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Overview

(1) Percolation

(2) Random walks

(3) Divergence form PDEs

(4) PDE methods for random walks
(5) Critical percolation

(6) Video (?)
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Percolation

This was introduced by Broadbent and Hammersley (1957).

Consider the Euclidean latti&, with edges (bondsl;.

Fix p € |0, 1]. For each edge = {x, y} keep the edge with probability, delete
It with probability 1 — p, independently of all the others.
Let O be the set of edges which are kept, which are calped edges.

The connected components of the grdf, O) are callediopen) clusters.
We are particularly interested in the infinite clusters.
There exist®. = p.(d) € (0, 1) such that, with probability 1 (wp1l):

If p < p. all clusters are finite (subcritical regime),

If p > p. then there exists a unique infinite clust€r, (supercritical
regime),

If p = p. (critical regime) it is conjectured that all clusters araténbut only
proved in some cases € 2,d > 19).
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Mathematical Implementation

Let Q = {0,1}%4; w € Qis aconfiguration If w € €,
w(le)=1 <« eisopen
w(e)

So00(w) ={e:w(e) =1}
Let P, be the probability measure dhwhich makes the edges independent with

0 < elsnotopen

P,(w(e) =1) =p foralle € E,.
The statement “ip < p.. all clusters are finite” means that if
A = {w : all connected components @£, O(w)) are finite,

thenP,(A) =1if p < p..
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Random walks on graphs

Let G = (V, F) be a graph is the set of vertices (finite or countable) aRdhe
edges (unoriented). Farc V let 1, be the number of edges containing

pe = p({z}) = #{y :{z,y} € B} = #{y r y ~ z}.

Assumed is locally finite i.e. u, < oo for all x.
The simple random walk (SRW) ai is the random walk on the vertex Sét
which moves ‘at random’ fromr € V' along an edge to a neighbouy of . So

1 .
P(X0 =ylXg=2)=— ify~uz (1)

X

On a bipartite graph, such &8, X° can only return ta: after an even number of
steps. From now on | will consider thazy walk X', which stays where it is with

probability% and jumps (according to (1)) with probabiligl.
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Laplacian and heat equation on a graph

Discrete Laplacian ofyr:

Af(z) = Mi

> (fly) — f(@).

Y~x
Let p,,(z, y) be the transition density (w.r.i.) of X started withX, = = so that

Py, IS also the (discrete time, lazy) heat kernel on the gi@ph

pn—l—l(x?y) _pn(xvy) — (%A + %)pn(xvy)7
Po (%, Y) by = 02(y).
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SRW on percolation clusters

For a percolation configuratian look at the the (lazy) SRW on the graph
G(w) = (2%, O(w)). We are interested in the long time behaviourdfind its

heat kernep® (x, y).

Note the probability thaK leaves the connected componentiahat it starts in
IS zero, so we will usually restrick to the infinite cluste€, (if it exists).

This SRW was called the ‘ant in the labyrinth’ by De GennesGl97
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Three cases

1. Supercritical: p > p.. There is (with probability one) a unique infinite cluster,
denoted’,,. We startX at a point inC.
Questions:

1. How does the SRWX,, behave for largex? Are there significant
differences from the behaviour of the SRW %fi?

2. Behaviour of the heat kerng} (x, y).

2. Subcritical: p < p.. All clusters are finite; there seems to be little to say.

3. Critical: p = p. (Or p — p.). In high dimensions substantial recent progress. In
low dimensions we don’t even know what the right conjectanes

Early papers:

Kesten (1986) — work on the critical cask= 2.
Grimmett, Kesten, Zhang, 199X is transient iffd > 3.
Benjamini, Lyons, Schramm, 1999: transitive graphs, Litbeproperty+...
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PDE

Heat equation for a divergence form operatoRif1

ou

— =Lu= . 2
5 Lu = (VaV)u (2)
Hereu = u(x,t), r € R, ¢ > 0, u(x,0) = uo(z). a = (a;;(x)) is
symmetric, bounded, measurable, and uniformly elliptic:

CTHEP <) Gag(x)é; < CIEP
ij

Note. If a;;(x) are (say)C? then classical estimates give regularity of the
solutionu(x, t).

For various reasons, particularly for applications to tiaear PDE, one
wants regularity of: without any additional assumptions an
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Work of de Giorgi, Moser, Nash

This problem was solved by de Giorgi, Moser, Nash in the [8&0%.
Nash (1958) proved thai(x, t) is Holder continuous.

