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Overview

(1) Percolation

(2) Random walks

(3) Divergence form PDEs

(4) PDE methods for random walks

(5) Critical percolation

(6) Video (?)
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Percolation

This was introduced by Broadbent and Hammersley (1957).

Consider the Euclidean latticeZd, with edges (bonds)Ed.

Fix p ∈ [0, 1]. For each edgee = {x, y} keep the edge with probabilityp, delete
it with probability 1 − p, independently of all the others.
Let O be the set of edges which are kept, which are calledopen edges.
The connected components of the graph(Zd,O) are called(open) clusters.

We are particularly interested in the infinite clusters.
There existspc = pc(d) ∈ (0, 1) such that, with probability 1 (wp1):

if p < pc all clusters are finite (subcritical regime),

if p > pc then there exists a unique infinite cluster,C∞ (supercritical
regime),

If p = pc (critical regime) it is conjectured that all clusters are finite, but only
proved in some cases (d = 2, d ≥ 19).
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p = 0.2
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p = 0.2, largest cluster marked
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p = 0.2
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p = 0.4
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p = 0.4
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p = 0.4
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p = 0.5(= pc)
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p = 0.5
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p = 0.5
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p = 0.6
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p = 0.6
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p = 0.6
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p = 0.8
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p = 0.8
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Mathematical Implementation

Let Ω = {0, 1}Ed ; ω ∈ Ω is aconfiguration. If ω ∈ Ω,

ω(e) = 1 ⇔ e is open

ω(e) = 0 ⇔ e is not open

SoO(ω) = {e : ω(e) = 1}.
Let Pp be the probability measure onΩ which makes the edges independent with

Pp(ω(e) = 1) = p for all e ∈ Ed.

The statement “ifp < pc all clusters are finite” means that if

A = {ω : all connected components of(Zd,O(ω)) are finite},

thenPp(A) = 1 if p < pc.
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Random walks on graphs

Let G = (V, E) be a graph:V is the set of vertices (finite or countable) andE the
edges (unoriented). Forx ∈ V let µx be the number of edges containingx:

µx = µ({x}) = #{y : {x, y} ∈ E} = #{y : y ∼ x}.

AssumeG is locally finite, i.e. µx < ∞ for all x.
The simple random walk (SRW) onG is the random walk on the vertex setV
which moves ‘at random’ fromx ∈ V along an edgee to a neighboury of x. So

P (Xo
n+1 = y|Xo

n = x) =
1

µx
if y ∼ x. (1)

On a bipartite graph, such asZ
d, Xo can only return tox after an even number of

steps. From now on I will consider thelazy walkX , which stays where it is with
probability 1

2 and jumps (according to (1)) with probability12 .
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Laplacian and heat equation on a graphG

Discrete Laplacian onG:

∆f(x) =
1

µx

∑

y∼x

(f(y) − f(x)).

Let pn(x, y) be the transition density (w.r.t.µ) of X started withX0 = x so that

P x(Xn = y) = P x(Xn = y|X0 = x) = pn(x, y)µy.

pn is also the (discrete time, lazy) heat kernel on the graphG:

pn+1(x, y) − pn(x, y) = ( 1
2∆ + 1

2 )pn(x, y),

p0(x, y)µy = δx(y).

The ant in the labyrinth: random walks and percolation – p. 7/30



SRW on percolation clusters

For a percolation configurationω look at the the (lazy) SRWX on the graph
G(ω) = (Zd,O(ω)). We are interested in the long time behaviour ofX and its
heat kernelpω

n(x, y).
Note the probability thatX leaves the connected component ofG that it starts in
is zero, so we will usually restrictX to the infinite clusterC∞ (if it exists).
This SRW was called the ‘ant in the labyrinth’ by De Gennes 1976.
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Three cases

1. Supercritical: p > pc. There is (with probability one) a unique infinite cluster,
denotedC∞. We startX at a point inC∞.
Questions:

1. How does the SRWXn behave for largen? Are there significant
differences from the behaviour of the SRW onZ

d?

