Absolutely Continuous Compensators

Workshop on Computational Methods in Finance Philip Protter ORIE, Cornell; Columbia Statistics beginning July 2010

March 24 2010

Based on work with Svante Janson and Sokhna M'Baye

Structural Versus Reduced Form Models in Credit Risk (Merton, 1973)

- We begin with a filtered space $(\Omega, \mathcal{H}, P, \mathbb{H})$ where $\mathbb{H} = (\mathcal{H}_t)_{t \geq 0}$
- Let X be a Markov process on $(\Omega, \mathcal{H}, P, \mathbb{H})$ given by

$$dX_t = 1 + \int_0^t \sigma(s, X_s) dB_s + \int_0^t \mu(s, X_s) ds$$

- In a structural model we assume we observe $\mathbb{G}=(\sigma(X_s;0\leq s\leq t))_{t\geq 0}$ and so $\mathbb{G}\subset\mathbb{H}$
- Default occurs when the firm's value X crosses below a given threshold level process $L=(L_t)_{t\geq 0}$
- If L is constant, then the default time is $\tau = \inf\{t > 0 : X_t \le L\}$, and τ is a predictable time for $\mathbb G$ and $\mathbb H$

Two objections to the Structural Model Approach

- It is assumed that the coefficients σ and μ in the diffusion equation are knowable
- It is also assumed the level crossing that leads to default is knowable
- The default time is a predictable stopping time

The Reduced Form Approach (Jarrow, Turnbull, Duffie, Lando, Jeanblanc...)

- We assume that a stopping time τ is given, which is a default time
- We assume that τ is a totally inaccessible time
- ullet This means that $M_t=1_{\{t\geq au\}}-A_t=ullet$ a martingale
- A is adapted, continuous, and non decreasing
- Usually it is implicitly assumed that A is of the form

$$A_t = \int_0^t \lambda_s ds,$$

where λ is the instantaneous likelihood of the arrival of au

The Hybrid Approach (Giesecke, Goldberg, ...)

- We assume the structural approach, but instead of a level crossing time as a default time, we replace it with a random curve
- This can make the stopping time totally inaccessible, and of the form found in the reduced form approach
- Giesecke has also pointed out that the increasing process A need no longer have absolutely continuous paths

The Filtration Shrinkage Approach (Çetin, Jarrow, Protter, Yildirim)

- ullet au can be the time of default for the structural approach
- One does not know the structural approach, so one models this by shrinking the filtration to the presumed level of observable events
- ullet The result is that au becomes totally inaccessible, and one recovers the reduced form approach
- Advantage: This relates the structural and reduced form approaches which facilitate empirical methods to estimate au
- Motivates studying compensators of stopping times and their behavior under filtration shrinkage

When does the compensator A have absolutely continuous paths?

• Ethier-Kurtz Criterion: $A_0 = 0$ and suppose for $s \le t$

$$E\{A_t - A_s | \mathcal{G}_s\} \le K(t-s)$$

then A is of the form $A_t = \int_0^t \lambda_s ds$

• Yan Zeng, PhD Thesis, Cornell, 2006: There exists an increasing process D_t with $dD_t \ll dt$ a.s. and

$$E\{A_t - A_s | \mathcal{G}_s\} \le E\{D_t - D_s | \mathcal{G}_t\},\$$

then A is of the form $A_t = \int_0^t \lambda_s ds$

Shrinkage Result; M. Jacobsen, 2005; New proof

- Suppose $1_{\{t \geq \tau\}} \int_0^t \lambda_s ds$ is a martingale in $\mathbb H$
- Suppose also au is a stopping time in $\mathbb G$ where $\mathbb G\subset\mathbb H.$ Then

$$1_{\{t\geq au\}} - \int_0^t {}^o \lambda_s ds$$
 is a martingale in $\mathbb G$

where ${}^o\lambda$ denotes the optional projection of the process λ onto the filtration $\mathbb G$

Is there a general condition such that all stopping times have absolutely continuous compensators?

- Let X be a strong Markov process; suppose it also a Hunt process
- (Çinlar and Jacod, 1981) On a space $(\Omega, \mathcal{F}, \mathbb{F}, P^x)$, up to a change of time and space, if X is a semimartingale we have the representation

$$\begin{split} X_t &= X_0 + \int_0^t b(X_s) ds + \int_0^t c(X_s) dW_s \\ &+ \int_0^t \int_{\mathbb{R}} k(X_{s-}, z) 1_{\{|k(X_{s-}, z)| \leq 1\}} [n(ds, dz) - ds\nu(dz)] \\ &+ \int_0^t \int_{\mathbb{R}} k(X_{s-}, z) 1_{\{|k(X_{s-}, z)| > 1\}} n(ds, dz) \end{split}$$

Lévy system of a Hunt process

• For a Hunt process semimartingale X with measure P^{μ} a **Lévy system** (K, H) where K is a kernel on \mathbb{R} and H is a continuous additive functional of X, satisfies the following relationship:

$$E^{\mu} \left(\sum_{0 < s \le t} f(X_{s-}, X_s) 1_{\{X_{s-} \ne X_s\}} \right)$$

$$= E^{\mu} \left(\int_0^t dH_s \int_{\mathbb{R}} K(X_{s-}, dy) f(X_s, y) \right)$$

