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Structural Versus Reduced Form Models in Credit
Risk (Merton, 1973)

e We begin with a filtered space (2, H, P,H) where
H= (Ht)tzo
e Let X be a Markov process on (Q2,H, P,H) given by

t t
dX, =1+ / o (5, Xs)dBs + / e ar
0 0

e In a structural model we assume we observe
G =(0(Xs;0<s<t))>0andso G CH

e Default occurs when the firm's value X crosses below a given
threshold level process L = (L¢)>0

e If L is constant, then the default time is
T=inf{t > 0: X; <L}, and 7 is a predictable time for G
and H



Two objections to the Structural Model Approach

e |t is assumed that the coefficients ¢ and p in the diffusion
equation are knowable

e It is also assumed the level crossing that leads to default is
knowable

e The default time is a predictable stopping time



The Reduced Form Approach (Jarrow, Turnbull,
Duffie, Lando, Jeanblanc...)

e We assume that a stopping time 7 is given, which is a default
time

e We assume that 7 is a totally inaccessible time

This means that My = 14>y — A: = a martingale

A is adapted, continuous, and non decreasing

Usually it is implicitly assumed that A is of the form

t
At - / )\sds,
0

where ) is the instantaneous likelihood of the arrival of 7



The Hybrid Approach (Giesecke, Goldberg, ...)

e We assume the structural approach, but instead of a level

crossing time as a default time, we replace it with a random
curve

e This can make the stopping time totally inaccessible, and of
the form found in the reduced form approach

o Giesecke has also pointed out that the increasing process A
need no longer have absolutely continuous paths



The Filtration Shrinkage Approach (Cetin, Jarrow,
Protter, Yildirim)

e 7 can be the time of default for the structural approach

e One does not know the structural approach, so one models
this by shrinking the filtration to the presumed level of
observable events

e The result is that 7 becomes totally inaccessible, and one
recovers the reduced form approach

e Advantage: This relates the structural and reduced form
approaches which facilitate empirical methods to estimate 7

e Motivates studying compensators of stopping times and their
behavior under filtration shrinkage



When does the compensator A have absolutely
continuous paths?

e Ethier-Kurtz Criterion: Ay = 0 and suppose for s < t
E{A: — As|Gs} < K(t —s)

then A is of the form A; = fot Asds

e Yan Zeng, PhD Thesis, Cornell, 2006: There exists an
increasing process D; with dD; < dt a.s. and

E{A: — As|Gs} < E{D; — Ds|G:},

then A is of the form A; = fot Asds



Shrinkage Result; M. Jacobsen, 2005; New proof

o Suppose 1g>ry — fot Asds is a martingale in H
e Suppose also 7 is a stopping time in G where G C H. Then

t
Lie>ry —/0 °Asds is a martingale in G

where ° X denotes the optional projection of the process A
onto the filtration G



Is there a general condition such that all stopping
times have absolutely continuous compensators?

e Let X be a strong Markov process; suppose it also a Hunt
process

¢ (Cinlar and Jacod, 1981) On a space (2, F,F, PX), up to a
change of time and space, if X is a semimartingale we have
the representation

t t
Xe=Xo + / b(Xs)ds + / c(Xs)dW,
0 0
t
o [ K 21y nlotes, de) — dsv(a)]

t
+ /0/Rk(Xs—aZ)l{|k(Xs_,z)|>1}n(d57dz)



Lévy system of a Hunt process

e For a Hunt process semimartingale X with measure P* a
Lévy system (K, H) where K is a kernel on R and H is a
continuous additive functional of X, satisfies the following
relationship:

E* Z f(Xs—aXs)l{Xs,;éXs}

0<s<t

- Er (AthSAK(XS,dy)f(Xs,y)>

e For X a strong Markov process as in the Cinlar-Jacod
theorem, we can take the continuous additive functional H to
be Ht =t



In a “natural” Markovian space, all compensators of
stopping times have absolutely continuous paths

Theorem: Let [ be the natural (completed) filtration of a Hunt
process X on a space (2, F, P*) and let (K, H) be a Lévy system
for X. If dH; < dt then for any totally inaccessible stopping time
T the compensator of 7 has absolutely continuous paths a.s. That
is, there exists an adapted process A such that

t
Lit>r) —/0 Asds is an F martingale. (1)

Moreover if dH; is not equivalent to dt, then there exists a
stopping time v such that (1) does not hold.



