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Term structure density approach

In 1996 Flesaker and Hughston made the observation that for a positive nominal
interest-rate system, the price { Pir}o<i<7 of a T-maturity discount bond admits
the rational representation

fT @ P()u Mtu du
ft ( (9 P0u>Mtud’U,

where { M}, }o<t<, is a family of positive unit-initialised martingales.

Py = (1)

To model the interest rate system we thus need to specify the initial term
structure together with a family of positive martingales.

The expression appearing in the integrand of (1), namely,

p()(T) = —6TP0T, (2)

defines a probability density function over R, associated with an abstract
random variable Z associated with the bond maturity.

More generally, let us switch to the Musiela parameterisation and introduce the
tenor variable z =T —¢.

Rational Term Structure Models with Geometric Lévy Martingales (© DC Brody 2010



Interest Rate Modelling -4 - Toronto, 24 May 2010

Then the term-structure density process is defined according to the prescription

pi(z) = —0.Pyy.. (3)

Put the matter differently, the term-structure density approach is based on the
observation that there exists an abstract positive random variable Z whose
conditional density process is given by (3).

The bond price can then be expressed in the form
_ E[1{Z > T}] (4)
E/[1{Z > t}]|’

where E/[—] denotes expectation with respect to the conditional density (3).

Py

Suppose that we assume that the market filtration {F;} is generated by a family
of P-Brownian motions {W;}.

Then the arbitrage-free dynamical equation satisfied by the term-structure
density process is given by the so-called Brody-Hughston stochastic partial
differential equation:

dpi(2) = (repi(2) + Oupe(2))dt + pi(2) (i(2) — 0) (AW, — ), (5)
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where r; = p;(0) is the short rate, and 7, = E/[14(2)], or, equivalently,

Up = /OOO pi(2)ve(2)dz. (6)

The volatility structure is thus specified exogenously via {14(z)}, whereas the
initial yield curve can be calibrated by the specification of py(z) = —0.F..

The market risk premium is given by \; = —1, thus making

t
W — W, — / Dds (7)
0
a Q-Brownian motion.

Writing Vir = 14(T — t) to convert back to the maturity variable, we find that
the bond price admits the representation

S polu) exp (f;o VeudW, — L [* Vjﬂs) du
ftoo pO(“) eXp (fstzo Ve dWy — 5 f V2 ds>

One of the advantages of the term-structure density approach over the more
traditional HJM or market approaches is that the positivity of nominal interest

(8)

Pir =
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rate, or equivalently the arbitrage freeness, is automatically ensured.

On the other hand, for interest rate positivity the HJM forward rate volatility
process {7} has to be of the following form:

E[1{Z >T} )
In other words, in the HJM or market models, after having chosen {V,} freely,

one has to work out the term structure density process first in order to deduce
the arbitrage-free form of the forward-rate volatility via (9).

o = Jir (VtT —

Another advantage of the term-structure density approach has been pointed out
more recently by Filipovi¢ et al. (2009).

Filipovic et al. showed that it is “less delicate” to add jumps to the
Brody-Hughston equation (5) than to the familiar HIM framework in the
Musiela representation.

In this spirit we shall consider a range of geometric Lévy martingales {M;,} in
the rational representation (1).
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Geometric Lévy martingales

Our goal now is to construct a class of interest rate models based on various
Lévy processes.

Let {L;}:>0 be a Lévy process with Ly = 0.

For a suitable function suitable ¢ : R, — R we define a martingale family
{Mtx}OSth by setting
o)Ly
M = prom (10)

Note that {M;,} satisfies M;, > 0 and M, = 1.