Moser (1961-71) proved an (elliptic) Harnack inequality fharmonic
functions, and then a parabolic Harnack inequality (PHi)sfmutions of (2)
(This easily gives Holder continuity af(x, t).)

Aronsen (1967): used Moser’s PHI to obtain bounds on thedomental
solutions of (2). These bounds are of the same form as thesiaaus
distribution. Letp;(x,y) be solution of (2) withpy(z,y) = 0..(y). Then

eyt~ W2em 2TV <y (2, y) < ept T 2emeslemule, (GB)

Note. On more general spaces the terepis 4/2 above have to be replaced

by ¢;|B(x,t"/?)|~1, where|B(z, r)| is the volume of the ball centre and
radiusr.
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Extensions to manifolds

Bombieri and Giusti (1972) generalised Moser’s argumemamifolds. They
showed it works given three facts about the space:

A Sobolev inequality (later found to be unnecessary)
A Poincaré inequality (PI), or more strictly, a family of PI.
Good control of the volume growth, i.e. the behaviour of

|B(x,r)|, & M,r>0.

Fabes and Stroock (1986) (“A new proof of Moser’s PHI via thekideas of
Nash”) gave a proof of PHI via (GB).

Theorem (Grigoryan, Saloff-Coste (1992)). Let M be a complete manifold. The following
are equivalent:

(a) Solutions of the heat equation on M satisfy a PHI.

(b) M satisfies two conditions: (VD) and (PI).

(c) (Fabes — Stroock ...) p:(x, y) satisfies (GB).
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So, what are ‘VD’ and ‘PI’ ?

VD = ‘volume doubling’: there exist§’y such that
B(x,2r)| < Co|B(x,7)|, z€M, r>0.

Hence|B(x,2"r)| < C}'|B(x,r)|, andM has polynomial volume growth.
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So, what are ‘VD’ and ‘PI’ ?

VD = ‘volume doubling’: there exist§’y such that
B(x,2r)| < Co|B(x,7)|, z€M, r>0.

Hence|B(x,2"r)| < C}'|B(x,r)|, andM has polynomial volume growth.

Pl = Poincaré Inequality: there exist§ such that ifB = B(z,r) is a ball
in M,andf : B — R then

/B (f(x) — Fp)?dp < Cpr® /B V£ 2dp. (PI)

f  is the real number which minimises the LHS.
Globally, Pl restricts the extent to which the space can Haottlenecks'.
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The Graph case: Delmotte’s Theorem

These ideas also work for random walks on graphs:

Theorem (T. Delmotte, 1999). Let (G be a (locally finite) graph. The following are
equivalent:

(a) Solutions of the heat equation on (G satisfy a PHI.

(b) GG satisfies (VD) and (PI).

(c) The heat kernel p,, (z, y) satisfies (GB).

The proof used Moser’s ideas.

Notes. 1. SRW onZ¢ satisfies (a)—(c).
2. On a general graph, one uses the usual (shortest patt distpnce.
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Pl for graphs

For every ballB = B(z,r),andf : B — R,

D (f@) = Fp)lue <Cpr? Y (fly) = (@)’

reB x~Yy,x,YyeB

As before,f 5 is the real number which minimises the LHS.
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Pl for graphs

For every ballB = B(z,r),andf : B — R,

D (f@) = Fp)lue <Cpr? Y (fly) = (@)’

reB x~Yy,x,YyeB

As before,f 5 is the real number which minimises the LHS.

An example of a graph for which the Pl fails is two copieZ6f(d > 2)
connected at their origins.
If d > 3itis easy to see Pl fails: consid&0, r) and letf = 1 on one

copy, andf = —1 on the other. Then LH& r¢ while the RHS~x 2.

The ant in the labvrinth: random walks and percolation — p. 15/



Pl follows from an isoperimetric inequality

Let B = B(x,r), and write
N(A,B—A)=|{e={{z,yt e F:xc Ajye B— A}

for the number of edges betwednandB — A.
If for all balls B = B(x,r) one has

A
N(A,B—A) > a4l wheneverd C B, |A| < i|B|,

Y
r

thenG satisfies PI.