Jumping Filtrations

e Jacod and Skorohod define a jumping filtration F to be a
filtration such that there exists a sequence of stopping times
(Th)n=0,1,... increasing to oo a.s. with To = 0 and such that
for all n € N, t > 0, the o-fields F; and F7, coincide on
{Tn <t< Tn+]_}



Jumping Filtrations

e Jacod and Skorohod define a jumping filtration F to be a
filtration such that there exists a sequence of stopping times
(Th)n=0,1,... increasing to oo a.s. with To = 0 and such that
for all n € N, t > 0, the o-fields F; and F7, coincide on
{Tn <t< Tn+]_}

e Theorem: Let N = (N;):>0 be a point process without
explosions that generates a quasi-left continuous jumping
filtration, and suppose there exists a process (\s)s>o such that

t
N; —/ Asds = a martingale. (2)
0

Let D = (D¢)¢>0 be the (automatically right continuous)
filtration generated by N and completed in the usual way.
Then for any D totally inaccessible stopping time R we have
that the compensator of 1;;>g) has absolutely continuous
paths, a.s.
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e Theorem: Z is an increasing process; suppose there exists A
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e Theorem: Z is an increasing process; suppose there exists A
such that
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7 —/ Asds = a martingale
0
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Increasing Processes

e Theorem: Z is an increasing process; suppose there exists A
such that

t
7 —/ Asds = a martingale
0

e Let R be a stopping time such that
P(AZr > 0N{R < c0}) = P(R < o0); then R too has an
absolutely continuous compensator; that is, there exists a
process . such that

t
iRy —/0 sds = a martingale

e Consequence: If N is a Poisson process with parameter ),
and R is a totally inaccessible stopping time on the minimal
space generated by N, then the compensator of R has
absolutely continuous paths.



Filtration Shrinkage and Compensators

e Dellacherie’s Theorem: Let R be a nonnegative random
variable with P(R =0) =0, P(R > t) > 0 for each t > 0. Let
Fi =0o(t AR). Let F denote the law of R. Then the
compensator A = (A;);>0 of the process 11z~ is given by

£
At:/o mdF(u).

If F is continuous, then A is continuous, R is totally
inaccessible, and Ay = —In(1 — F(R A t)).



Filtration Shrinkage and Compensators

Dellacherie’s Theorem: Let R be a nonnegative random
variable with P(R =0) =0, P(R > t) > 0 for each t > 0. Let
Fi =0o(t AR). Let F denote the law of R. Then the
compensator A = (A;);>0 of the process 11z~ is given by

£
At:/o mdF(u).

If F is continuous, then A is continuous, R is totally
inaccessible, and Ay = —In(1 — F(R A t)).

We know by Jacobsen's theorem, that once a compensator is
absolutely continuous, it still is in any smaller filtration



e It is a priori possible that a stopping time R has a singular
compensator in a filtration H, but an absolutely continuous
compensator in a smaller filtration
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e It is a priori possible that a stopping time R has a singular
compensator in a filtration H, but an absolutely continuous
compensator in a smaller filtration

e Conjecture: If a stopping time R has an absolutely
continuous law, then it has an absolutely continuous
compensator in any filtration rendering it totally inaccessible.

e This conjecture is false. A stopping time can be
constructed with Brownian local time at zero as its
compensator. In its minimal filtration, the compensator is
absolutely continuous with respect to t — E(L;), which is
absolutely continuous with respect to dt.
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Equivalent Probabilities