2. Behaviour of the heat kernelpω
n(x, y).

2. Subcritical: p < pc. All clusters are finite; there seems to be little to say.

3. Critical: p = pc (or p → pc). In high dimensions substantial recent progress. In
low dimensions we don’t even know what the right conjecturesare.

Early papers:

Kesten (1986) – work on the critical case,d = 2.
Grimmett, Kesten, Zhang, 1993:X is transient iffd ≥ 3.
Benjamini, Lyons, Schramm, 1999: transitive graphs, Liouville property+...
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PDE

Heat equation for a divergence form operator inR
d:

∂u

∂t
= Lu = (∇a∇)u. (2)

Hereu = u(x, t), x ∈ R
d, t ≥ 0, u(x, 0) = u0(x). a = (aij(x)) is

symmetric, bounded, measurable, and uniformly elliptic:

C−1|ξ|2 ≤
∑

ij

ξiaij(x)ξj ≤ C|ξ|2.

Note. If aij(x) are (say)C2 then classical estimates give regularity of the
solutionu(x, t).

For various reasons, particularly for applications to non-linear PDE, one
wants regularity ofu without any additional assumptions ona.
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Work of de Giorgi, Moser, Nash

This problem was solved by de Giorgi, Moser, Nash in the late 1950s.

Nash (1958) proved thatu(x, t) is Hölder continuous.

Moser (1961-71) proved an (elliptic) Harnack inequality for L-harmonic
functions, and then a parabolic Harnack inequality (PHI) for solutions of (2)
(This easily gives Hölder continuity ofu(x, t).)

Aronsen (1967): used Moser’s PHI to obtain bounds on the fundamental
solutions of (2). These bounds are of the same form as the Gaussian
distribution. Letpt(x, y) be solution of (2) withp0(x, y) = δx(y). Then

c1t
−d/2e−c2|x−y|2/t ≤ pt(x, y) ≤ c3t

−d/2e−c4|x−y|2/t. (GB)

Note. On more general spaces the termscit
−d/2 above have to be replaced

by ci|B(x, t1/2)|−1, where|B(x, r)| is the volume of the ball centrex and
radiusr.
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Extensions to manifolds

Bombieri and Giusti (1972) generalised Moser’s argument tomanifolds. They
showed it works given three facts about the space:

A Sobolev inequality (later found to be unnecessary)

A Poincaré inequality (PI), or more strictly, a family of PI.

Good control of the volume growth, i.e. the behaviour of

|B(x, r)|, x ∈ M, r ≥ 0.

Fabes and Stroock (1986) (“A new proof of Moser’s PHI via the old ideas of
Nash”) gave a proof of PHI via (GB).

Theorem (Grigoryan, Saloff-Coste (1992)). Let M be a complete manifold. The following
are equivalent:
(a) Solutions of the heat equation on M satisfy a PHI.
(b) M satisfies two conditions: (VD) and (PI).

(c) (Fabes – Stroock ...) pt(x, y) satisfies (GB).
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So, what are ‘VD’ and ‘PI’ ?

VD = ‘volume doubling’: there existsC0 such that

|B(x, 2r)| ≤ C0|B(x, r)|, x ∈ M, r ≥ 0.

Hence|B(x, 2nr)| ≤ Cn
0 |B(x, r)|, andM has polynomial volume growth.
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So, what are ‘VD’ and ‘PI’ ?

VD = ‘volume doubling’: there existsC0 such that

|B(x, 2r)| ≤ C0|B(x, r)|, x ∈ M, r ≥ 0.

Hence|B(x, 2nr)| ≤ Cn
0 |B(x, r)|, andM has polynomial volume growth.

PI = Poincaré Inequality: there existsCP such that ifB = B(x, r) is a ball
in M , andf : B → R then

∫

B

(f(x) − fB)2dµ ≤ CP r2

∫

B

|∇f |2dµ. (PI)

fB is the real number which minimises the LHS.