B=B(xX.T)
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p > p.. random walk orC.,

Would like:

(1) Gaussian bounds (GB) oy (z, y).
(2) Central limit theorem/ Functional CLT foX.
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p > p.. random walk orC.,

Would like:

(1) Gaussian bounds (GB) oy (z, y).
(2) Central limit theorem/ Functional CLT foX.

The natural idea for (GB) is to try to apply Delmotte’s thenreHowever,
neither VD nor Pl hold foC,. The reason is that if we look far enough we
can find arbitrarily large ‘bad regions’:
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Big bad regions are a long way away

Suppose we are looking for a specific bad configuration ofwel. This has
probability of ordere=".

So to find it inB(0, R) we needR% " ~ 1, orr ~ log R.
Hence ... one expects the biggest ‘bad regionBii, i) to be of size
< (log R)*.
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Big bad regions are a long way away

Suppose we are looking for a specific bad configuration ofwel. This has
probability of ordere=".

So to find it inB(0, R) we needR% " ~ 1, orr ~ log R.
Hence ... one expects the biggest ‘bad regionBii, i) to be of size
< (log R)*.

Will these cause ‘log corrections’ in (GB)?
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Big bad regions are a long way away

Suppose we are looking for a specific bad configuration ofwel. This has
probability of ordere=".

So to find it inB(0, R) we needR% " ~ 1, orr ~ log R.

Hence ... one expects the biggest ‘bad regionBii, i) to be of size

< (log R)*.

Will these cause ‘log corrections’ in (GB)?

No. The time to leave a bad regionss(log R)*“, and this is much less than the
time to leaveB(0, R), which is R?.

The ant in the labvrinth: random walks and percolation — p. 18/~



Local inequalities

Fix (non random) constants,, Cs, C's. Call a ballB(z, ) goodif:
Cir? < |B(z,r)| < Cyr?, and Pl holds (with constaits) for B(z, ) .
Theorem. (Benjamini-Mossel, Mathieu-Remy, MBIfyp > p. then

P,(B(x, R)isgood) > 1 — e 1’
Hence with high probability:

every ballB(y,r) C B(x, R) with R < r < R is good. (%)

Call a ball satisfying (*)very good
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Natural guess: iB(z, ) is ‘good’, so that VD and PI hold for it, then
pn(x,y) should satisfy (GB) when

n~r, x,y € B(x,r).
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Natural guess: iB(z, ) is ‘good’, so that VD and PI hold for it, then
pn(x,y) should satisfy (GB) when

n /& r2, x,y € B(x,r).

This is the right general idea.

However ‘good’ is not enough.

The proofs of (GB) all use iterative methods or differentredqualities,
which rely on the space being regular over a substantialerah¢ength
scales.

To controlp,, (x, y) one roughly needs to take = (nlogn)!/? and have

B(y,r) ‘good’ fory € B(z, R),andR® < r < R.
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Natural guess: iB(z, ) is ‘good’, so that VD and PI hold for it, then
pn(x,y) should satisfy (GB) when

n /& r2, x,y € B(x,r).

This is the right general idea.

However ‘good’ is not enough.

The proofs of (GB) all use iterative methods or differentredqualities,
which rely on the space being regular over a substantialerah¢ength
scales.

To controlp,, (x, y) one roughly needs to take = (nlogn)!/? and have

B(y,r) ‘good’ fory € B(z, R),andR® < r < R.
So the current proofs need ‘very good’ not good.
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Gaussian bounds

Theorem 1. Letp > p.. For each z € Z there exist r.v. T, (w) > 1 with
]P)p(Tx >N, T € Coo) < cexp(—ngd) (3)

and (non-random) constants ¢; = ¢;(d, p) such that the transition density of X satisfies,

C1

c3 €—c4|x—y|2/n
nd/2

o 12
e~ c2lr=yl/n < (g ) < 1 :

(GB)

forz,y € Coo(w), n > max(T,(w),clz — yl|).

1. The randomness of the environment is taken care of b¥’tke), which will
be small for most points, and large for the rare points inddlad regions’.
2. Good control of the tails of the r.\Z,, as in (3), is essential for applications.

