stochastic partial
differential equation:

dρt(z) =
(

rtρt(z) + ∂xρt(z)
)

dt + ρt(z)(νt(z) − ν̄t)(dWt − ν̄tdt), (5)
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where rt = ρt(0) is the short rate, and ν̄t = E
ρ
t [νt(z)], or, equivalently,

ν̄t =

∫ ∞

0

ρt(z)νt(z)dz. (6)

The volatility structure is thus specified exogenously via {νt(z)}, whereas the
initial yield curve can be calibrated by the specification of ρ0(z) = −∂zP0z.

The market risk premium is given by λt = −ν̄t, thus making

W ∗
t = Wt −

∫ t

0

ν̄sds (7)

a Q-Brownian motion.

Writing VtT = νt(T − t) to convert back to the maturity variable, we find that
the bond price admits the representation

PtT =

∫ ∞
T ρ0(u) exp

(

∫ t

s=0 VsudWs − 1
2

∫ t

s=0 V 2
suds

)

du

∫ ∞
t ρ0(u) exp

(

∫ t

s=0 VsudWs − 1
2

∫ t

s=0 V 2
suds

)

du
. (8)

One of the advantages of the term-structure density approach over the more
traditional HJM or market approaches is that the positivity of nominal interest
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rate, or equivalently the arbitrage freeness, is automatically ensured.

On the other hand, for interest rate positivity the HJM forward rate volatility
process {σtT} has to be of the following form:

σtT = ftT

(

VtT − E
ρ
t [VtZ1{Z > T}]
E

ρ
t [1{Z > T}]

)

. (9)

In other words, in the HJM or market models, after having chosen {VtT} freely,
one has to work out the term structure density process first in order to deduce
the arbitrage-free form of the forward-rate volatility via (9).

Another advantage of the term-structure density approach has been pointed out
more recently by Filipović et al. (2009).

Filipović et al. showed that it is “less delicate” to add jumps to the
Brody-Hughston equation (5) than to the familiar HJM framework in the
Musiela representation.

In this spirit we shall consider a range of geometric Lévy martingales {Mtu} in
the rational representation (1).
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Geometric Lévy martingales

Our goal now is to construct a class of interest rate models based on various
Lévy processes.

Let {Lt}t≥0 be a Lévy process with L0 = 0.

For a suitable function suitable φ : R+ → R we define a martingale family
{Mtx}0≤t≤x by setting

Mtx =
eφ(x)Lt

E[eφ(x)Lt]
. (10)

Note that {Mtx} satisfies Mtx > 0 and M0x = 1.

Then by taking various choices for the underlying Lévy process we are able to
generate a variety of interest rate models, each with some functional freedom.
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Geometric Brownian motion family

For a standard Brownian motion {Bt}t≥0, we obtain a bond price of the form

PtT =

∫ ∞
T ρ(x)eφ(x)Bt−1

2φ(x)2tdx
∫ ∞

t ρ(x)eφ(x)Bt−1
2φ(x)2tdx

, (11)

and a corresponding short rate of the form

rt =
ρ(t)eφ(t)Bt−1

2φ(t)2tdx
∫ ∞

t ρ(x)eφ(x)Bt−1
2φ(x)2tdx

. (12)

Here ρ(t) denotes the initial term structure density

ρ(t) = −∂tP0t. (13)

Using Ito’s lemma we deduce the dynamics of the bond price system is given by

dPtT = (rtPtT + Φtt(Φtt − ΦtT ))dt + (ΦtT − Φtt)dBt, (14)

where

ΦtT =

∫ ∞
T φ(x)ρ(x)eφ(x)Bt−1

2φ(x)2tdx
∫ ∞

T ρ(x)eφ(x)Bt−1
2φ(x)2tdx

, (15)
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and

Φtt =

∫ ∞
t φ(x)ρ(x)eφ(x)Bt−1

2φ(x)2tdx
∫ ∞

t ρ(x)eφ(x)Bt−1
2φ(x)2tdx

. (16)

Positive risk premium implies that |φ(x)| is decreasing in x.

The price today of a call option expiring at time t with strike price K, on a
discount bond maturing at time T is given by

C0t = EQ[P0t(PtT − K)+]. (17)

The option price in the geometric Brownian motion example turns out to be

C0t =

∫ ∞

T

ρ(x) N

(

± ξ∗√
t
∓ φ(x)

√
t

)

dx

−K

∫ ∞

t

ρ(x) N

(

± ξ∗√
t
∓ φ(x)

√
t

)

dx, (18)

where ξ∗ is a critical value on the boundary of positive payoffs.