Globally, PI restricts the extent to which the space can have‘bottlenecks’.
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The Graph case: Delmotte’s Theorem

These ideas also work for random walks on graphs:

Theorem (T. Delmotte, 1999). Let G be a (locally finite) graph. The following are
equivalent:
(a) Solutions of the heat equation on G satisfy a PHI.
(b) G satisfies (VD) and (PI).
(c) The heat kernel pn(x, y) satisfies (GB).

The proof used Moser’s ideas.

Notes. 1. SRW onZd satisfies (a)–(c).
2. On a general graph, one uses the usual (shortest path) graph distance.
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PI for graphs

For every ballB = B(x, r), andf : B → R,

∑

x∈B

(f(x) − fB)2µx ≤ CP r2
∑

x∼y,x,y∈B

(f(y) − f(x))2

As before,fB is the real number which minimises the LHS.
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PI for graphs

For every ballB = B(x, r), andf : B → R,

∑

x∈B

(f(x) − fB)2µx ≤ CP r2
∑

x∼y,x,y∈B

(f(y) − f(x))2

As before,fB is the real number which minimises the LHS.

An example of a graph for which the PI fails is two copies ofZ
d (d ≥ 2)

connected at their origins.
If d ≥ 3 it is easy to see PI fails: considerB(0, r) and letf = 1 on one
copy, andf = −1 on the other. Then LHS≈ rd while the RHS≈ r2.
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PI follows from an isoperimetric inequality

Let B = B(x, r), and write

N(A, B − A) = |{e = {x, y} ∈ E : x ∈ A, y ∈ B − A}|

for the number of edges betweenA andB − A.
If for all balls B = B(x, r) one has

N(A, B − A) ≥
c|A|

r
, wheneverA ⊂ B, |A| ≤ 1

2 |B|,

thenG satisfies PI.
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p > pc: random walk onC∞

Would like:

(1) Gaussian bounds (GB) onpω
n(x, y).

(2) Central limit theorem/ Functional CLT forX .

The ant in the labyrinth: random walks and percolation – p. 17/30



p > pc: random walk onC∞

Would like:

(1) Gaussian bounds (GB) onpω
n(x, y).

(2) Central limit theorem/ Functional CLT forX .

The natural idea for (GB) is to try to apply Delmotte’s theorem. However,
neither VD nor PI hold forC∞. The reason is that if we look far enough we
can find arbitrarily large ‘bad regions’:
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Big bad regions are a long way away

Suppose we are looking for a specific bad configuration of volumer. This has
probability of ordere−cr.
So to find it inB(0, R) we needRde−cr ≈ 1, or r ≈ log R.
Hence ... one expects the biggest ‘bad region’ inB(0, R) to be of size
≤ (log R)c0 .
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Big bad regions are a long way away

Suppose we are looking for a specific bad configuration of volumer. This has
probability of ordere−cr.
So to find it inB(0, R) we needRde−cr ≈ 1, or r ≈ log R.
Hence ... one expects the biggest ‘bad region’ inB(0, R) to be of size
≤ (log R)c0 .

Will these cause ‘log corrections’ in (GB)?
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Big bad regions are a long way away

Suppose we are looking for a specific bad configuration of volumer. This has
probability of ordere−cr.
So to find it inB(0, R) we needRde−cr ≈ 1, or r ≈ log R.
Hence ... one expects the biggest ‘bad region’ inB(0, R) to be of size
≤ (log R)c0 .

Will these cause ‘log corrections’ in (GB)?

No. The time to leave a bad region is≤ (log R)2c0 , and this is much less than the
time to leaveB(0, R), which isR2.
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Local inequalities

Fix (non random) constantsC1, C2, C3. Call a ballB(x, r) goodif:

C1r
d ≤ |B(x, r)| ≤ C2r

d, and PI holds (with constantC3) for B(x, r) .

Theorem. (Benjamini-Mossel, Mathieu-Remy, MB.)If p > pc then

Pp(B(x, R) is good) ≥ 1 − e−Rδ

.

