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Structural Versus Reduced Form Models in Credit
Risk (Merton, 1973)

• We begin with a filtered space (Ω,H,P,H) where
H = (Ht)t≥0

• Let X be a Markov process on (Ω,H,P,H) given by

dXt = 1 +

∫ t

0
σ(s,Xs)dBs +

∫ t

0
µ(s,Xs)ds

• In a structural model we assume we observe
G = (σ(Xs ; 0 ≤ s ≤ t))t≥0 and so G ⊂ H

• Default occurs when the firm’s value X crosses below a given
threshold level process L = (Lt)t≥0

• If L is constant, then the default time is
τ = inf{t > 0 : Xt ≤ L}, and τ is a predictable time for G
and H



Two objections to the Structural Model Approach

• It is assumed that the coefficients σ and µ in the diffusion
equation are knowable

• It is also assumed the level crossing that leads to default is
knowable

• The default time is a predictable stopping time



The Reduced Form Approach (Jarrow, Turnbull,
Duffie, Lando, Jeanblanc...)

• We assume that a stopping time τ is given, which is a default
time

• We assume that τ is a totally inaccessible time

• This means that Mt = 1{t≥τ} − At = a martingale

• A is adapted, continuous, and non decreasing

• Usually it is implicitly assumed that A is of the form

At =

∫ t

0
λsds,

where λ is the instantaneous likelihood of the arrival of τ



The Hybrid Approach (Giesecke, Goldberg, ...)

• We assume the structural approach, but instead of a level
crossing time as a default time, we replace it with a random
curve

• This can make the stopping time totally inaccessible, and of
the form found in the reduced form approach

• Giesecke has also pointed out that the increasing process A
need no longer have absolutely continuous paths



The Filtration Shrinkage Approach (Çetin, Jarrow,
Protter, Yildirim)

• τ can be the time of default for the structural approach

• One does not know the structural approach, so one models
this by shrinking the filtration to the presumed level of
observable events

• The result is that τ becomes totally inaccessible, and one
recovers the reduced form approach

• Advantage: This relates the structural and reduced form
approaches which facilitate empirical methods to estimate τ

• Motivates studying compensators of stopping times and their
behavior under filtration shrinkage



When does the compensator A have absolutely
continuous paths?

• Ethier-Kurtz Criterion: A0 = 0 and suppose for s ≤ t

E{At − As |Gs} ≤ K (t − s)

then A is of the form At =
∫ t
0 λsds

• Yan Zeng, PhD Thesis, Cornell, 2006: There exists an
increasing process Dt with dDt � dt a.s. and

E{At − As |Gs} ≤ E{Dt − Ds |Gt},

then A is of the form At =
∫ t
0 λsds



Shrinkage Result; M. Jacobsen, 2005; New proof

• Suppose 1{t≥τ} −
∫ t
0 λsds is a martingale in H

• Suppose also τ is a stopping time in G where G ⊂ H. Then

1{t≥τ} −
∫ t

0

oλsds is a martingale in G

where oλ denotes the optional projection of the process λ
onto the filtration G



Is there a general condition such that all stopping
times have absolutely continuous compensators?

• Let X be a strong Markov process; suppose it also a Hunt
process

• (Çinlar and Jacod, 1981) On a space (Ω,F ,F,Px), up to a
change of time and space, if X is a semimartingale we have
the representation

Xt = X0 +

∫ t

0
b(Xs)ds +

∫ t

0
c(Xs)dWs

+

∫ t

0

∫
R

k(Xs−, z)1{|k(Xs−,z)|≤1}[n(ds, dz)− dsν(dz)]

+

∫ t

0

∫
R

k(Xs−, z)1{|k(Xs−,z)|>1}n(ds, dz)



Lévy system of a Hunt process

• For a Hunt process semimartingale X with measure Pµ a
Lévy system (K ,H) where K is a kernel on R and H is a
continuous additive functional of X , satisfies the following
relationship:

Eµ

 ∑
0<s≤t

f (Xs−,Xs)1{Xs− 6=Xs}


= Eµ

(∫ t

0
dHs

∫
R

K (Xs−, dy)f (Xs , y)

)
• For X a strong Markov process as in the Çinlar-Jacod

theorem, we can take the continuous additive functional H to
be Ht = t



In a “natural” Markovian space, all compensators of
stopping times have absolutely continuous paths

Theorem: Let F be the natural (completed) filtration of a Hunt
process X on a space (Ω,F ,Pµ) and let (K ,H) be a Lévy system
for X . If dHt � dt then for any totally inaccessible stopping time
τ the compensator of τ has absolutely continuous paths a.s. That
is, there exists an adapted process λ such that

1{t≥τ} −
∫ t

0
λsds is an F martingale. (1)

Moreover if dHt is not equivalent to dt, then there exists a
stopping time ν such that (1) does not hold.