Here the (±,∓) signs corresponds to the combination (+,−) if φ(x) is
increasing in x, and (−, +) if φ(x) is decreasing in x.
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Geometric Brownian motion family: bond price

Figure 1: Simulation of the bond price in a term-structure density model with a parametric martingale family based on

a geometric Brownian motion. The parameters are ρ(x) = e−0.02x, φ(x) = e−0.025x.
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Geometric Brownian motion family: short rate

Figure 2: Simulation of the short rate in a term-structure density model with a parametric martingale family based on a

geometric Brownian motion. The parameters are ρ(x) = e−0.02x, φ(x) = e−0.025x.
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Geometric Brownian motion family: option price
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Figure 3: Option price as a function of P0T and option maturity 0 ≤ t ≤ T , where the bond maturity is T = 1.
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Geometric gamma family

Let {γt}t≥0 be a gamma process whose increments γt − γs, for 0 ≤ s ≤ t < ∞,
have a probability density f(x) such that

f(x) = gγ(x; (t − s)m, κ) =
xmt−1e−x/κ

Γ(mt)κmt
. (19)

Here, m is the rate parameter and κ is the scale parameter of {γt}t≥0.

We are able to show that the bond price is of the form

PtT =

∫ ∞
T ρ(x)(1 − φ(x)κ)−mteφ(x)γtdx

∫ ∞
t ρ(x)(1 − φ(x)κ)−mteφ(x)γtdx

, (20)

and that the associated short rate is given by

rt =
ρ(t)(1 − φ(t)κ)−mteφ(t)γtdx

∫ ∞
t ρ(x)(1 − φ(x)κ)−mteφ(x)γtdx

. (21)

For increasing φ(x) we deduce that the required option price in the example of
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the geometric gamma process is of the following form:

C0t =

∫ ∞

T

ρ(x)Γ

(

mt, γ∗
(

1

κ
− φ(x)

))

dx

−K

∫ ∞

t

ρ(x)Γ

(

mt, γ∗
(

1

κ
− φ(x)

))

dx, (22)

where γ∗ is a critical value on the boundary of positive payoffs.

Here

Γ(a, x) =

∫ ∞

x

ta−1e−t

Γ(a)
dt (23)

is the “upper” incomplete gamma function.
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Geometric gamma process family: bond price

Figure 4: Simulation of the bond price in a term-structure density model with a parametric martingale family based on

a geometric gamma martingale. The parameters are ρ(x) = e−0.02x, φ(x) = e−0.025x, m = 1, κ = 0.5.
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Geometric gamma process family: short rate

Figure 5: Simulation of the short rate in a term-structure density model with a parametric martingale family based on a

geometric gamma martingale. The parameters are ρ(x) = e−0.02x, φ(x) = e−0.025x, m = 1, κ = 0.5.
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Geometric variance-gamma family

Let {Vt}t≥0 be a variance-gamma process.

The increments Vt − Vs of {Vt} thus have the same distribution as a Brownian
motion with volatility parameter σ and drift µ, time-changed by a gamma
subordinator, whose increments have distribution g(x) such that

g(x) = gγ(x; (t − s)/ν, ν) (24)

for 0 ≤ s ≤ t < ∞.

The parameters µ, σ and ν control the properties of the variance-gamma
distribution.

We are able to show that bond price is of the form

PtT =

∫ ∞
T ρ(x)(1 − νµφ(x) − 1

2νσ2φ(x)2)−
t
νeφ(x)Vtdx

∫ ∞
t ρ(x)(1 − νµφ(x) − 1

2
νσ2φ(x)2)−

t
νeφ(x)Vtdx

, (25)

and that the associated short rate is given by

rt =
ρ(t)(1 − νµφ(t) − 1

2νσ2φ(t)2)−
t
νeφ(t)Vt

∫ ∞
T ρ(x)(1 − νµφ(x) − 1

2
νσ2φ(x)2)−

t
νeφ(x)Vtdx

. (26)
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Using a methodology similar to that of Madan et al. [1998], we derive the
option price in the example of the geometric variance-gamma process.

We first condition on the gamma time-change and numerically calculate ξ∗,
which is a critical value of the Brownian motion on the boundary of positive
payoffs, and then we integrate over the uncertainty of the gamma time-change.