Hence with high probability:

every ballB(y, r) ⊂ B(x, R) with Rε ≤ r ≤ R is good. (∗)

Call a ball satisfying (*)very good.
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Natural guess: ifB(x, r) is ‘good’, so that VD and PI hold for it, then
pn(x, y) should satisfy (GB) when

n ≈ r2, x, y ∈ B(x, r).
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Natural guess: ifB(x, r) is ‘good’, so that VD and PI hold for it, then
pn(x, y) should satisfy (GB) when

n ≈ r2, x, y ∈ B(x, r).

This is the right general idea.

However ‘good’ is not enough.
The proofs of (GB) all use iterative methods or differentialinequalities,
which rely on the space being regular over a substantial range of length
scales.
To controlpn(x, y) one roughly needs to takeR = (n log n)1/2 and have
B(y, r) ‘good’ for y ∈ B(x, R), andRǫ < r ≤ R.
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Natural guess: ifB(x, r) is ‘good’, so that VD and PI hold for it, then
pn(x, y) should satisfy (GB) when

n ≈ r2, x, y ∈ B(x, r).

This is the right general idea.

However ‘good’ is not enough.
The proofs of (GB) all use iterative methods or differentialinequalities,
which rely on the space being regular over a substantial range of length
scales.
To controlpn(x, y) one roughly needs to takeR = (n log n)1/2 and have
B(y, r) ‘good’ for y ∈ B(x, R), andRǫ < r ≤ R.

So the current proofs need ‘very good’ not good.
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Gaussian bounds

Theorem 1. Let p > pc. For each x ∈ Z
d there exist r.v. Tx(ω) ≥ 1 with

Pp(Tx ≥ n, x ∈ C∞) ≤ c exp(−nεd) (3)

and (non-random) constants ci = ci(d, p) such that the transition density of X satisfies,

c1

nd/2
e−c2|x−y|2/n ≤ pω

n(x, y) ≤
c3

nd/2
e−c4|x−y|2/n, (GB)

for x, y ∈ C∞(ω), n ≥ max(Tx(ω), c|x − y|).

1. The randomness of the environment is taken care of by theTx(ω), which will
be small for most points, and large for the rare points in large ‘bad regions’.
2. Good control of the tails of the r.v.Tx, as in (3), is essential for applications.

3. The proof used ‘Nash’ rather than ‘Moser’.
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Nash’s idea (PDE setting)

The key hard step in Nash’s 1958 paper was to prove that if
M(x, t) =

∫
|x − y|pt(x, y)dy then

c1t
1/2 ≤ M(x, t) ≤ c2t

1/2. (4)
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Nash’s idea (PDE setting)

The key hard step in Nash’s 1958 paper was to prove that if
M(x, t) =

∫
|x − y|pt(x, y)dy then

c1t
1/2 ≤ M(x, t) ≤ c2t

1/2. (4)

He considered the entropyQ(t) = −
∫

pt(x, y) log pt(x, y)dy, and found an
ingenious, but not very transparent argument using three inequalities
betweenM andQ:

Q(x, t) ≥ c + 1
2d log t, (5)

M(x, t) ≥ ceQ(x,t)/d, (6)

Q′(x, t) ≥ cM ′(x, t)2. (7)

Theorem. (Nash (1958).) If functionsQ, M satisfy (5)–(7) (andM(0) = 0)
thenM satisfies (4).
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Nash-Bass method

Richard Bass showed how the upper bound onM leads to (GB).
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Nash-Bass method

Richard Bass showed how the upper bound onM leads to (GB).

These techniques also work for graphs. It is useful for percolation clusters,
because if we fix a base pointx then ‘distant bad regions’ have little effect
onM(x, t) andQ(x, t).
(Many other approaches to heat kernel bounds use global inequalities, which
fail to hold for percolation clusters due to these regions.)
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(Many other approaches to heat kernel bounds use global inequalities, which
fail to hold for percolation clusters due to these regions.)