3. The proof used ‘Nash’ rather than ‘Moser’.
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Nash’s idea (PDE setting)

The key hard step in Nash’s 1958 paper was to prove that if
M(z,t) = [ |z — ylp(z,y)dy then

et < Mz, t) < cott/?. (4)
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Nash’s idea (PDE setting)

The key hard step in Nash’s 1958 paper was to prove that if
M(x,t) = [ |z — ylp:(z,y)dy then

et < Mz, t) < cott/?. (4)
He considered the entrogy(t) = — [ p:(z, y) log p¢(x, y)dy, and found an

Ingenious, but not very transparent argument using thregualities
between)M and():

Qx.1) > ¢+ Ldlogt, (5)
M(z,t) > ce@@t)/d (6)
Q'(w,t) = cM' (2, 1)", (7)

Theorem. (Nash (1958).) If function®, M satisfy (5)—(7) (andv/ (0) = 0)
then M satisfies (4).
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Nash-Bass method

Richard Bass showed how the upper boundéreads to (GB).
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Nash-Bass method

Richard Bass showed how the upper boundéreads to (GB).

These techniques also work for graphs. It is useful for datmm clusters,
because if we fix a base pointthen ‘distant bad regions’ have little effect
on M (xz,t) andQ(x,t).

(Many other approaches to heat kernel bounds use globalatiégs, which
fail to hold for percolation clusters due to these regions.)
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because if we fix a base pointthen ‘distant bad regions’ have little effect
on M (xz,t) andQ(x,t).

(Many other approaches to heat kernel bounds use globalatiégs, which
fail to hold for percolation clusters due to these regions.)

One has to prove the three inequalities (5)—(7):
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These techniques also work for graphs. It is useful for datmm clusters,
because if we fix a base pointthen ‘distant bad regions’ have little effect
on M (xz,t) andQ(x,t).

(Many other approaches to heat kernel bounds use globalatiégs, which
fail to hold for percolation clusters due to these regions.)

One has to prove the three inequalities (5)—(7):

(5) Q(z,t) > ¢+ 3dlogt follows from an upper bound opt’ (x, y) proved
by Mathieu and Remy, which comes from VD+PI for ‘very goodliba
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Nash-Bass method

Richard Bass showed how the upper boundéreads to (GB).

These techniques also work for graphs. It is useful for datmm clusters,
because if we fix a base pointthen ‘distant bad regions’ have little effect
on M (xz,t) andQ(x,t).

(Many other approaches to heat kernel bounds use globalatiégs, which
fail to hold for percolation clusters due to these regions.)

One has to prove the three inequalities (5)—(7):

(5) Q(z,t) > ¢+ 3dlogt follows from an upper bound opt’ (x, y) proved
by Mathieu and Remy, which comes from VD+PI for ‘very goodliba

(6) M (x,t) > ceQ® /4 just uses B(x, )| < cr.
(7) Q' (x,t) > cM'(x,t)? holds in general.
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Functional CLT

Theorem 2. (Sidoravicius and Sznitman, 2004 % 4), Berger and Biskup, 2005,
Mathieu and Piatnitski, 2005). Let> p.. For a set ofwv with probability one, a
functional CLT holds forX.

This means that the rescaled SRW
XM = X2y

converges to (a constant multiple of) Brownian motion.
The proofs ford > 3 use the upper bounds in Theorem 1.

Theorem 3. (MB-Hambly). A local limit theorem also holds:

pi" (0, 2) = np¥,(10], [nx]) — (2rD) Y2 exp(—|z[?/2Dt).

Summary: for ‘fixed'p > p., SRW onC., looks very much like SRW ofi?.
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Critical Percolationp = p.

Conjecture.No infinite clusters for critical percolation ¢, for d > 2.
Proved ford = 2 (Kesten) and! > 19 (Hara — Slade).

What can one do if there is no infinite cluster?

It is known that in any large bo&®,, = [—n,n]? then (with high probability)
there exists a cluster with diamet@(n).
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Incipient Infinite Cluster (lIC)

This is an infinite connected random subsgtof Z< which locally ‘looks like’
the large finite clusters which occurat= p...

Constructed whed = 2 (Kesten) and for largé (van Hofstad, Jarai).

For any infinite graplG = (V, E') one can define thgpectral dimensioby

x,x)

log py,
Ao = d,(G) = —2 Tim 28Pn(

(if this limit exists).
n— 00 logn

Note thatd,(Z?) = d. By Theorem 1 we have, for > p,, ds(Cs) = d.