Then by taking various choices for the underlying Lévy process we are able to
generate a variety of interest rate models, each with some functional freedom.
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Geometric Brownian motion family
For a standard Brownian motion {B;};>o, we obtain a bond price of the form
py = Jr ple (11)
[ p(z)e? @) Br30(0)% g
and a corresponding short rate of the form
p(1)e?OB=3(0% g
[ p(x)eqﬁ(x)Bt—%qﬁ(x)?tdw'

(12)

Ty =

Here p(t) denotes the initial term structure density

p(t) = —0; Py (13)
Using Ito’s lemma we deduce the dynamics of the bond price system is given by
dPtT = (’rtPtT —+ (I)tt(q)tt — q)tT)>dt —+ (cPtT — (I)tt>dBt7 (14)

where

Jr~ dla)p(a)e?t B2
Oy = =L

15
[2 plx)e?)BrgolePtqy (1%)
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and

S ¢l pla)e? @ Bmadle ity

Oy = 16
T e By o)
Positive risk premium implies that |¢(z)] is decreasing in x.
The price today of a call option expiring at time ¢ with strike price K, on a
discount bond maturing at time 1" is given by
Cor = E[Py(Por — K)T]. (17)

The option price in the geometric Brownian motion example turns out to be

cu- [ <x>N( £ o)V do
—K/ ( 3 T ¢(x )f) (18)

where £* is a critical value on the boundary of p05|t|ve payoffs.

Here the (4, ) signs corresponds to the combination (+, —) if ¢(z) is
increasing in x, and (—, +) if ¢(x) is decreasing in x.
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Geometric Brownian motion family: bond price
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Figure 1: Simulation of the bond price in a term-structure density model with a parametric martingale family based on
a geometric Brownian motion. The parameters are p(z) = e V0% ¢(x) = 700257,
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Geometric Brownian motion family: short rate
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Figure 2: Simulation of the short rate in a term-structure density model with a parametric martingale family based on a
geometric Brownian motion. The parameters are p(x) = e 002 ¢(z) = 700257,
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Geometric Brownian motion family: option price
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Figure 3: Option price as a function of Fyr and option maturity 0 < ¢ < T, where the bond maturity is 1" = 1.
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Geometric gamma family

Let {74 }+>0 be a gamma process whose increments v; — 7, for 0 < s <t < o0,
have a probability density f(x) such that

xmt—le—x//{

f(l') — g‘Y(x7 (t o S>m7 ’%) - F(mt)/imt . (19)
Here, m is the rate parameter and « is the scale parameter of {v;};>¢.
We are able to show that the bond price is of the form

o0 1 — —mit ()7t ]
PtT _ f’];o IO('CU)( ¢($>K“> € ,I') (20)
[ o)1 = ola)r) e
and that the associated short rate is given by
(1 — (D) k)M edBt]

" T @)1 - plajn) e

For increasing ¢(x) we deduce that the required option price in the example of
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the geometric gamma process is of the following form:

Cly — /T " ol)r (mt, v (é _ W))) da
& [t (mey (5~ o)) ) 22)

where ~* is a critical value on the boundary of positive payoffs.

Here

[(a,z) / N tar <§) dt (23)

is the “upper’ incomplete gamma function.
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Geometric gamma process family: bond price
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Figure 4 Simulation of the bond price in a term-structure density model with a parametric martingale family based on
a geometric gamma martingale. The parameters are p(z) = e %% ¢(x) = 700 m =1, kK = 0.5.
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Geometric gamma process family: short rate
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Figure 5: Simulation of the short rate in a term-structure density model with a parametric martingale family based on a
geometric gamma martingale. The parameters are p(z) = e V0% ¢(z) = 70927 m =1, Kk = 0.5.
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Geometric variance-gamma family

Let {V;}i>0 be a variance-gamma process.

The increments V; — V; of {V;} thus have the same distribution as a Brownian
motion with volatility parameter o and drift 1, time-changed by a gamma
subordinator, whose increments have distribution g(z) such that

g(x) = gy(z; (t — 5)/v, V) (24)

for 0 < s <t < .

The parameters 1, 0 and v control the properties of the variance-gamma
distribution.