One has to prove the three inequalities (5)–(7):
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Nash-Bass method

Richard Bass showed how the upper bound onM leads to (GB).

These techniques also work for graphs. It is useful for percolation clusters,
because if we fix a base pointx then ‘distant bad regions’ have little effect
onM(x, t) andQ(x, t).
(Many other approaches to heat kernel bounds use global inequalities, which
fail to hold for percolation clusters due to these regions.)

One has to prove the three inequalities (5)–(7):

(5) Q(x, t) ≥ c + 1
2d log t follows from an upper bound onpω

n(x, y) proved
by Mathieu and Remy, which comes from VD+PI for ‘very good’ balls.
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Nash-Bass method

Richard Bass showed how the upper bound onM leads to (GB).

These techniques also work for graphs. It is useful for percolation clusters,
because if we fix a base pointx then ‘distant bad regions’ have little effect
onM(x, t) andQ(x, t).
(Many other approaches to heat kernel bounds use global inequalities, which
fail to hold for percolation clusters due to these regions.)

One has to prove the three inequalities (5)–(7):

(5) Q(x, t) ≥ c + 1
2d log t follows from an upper bound onpω

n(x, y) proved
by Mathieu and Remy, which comes from VD+PI for ‘very good’ balls.

(6) M(x, t) ≥ ceQ(x,t)/d just uses|B(x, r)| ≤ crd.

(7) Q′(x, t) ≥ cM ′(x, t)2 holds in general.
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Functional CLT

Theorem 2. (Sidoravicius and Sznitman, 2004 (d ≥ 4), Berger and Biskup, 2005,
Mathieu and Piatnitski, 2005). Letp > pc. For a set ofω with probability one, a
functional CLT holds forX .

This means that the rescaled SRW

X
(n)
t = n−1Xn2t

converges to (a constant multiple of) Brownian motion.

The proofs ford ≥ 3 use the upper bounds in Theorem 1.

Theorem 3. (MB-Hambly). A local limit theorem also holds:

p
(n,ω)
t (0, x) = ndpω

n2t(⌊0⌋, ⌊nx⌋) → (2πD)−d/2 exp(−|x|2/2Dt).

Summary: for ‘fixed’p > pc, SRW onC∞ looks very much like SRW onZd.

The ant in the labyrinth: random walks and percolation – p. 24/30



Critical Percolation:p = pc

Conjecture.No infinite clusters for critical percolation inZd, for d ≥ 2.

Proved ford = 2 (Kesten) andd ≥ 19 (Hara – Slade).

What can one do if there is no infinite cluster?

It is known that in any large boxQn = [−n, n]d then (with high probability)
there exists a cluster with diameterO(n).
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Incipient Infinite Cluster (IIC)

This is an infinite connected random subsetC̃d of Z
d which locally ‘looks like’

the large finite clusters which occur atp = pc.
Constructed whend = 2 (Kesten) and for larged (van Hofstad, Jarai).
For any infinite graphG = (V, E) one can define thespectral dimensionby

ds = ds(G) = −2 lim
n→∞

log pn(x, x)

log n
(if this limit exists).

Note thatds(Z
d) = d. By Theorem 1 we have, forp > pc, ds(C∞) = d.

Alexander–Orbach Conjecture (1983). (Restated for mathematicians). For all
d ≥ 2,

ds(C̃d) = 2
3 .

The ant in the labyrinth: random walks and percolation – p. 26/30



AO conjecture

Why did they think this could be independent of dimension?
A general idea in statistical physics is of ‘upper critical dimension’dc: for
d > dc global phenomena cease to be dimension dependent.
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AO conjecture

Why did they think this could be independent of dimension?
A general idea in statistical physics is of ‘upper critical dimension’dc: for
d > dc global phenomena cease to be dimension dependent.