Alexander—Orbach Conjecture (1983). (Restated for mathematicians). For all
d> 2,

ds(Cy) = 2.
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AO conjecture

Why did they think this could be independent of dimension?
A general idea in statistical physics is of ‘upper criticahénsion’d..: for
d > d. global phenomena cease to be dimension dependent.
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d > d. global phenomena cease to be dimension dependent.

For percolationd. = 6. At p.(d) there is just enough probability of an edge
being open to allow large scale connected structures of edgas.

However, these structures are ‘thin” and whén d.. they don'’t
self-intersect except locally — hence they don't ‘see’ tiie dimension of
the space they are in. In fact, they are close to being ‘fractas’, and
should be similar to those for percolation on the binary fee
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It was known that for the 1IC of8 one hadl, = 2/3. The bold part of the
AO conjecture was that this was also conjecturedfer d < 5.
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AO conjecture

Why did they think this could be independent of dimension?
A general idea in statistical physics is of ‘upper criticahénsion’d..: for
d > d. global phenomena cease to be dimension dependent.

For percolationd. = 6. At p.(d) there is just enough probability of an edge
being open to allow large scale connected structures of edgas.

However, these structures are ‘thin” and whén d.. they don'’t
self-intersect except locally — hence they don't ‘see’ tiie dimension of
the space they are in. In fact, they are close to being ‘fractas’, and
should be similar to those for percolation on the binary fee

It was known that for the 1IC of8 one hadl, = 2/3. The bold part of the
AO conjecture was that this was also conjecturedfer d < 5.

Techniques developed for random walks on fractal sets tutmoobe useful
for critical clusters. (Not a surprise, since this was onginal motivation to
look at SRW on fractals.) One needs ‘volume’ estimates,mstead of ‘PI’

one can use ‘electrical resistance’.
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SRW on critical percolation clusters

Theorem 4. (Kesten, 1986, MB-Kumagai, 20074, = 2/3 for the 11C onB.
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Earlier (mean value) result by physicists Jonsson and Véheel
“The spectral dimension of the branched polymer phase ofdweensional
guantum gravity.”
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Theorem 6. (Kozma and Nachmias, preprint.) AO conjecture holds for
standard percolation wheh> 19.
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SRW on critical percolation clusters

Theorem 4. (Kesten, 1986, MB-Kumagai, 20074, = 2/3 for the 11C onB.

Earlier (mean value) result by physicists Jonsson and Véheel
“The spectral dimension of the branched polymer phase ofdweensional
guantum gravity.”

Theorem 5. (MB, Jarai, Kumagai, Slade, 2008) AO conjecture holds for
another percolation model (‘spread out oriented percmtdtifor d > 6

Theorem 6. (Kozma and Nachmias, preprint.) AO conjecture holds for
standard percolation wheh> 19.

It seems likely that the AO conjecture holds tbr- 6. It is not now believed
to hold whend < 6 — this is supported by numerical simulations, which are
now much better than in 1983.
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SRW on critical percolation clusters

Theorem 4. (Kesten, 1986, MB-Kumagai, 20074, = 2/3 for the 11C onB.

Earlier (mean value) result by physicists Jonsson and Véheel
“The spectral dimension of the branched polymer phase ofdweensional
guantum gravity.”

Theorem 5. (MB, Jarai, Kumagai, Slade, 2008) AO conjecture holds for
another percolation model (‘spread out oriented percmtdtifor d > 6

Theorem 6. (Kozma and Nachmias, preprint.) AO conjecture holds for
standard percolation wheh> 19.

It seems likely that the AO conjecture holds tbr- 6. It is not now believed
to hold whend < 6 — this is supported by numerical simulations, which are
now much better than in 1983.

Ford = 2 one percolation model (‘site percolation on the trianglatice’)
has been proved to have a conformally invariant scaling liwiich is
SLEg. (Smirnov; Lawler-Schramm-Werner.)
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Critical site percolationd = 2
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Critical site percolationd = 2

Using the SLE limit, many exponents have been calculatethiotiC for this
percolation process. For example, the dimension of theenis91/48, and the
dimension of the boundary of the ‘holes’ is 4/3.

| do not know of any generally accepted conjecture on whathould be.

To calculated, one needs ‘electrical resistance’ properties of the 11, these
are harder to obtain than the geometric properties whicle baen obtained from
the SLE theory.

It is also likely that one needs to know the length of the sfsirpath in the cluster
across a box of sid& — another quantity that the SLE theory does not seem to
give.
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