Let 7 be a stopping time on a space (2, F, PF) and suppose
it has an absolutely continuous compensator; that is,

t
Me = 1¢151y —/ Asds = a martingale
0

Let Q be equivalent to P, a situation which often arises in

Mathematical Finance, with risk neutral measures; let Z = %
d

and Z; = E{d—g|.7-"t}

Then 7 has an absolutely continuous compensator, given by

the relation

t t
1
1{t2T}_/0 )\sds—/o 7 d(Z,M)s = a martingale
s

Note: Since [M, M]; = 1;;>} we have that
(M, M), = [; Asds, and the result folows by the
Kunita-Watanabe inequality.
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Initial Enlargement

Again, let 7 be a stopping time on a space (2, F, P,F) and
suppose it has an absolutely continuous compensator; that is,

t
My = 14151y —/ Asds = a martingale
0

Suppose we expand F by adding a random variable L, with
law n(dx), to Fo and F; for all t > 0.

Let Q¢(w, dx) be the conditional distribution of L given F,
and suppose further that Q:(w, ds) < n(dx) and we write
Qt(w, dx) = g¢ne(dx)

We write

t
(", M) = /0 KEqE_d(M, M),



e The compensator of 7 under the enlarged filtration G given by
gt:]:t/\O'(t/\ T) is

t t
I\/Itzl{tZT}/O )\sds/o kEd(M, M)



e The compensator of 7 under the enlarged filtration G given by
gt:]:t/\O'(t/\ T) is

t t
I\/Itzl{tZT}/O )\sds/o kEd(M, M)

e Again, note that (M, M), = fot Asds, so that the compensator
is absolutely continuous



Progressive Expansion of Filtrations
e Once again, let 7 be a stopping time on a space (2, F, P, )
and suppose it has an absolutely continuous compensator;
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Progressive Expansion of Filtrations

Once again, let 7 be a stopping time on a space (2, F, P, )
and suppose it has an absolutely continuous compensator;
that is,

t
Me = 14151y —/ Asds = a martingale
0

We asume L is a positive random variable, and that L avoids

all F stopping times; that is, if T is an F stopping time, then

P(L=T)=0

We enlarge the filtration I with L such that the new filtration,
G makes L a stopping time; the method of expansion is called
progressive expansion. We call the enlarged filtration G

Then 7 has an absolutely continuous compensator in G as
well.
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e We will say that on a space (Q2,G, P,G) that a probability Q
has Property AC if under Q, all totally inaccessible stopping
times have absolutely continuous compensators
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Analogous Results for the Entire Space

e We will say that on a space (Q2,G, P,G) that a probability Q
has Property AC if under Q, all totally inaccessible stopping
times have absolutely continuous compensators

e A class of examples with Property AC are strong Markov
spaces, where the Lévy system of the Markov process is itself
absolutely continuous

e Theorem: Suppose that (Q2,G, P, G, X) is a given system,
and that there exists a probability Q* equivalent to P
such that Q* has Property AC. Then if Q is the set of all
probability measure equivalent to P, we have that
Property AC holds under any Q € Q.



Analogous Results for the Entire Space

We will say that on a space (2,3, P, G) that a probability Q
has Property AC if under Q, all totally inaccessible stopping
times have absolutely continuous compensators

A class of examples with Property AC are strong Markov
spaces, where the Lévy system of the Markov process is itself
absolutely continuous

Theorem: Suppose that (2,G, P, G, X) is a given system,
and that there exists a probability Q* equivalent to P
such that Q* has Property AC. Then if Q is the set of all
probability measure equivalent to P, we have that
Property AC holds under any Q € Q.

This last theorem is especially useful for applications in
Finance



e Theorem: Under initial expansion, we have an analogous
result. Expand G by adding a random variable L initially to
obtain HL. If there exists Q* € Q with Property AC under G,
then @* has Property AC in H, and so all Q € O.



e Theorem: Under initial expansion, we have an analogous
result. Expand G by adding a random variable L initially to
obtain H. If there exists Q* € Q with Property AC under G,
then @* has Property AC in H, and so all Q € O.

e Theorem: Let L be a positive random variable and
progressively expand G with L to get a filtration J. If

Q@* € Q has Property AC for G, then it also does for 7.
Moreover so does any Q € Q.
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