We are able to show that bond price is of the form
Ji p(@)(1 = vug(x) — fvop(x)?) ve?Vida

(25)

I f’< ><1 —vpgle) — wotg(a)) Feida
and that the associated short rate is given by
b1 — vpe(t) — dva?g(t)?) vV
ry = P( )1 —vue(t) — svoe(t)’) ve %)

S5 p(@)(1 = vpg(x) — Svo?d(x)?) ~red)Vidz
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Using a methodology similar to that of Madan et al. [1998], we derive the
option price in the example of the geometric variance-gamma process.

We first condition on the gamma time-change and numerically calculate &%,
which is a critical value of the Brownian motion on the boundary of positive
payoffs, and then we integrate over the uncertainty of the gamma time-change.

) ds

The required option price is of the form

Cu = [ o) (ﬂ:s o), 720

t
1%

-
K / (ig*@(@,;i&g,;) da. (27)
Here
. \/1 —uucb(sv)y—%w%(x){ 28)
and

c 1e—u

\If(a,b,c):/OOON(Ter\/_) R (29)
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Geometric variance-gamma process family: bond price
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Figure 6: Simulation of the bond price based on a geometric variance-gamma martingale. The parameters are p(x) =
e 002 g(r) =e 0% =02, 0=02v=0.1.
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Geometric variance-gamma process family: short rate
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Figure 7. Simulation of the short rate based on a geometric variance-gamma martingale. The parameters are p(z) =

e 0020 (p) = 00257 =02 5 =02v=0.1.
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Geometric variance-gamma process family: option price
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Figure 8: Option price as a function of Fyr and option maturity 0 < ¢ < T, where the bond maturity is 1" = 1.
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Hedging strategy—option delta

How does one determine the sensitivity of the option price Cy; on the initial
price Pyr of the underlying?

Recall that the initial bond price is given by
Pyr = / p(x)dz. (30)
T

In the case of interest-rate term structure, the initial price Fyr of the bond is a
functional of the term structure density p(x).

Likewise, the option price Cyy; is a functional of p(x).

Therefore, to determine the option sensitivity, we are required to employ the
method of functional derivative.

This is because there are infinitely many ways of perturbing

p(x) = plx) + en(a) (31)
to obtain the perturbation
Por — FPor + 0 Fyr. (32)
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We thus proceed as follows.

Given the call price Ciy|p] as a functional of p(x) we consider the functional
derivative

0C 1
5, = Jm = (Culp+ 1] = Culpl), (33)

where the perturbation 7(z) has to satisfy the condition

/ n(x)dx =0 (34)
0
so that p + en is a density.

Recall that the option price is given by

P, (fT ) M,da K)*]. (35)

Cy = E9
ot ft Mtxdiﬁ

Performing the functional differentiation, and letting O(-) denotes the Heaviside
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function, we deduce that

%Ot _E [@ (/TOO oz )Mmdx—K/ Mmdaz)
’ ( /T () Mda — K / Mmd:p)]. (36)

How do we choose the perturbation 7(x)?
In the case of a single factor model, it suffices to consider a single perturbation.

To this end, we take the perturbation to be a constant shift
Ror — Ror + ¢ (37)
of the initial yield curve Ryr.

Under this perturbation, we have

pla) — p(x) +£( Py, — ap(x)). (38)

In other words, the perturbation that results in a constant shift of the initial

yield curve is given by
dPOx

do
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Note that the functional derivative of the initial bond price under this
perturbation is given by

0 Por
= —TPyr. 40
5 0T (40)
Hence, by use of the chain rule we have
5C()t B 5,0 50015 _ 1 50015 (41)

5Py 6Py dp TPy 0p
Putting these together, and after a short calculation we find that

A = /T -l (;ZD;TP%) my(z)de — K /t "l (;ZD;TPOx) my(z)dz,  (42)

where
my(z) = E [@ ( /T " o) Mode — K /t N p(az)Mmdx) Mm] L (43)

In this way we are able to compute the option delta for a range of Lévy
martingales {M;, }.
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Geometric Brownian motion family: option delta
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Geometric variance-gamma process family: option delta
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