For percolationdc = 6. At pc(d) there is just enough probability of an edge
being open to allow large scale connected structures of openedges.
However, these structures are ‘thin’ and whend > dc they don’t
self-intersect except locally – hence they don’t ‘see’ the true dimension of
the space they are in. In fact, they are close to being ‘fractal trees’, and
should be similar to those for percolation on the binary treeB.
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Why did they think this could be independent of dimension?
A general idea in statistical physics is of ‘upper critical dimension’dc: for
d > dc global phenomena cease to be dimension dependent.

For percolationdc = 6. At pc(d) there is just enough probability of an edge
being open to allow large scale connected structures of openedges.
However, these structures are ‘thin’ and whend > dc they don’t
self-intersect except locally – hence they don’t ‘see’ the true dimension of
the space they are in. In fact, they are close to being ‘fractal trees’, and
should be similar to those for percolation on the binary treeB.

It was known that for the IIC onB one hadds = 2/3. The bold part of the
AO conjecture was that this was also conjectured for2 ≤ d ≤ 5.
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AO conjecture

Why did they think this could be independent of dimension?
A general idea in statistical physics is of ‘upper critical dimension’dc: for
d > dc global phenomena cease to be dimension dependent.

For percolationdc = 6. At pc(d) there is just enough probability of an edge
being open to allow large scale connected structures of openedges.
However, these structures are ‘thin’ and whend > dc they don’t
self-intersect except locally – hence they don’t ‘see’ the true dimension of
the space they are in. In fact, they are close to being ‘fractal trees’, and
should be similar to those for percolation on the binary treeB.

It was known that for the IIC onB one hadds = 2/3. The bold part of the
AO conjecture was that this was also conjectured for2 ≤ d ≤ 5.

Techniques developed for random walks on fractal sets turn out to be useful
for critical clusters. (Not a surprise, since this was one original motivation to
look at SRW on fractals.) One needs ‘volume’ estimates, but instead of ‘PI’
one can use ‘electrical resistance’.
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SRW on critical percolation clusters

Theorem 4. (Kesten, 1986, MB-Kumagai, 2007).ds = 2/3 for the IIC onB.
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quantum gravity.”
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another percolation model (‘spread out oriented percolation’) for d ≥ 6

Theorem 6. (Kozma and Nachmias, preprint.) AO conjecture holds for
standard percolation whend ≥ 19.

It seems likely that the AO conjecture holds ford > 6. It is not now believed
to hold whend < 6 – this is supported by numerical simulations, which are
now much better than in 1983.
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Theorem 4. (Kesten, 1986, MB-Kumagai, 2007).ds = 2/3 for the IIC onB.

Earlier (mean value) result by physicists Jonsson and Wheeler:
“The spectral dimension of the branched polymer phase of two-dimensional
quantum gravity.”

Theorem 5. (MB, Jarai, Kumagai, Slade, 2008) AO conjecture holds for
another percolation model (‘spread out oriented percolation’) for d ≥ 6

Theorem 6. (Kozma and Nachmias, preprint.) AO conjecture holds for
standard percolation whend ≥ 19.

It seems likely that the AO conjecture holds ford > 6. It is not now believed
to hold whend < 6 – this is supported by numerical simulations, which are
now much better than in 1983.

Ford = 2 one percolation model (‘site percolation on the triangularlattice’)
has been proved to have a conformally invariant scaling limit, which is
SLE6. (Smirnov; Lawler-Schramm-Werner.)
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Critical site percolation,d = 2
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Critical site percolation,d = 2

Using the SLE limit, many exponents have been calculated forthe IIC for this
percolation process. For example, the dimension of the cluster is 91/48, and the
dimension of the boundary of the ‘holes’ is 4/3.

I do not know of any generally accepted conjecture on whatds should be.

To calculateds one needs ‘electrical resistance’ properties of the IIC, and these
are harder to obtain than the geometric properties which have been obtained from
the SLE theory.

It is also likely that one needs to know the length of the shortest path in the cluster
across a box of sideR – another quantity that the SLE theory does not seem to
give.
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