The required option price is of the form

C0t =

∫ ∞

T

ρ(x)Ψ

(

±ξ∗Φ(x),∓σφ(x)

Φ(x)
,
t

ν

)

dx

−K

∫ ∞

t

ρ(x)Ψ

(

±ξ∗Φ(x),∓σφ(x)

Φ(x)
,
t

ν

)

dx. (27)

Here

Φ(x) =

√

1 − νµφ(x) − 1
2νσ2φ(x)2

ν
, (28)

and

Ψ(a, b, c) =

∫ ∞

0

N
(

a√
u

+ b
√

u

)

uc−1e−u

Γ(c)
du. (29)
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Geometric variance-gamma process family: bond price

Figure 6: Simulation of the bond price based on a geometric variance-gamma martingale. The parameters are ρ(x) =
e−0.02x, φ(x) = e−0.025x, µ = 0.2, σ = 0.2 ν = 0.1.
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Geometric variance-gamma process family: short rate

Figure 7: Simulation of the short rate based on a geometric variance-gamma martingale. The parameters are ρ(x) =
e−0.02x, φ(x) = e−0.025x, µ = 0.2, σ = 0.2 ν = 0.1.
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Geometric variance-gamma process family: option price
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Figure 8: Option price as a function of P0T and option maturity 0 ≤ t ≤ T , where the bond maturity is T = 1.
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Hedging strategy—option delta

How does one determine the sensitivity of the option price C0t on the initial
price P0T of the underlying?

Recall that the initial bond price is given by

P0T =

∫ ∞

T

ρ(x)dx. (30)

In the case of interest-rate term structure, the initial price P0T of the bond is a
functional of the term structure density ρ(x).

Likewise, the option price C0t is a functional of ρ(x).

Therefore, to determine the option sensitivity, we are required to employ the
method of functional derivative.

This is because there are infinitely many ways of perturbing

ρ(x) → ρ(x) + ǫη(x) (31)

to obtain the perturbation

P0T → P0T + δP0T . (32)
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Interest Rate Modelling - 23 - Toronto, 24 May 2010

We thus proceed as follows.

Given the call price C0t[ρ] as a functional of ρ(x) we consider the functional
derivative

δC0t

δρ
= lim

ε→∞
1

ε
(C0t[ρ + εη] − C0t[ρ]) , (33)

where the perturbation η(x) has to satisfy the condition
∫ ∞

0

η(x)dx = 0 (34)

so that ρ + εη is a density.

Recall that the option price is given by

C0t = EQ

[

P0t

(

∫ ∞
T ρ(x)Mtxdx

∫ ∞
t ρ(x)Mtxdx

− K

)+
]

. (35)

Performing the functional differentiation, and letting Θ(·) denotes the Heaviside
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function, we deduce that
δC0t

δρ
= E

[

Θ

(
∫ ∞

T

ρ(x)Mtxdx − K

∫ ∞

t

ρ(x)Mtxdx

)

×
(

∫ ∞

T

η(x)Mtxdx − K

∫ ∞

t

η(x)Mtxdx

)]

. (36)

How do we choose the perturbation η(x)?

In the case of a single factor model, it suffices to consider a single perturbation.

To this end, we take the perturbation to be a constant shift

R0T → R0T + ε (37)

of the initial yield curve R0T .

Under this perturbation, we have

ρ(x) → ρ(x) + ε(P0x − xρ(x)). (38)

In other words, the perturbation that results in a constant shift of the initial
yield curve is given by

η(x) = P0x + x
dP0x

dx
. (39)
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Note that the functional derivative of the initial bond price under this
perturbation is given by

δP0T

δρ
= −TP0T . (40)

Hence, by use of the chain rule we have

δC0t

δP0T
=

δρ

δP0T

δC0t

δρ
= − 1

TP0T

δC0t

δρ
. (41)

Putting these together, and after a short calculation we find that

∆ =

∫ ∞

T

(xρ(x) − P0x)

TP0T
mt(x)dx − K

∫ ∞

t

(xρ(x) − P0x)

TP0T
mt(x)dx, (42)

where

mt(x) = E

[

Θ

(
∫ ∞

T

ρ(x)Mtxdx − K

∫ ∞

t

ρ(x)Mtxdx

)

Mtx

]

. (43)

In this way we are able to compute the option delta for a range of Lévy
martingales {Mtx}.
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Geometric Brownian motion family: option delta
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Geometric variance-gamma process family: option delta
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