Jumping Filtrations

• Jacod and Skorohod define a jumping filtration F to be a
filtration such that there exists a sequence of stopping times
(Tn)n=0,1,... increasing to ∞ a.s. with T0 = 0 and such that
for all n ∈ N, t > 0, the σ-fields Ft and FTn coincide on
{Tn ≤ t < Tn+1}

• Theorem: Let N = (Nt)t≥0 be a point process without
explosions that generates a quasi-left continuous jumping
filtration, and suppose there exists a process (λs)s≥0 such that

Nt −
∫ t

0
λsds = a martingale. (2)

Let D = (Dt)t≥0 be the (automatically right continuous)
filtration generated by N and completed in the usual way.
Then for any D totally inaccessible stopping time R we have
that the compensator of 1{t≥R} has absolutely continuous
paths, a.s.
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Increasing Processes

• Theorem: Z is an increasing process; suppose there exists λ
such that

Zt −
∫ t

0
λsds = a martingale

• Let R be a stopping time such that
P(∆ZR > 0 ∩ {R <∞}) = P(R <∞); then R too has an
absolutely continuous compensator; that is, there exists a
process µ such that

1{t≥R} −
∫ t

0
µsds = a martingale

• Consequence: If N is a Poisson process with parameter λ,
and R is a totally inaccessible stopping time on the minimal
space generated by N, then the compensator of R has
absolutely continuous paths.
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Filtration Shrinkage and Compensators

• Dellacherie’s Theorem: Let R be a nonnegative random
variable with P(R = 0) = 0,P(R > t) > 0 for each t > 0. Let
Ft = σ(t ∧ R). Let F denote the law of R. Then the
compensator A = (At)t≥0 of the process 1{R≥t} is given by

At =

∫ t

0

1

1− F (u−)
dF (u).

If F is continuous, then A is continuous, R is totally
inaccessible, and At = − ln(1− F (R ∧ t)).

• We know by Jacobsen’s theorem, that once a compensator is
absolutely continuous, it still is in any smaller filtration
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• It is a priori possible that a stopping time R has a singular
compensator in a filtration H, but an absolutely continuous
compensator in a smaller filtration

• Conjecture: If a stopping time R has an absolutely
continuous law, then it has an absolutely continuous
compensator in any filtration rendering it totally inaccessible.

• This conjecture is false. A stopping time can be
constructed with Brownian local time at zero as its
compensator. In its minimal filtration, the compensator is
absolutely continuous with respect to t 7→ E (Lt), which is
absolutely continuous with respect to dt.
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Equivalent Probabilities

• Let τ be a stopping time on a space (Ω,F ,PF) and suppose
it has an absolutely continuous compensator; that is,

Mt = 1{t≥τ} −
∫ t

0
λsds = a martingale

• Let Q be equivalent to P, a situation which often arises in
Mathematical Finance, with risk neutral measures; let Z = dQ

dP

and Zt = E{dQ
dP |Ft}

• Then τ has an absolutely continuous compensator, given by
the relation

1{t≥τ} −
∫ t

0
λsds −

∫ t

0

1

Zs−
d〈Z ,M〉s = a martingale

• Note: Since [M,M]t = 1{t≥τ} we have that

〈M,M〉t =
∫ t
0 λsds, and the result folows by the

Kunita-Watanabe inequality.
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Initial Enlargement

• Again, let τ be a stopping time on a space (Ω,F ,P,F) and
suppose it has an absolutely continuous compensator; that is,

Mt = 1{t≥τ} −
∫ t

0
λsds = a martingale

• Suppose we expand F by adding a random variable L, with
law η(dx), to F0 and Ft for all t > 0.

• Let Qt(ω, dx) be the conditional distribution of L given Ft ,
and suppose further that Qt(ω, ds)� η(dx) and we write
Qt(ω, dx) = qx

t ηt(dx)

• We write

〈qx ,M〉t =

∫ t

0
kx
s qx

s−d〈M,M〉s
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• The compensator of τ under the enlarged filtration G given by
Gt = Ft ∧ σ(t ∧ T ) is

Mt = 1{t≥τ} −
∫ t

0
λsds −

∫ t

0
kL
s d〈M,M〉s

• Again, note that 〈M,M〉t =
∫ t
0 λsds, so that the compensator

is absolutely continuous
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Progressive Expansion of Filtrations

• Once again, let τ be a stopping time on a space (Ω,F ,P,F)
and suppose it has an absolutely continuous compensator;
that is,

Mt = 1{t≥τ} −
∫ t

0
λsds = a martingale

• We asume L is a positive random variable, and that L avoids
all F stopping times; that is, if T is an F stopping time, then
P(L = T ) = 0

• We enlarge the filtration F with L such that the new filtration,
G makes L a stopping time; the method of expansion is called
progressive expansion. We call the enlarged filtration G

• Then τ has an absolutely continuous compensator in G as
well.
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Analogous Results for the Entire Space

• We will say that on a space (Ω,G,P,G) that a probability Q
has Property AC if under Q, all totally inaccessible stopping
times have absolutely continuous compensators

• A class of examples with Property AC are strong Markov
spaces, where the Lévy system of the Markov process is itself
absolutely continuous

• Theorem: Suppose that (Ω,G,P,G,X ) is a given system,
and that there exists a probability Q? equivalent to P
such that Q? has Property AC. Then if Q is the set of all
probability measure equivalent to P, we have that
Property AC holds under any Q ∈ Q.

• This last theorem is especially useful for applications in
Finance
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• Theorem: Under initial expansion, we have an analogous
result. Expand G by adding a random variable L initially to
obtain H. If there exists Q? ∈ Q with Property AC under G,
then Q? has Property AC in H, and so all Q ∈ Q.

• Theorem: Let L be a positive random variable and
progressively expand G with L to get a filtration J . If
Q? ∈ Q has Property AC for G, then it also does for J .
Moreover so does any Q ∈ Q.
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Thank you