• For X a strong Markov process as in the Çinlar-Jacod theorem, we can take the continuous additive functional H to be $H_t=t$

In a "natural" Markovian space, all compensators of stopping times have absolutely continuous paths

Theorem: Let \mathbb{F} be the natural (completed) filtration of a Hunt process X on a space $(\Omega, \mathcal{F}, P^{\mu})$ and let (K, H) be a Lévy system for X. If $dH_t \ll dt$ then for any totally inaccessible stopping time τ the compensator of τ has absolutely continuous paths a.s. That is, there exists an adapted process λ such that

$$1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds \text{ is an } \mathbb{F} \text{ martingale.} \tag{1}$$

Moreover if dH_t is not equivalent to dt, then there exists a stopping time ν such that (1) does not hold.

Jumping Filtrations

• Jacod and Skorohod define a **jumping filtration** \mathbb{F} to be a filtration such that there exists a sequence of stopping times $(T_n)_{n=0,1,\dots}$ increasing to ∞ a.s. with $T_0=0$ and such that for all $n\in\mathbb{N}, t>0$, the σ -fields \mathcal{F}_t and $\mathcal{F}_{\mathcal{T}_n}$ coincide on $\{T_n\leq t< T_{n+1}\}$

Jumping Filtrations

- Jacod and Skorohod define a **jumping filtration** \mathbb{F} to be a filtration such that there exists a sequence of stopping times $(T_n)_{n=0,1,\dots}$ increasing to ∞ a.s. with $T_0=0$ and such that for all $n\in\mathbb{N}, t>0$, the σ -fields \mathcal{F}_t and \mathcal{F}_{T_n} coincide on $\{T_n\leq t< T_{n+1}\}$
- Theorem: Let $N=(N_t)_{t\geq 0}$ be a point process without explosions that generates a quasi-left continuous jumping filtration, and suppose there exists a process $(\lambda_s)_{s\geq 0}$ such that

$$N_t - \int_0^t \lambda_s ds = \text{ a martingale.}$$
 (2)

Let $\mathbb{D}=(\mathcal{D}_t)_{t\geq 0}$ be the (automatically right continuous) filtration generated by N and completed in the usual way. Then for any \mathbb{D} totally inaccessible stopping time R we have that the compensator of $1_{\{t\geq R\}}$ has absolutely continuous paths, a.s.

Increasing Processes

• Theorem: Z is an increasing process; suppose there exists λ such that

$$Z_t - \int_0^t \lambda_s ds = a \text{ martingale}$$

Increasing Processes

• Theorem: Z is an increasing process; suppose there exists λ such that

$$Z_t - \int_0^t \lambda_s ds = a martingale$$

• Let R be a stopping time such that $P(\Delta Z_R > 0 \cap \{R < \infty\}) = P(R < \infty)$; then R too has an absolutely continuous compensator; that is, there exists a process μ such that

$$1_{\{t\geq R\}}-\int_0^t \mu_s ds=$$
 a martingale

Increasing Processes

• Theorem: Z is an increasing process; suppose there exists λ such that

$$Z_t - \int_0^t \lambda_s ds = a martingale$$

• Let R be a stopping time such that $P(\Delta Z_R > 0 \cap \{R < \infty\}) = P(R < \infty)$; then R too has an absolutely continuous compensator; that is, there exists a process μ such that

$$1_{\{t\geq R\}}-\int_0^t \mu_s ds=$$
 a martingale

 Consequence: If N is a Poisson process with parameter λ, and R is a totally inaccessible stopping time on the minimal space generated by N, then the compensator of R has absolutely continuous paths.

Filtration Shrinkage and Compensators

• **Dellacherie's Theorem:** Let R be a nonnegative random variable with P(R=0)=0, P(R>t)>0 for each t>0. Let $\mathcal{F}_t=\sigma(t\wedge R)$. Let F denote the law of R. Then the compensator $A=(A_t)_{t\geq 0}$ of the process $1_{\{R\geq t\}}$ is given by

$$A_t = \int_0^t \frac{1}{1 - F(u-)} dF(u).$$

If F is continuous, then A is continuous, R is totally inaccessible, and $A_t = -\ln(1 - F(R \wedge t))$.

Filtration Shrinkage and Compensators

• **Dellacherie's Theorem:** Let R be a nonnegative random variable with P(R=0)=0, P(R>t)>0 for each t>0. Let $\mathcal{F}_t=\sigma(t\wedge R)$. Let F denote the law of R. Then the compensator $A=(A_t)_{t\geq 0}$ of the process $1_{\{R\geq t\}}$ is given by

$$A_t = \int_0^t \frac{1}{1 - F(u-)} dF(u).$$

If F is continuous, then A is continuous, R is totally inaccessible, and $A_t = -\ln(1 - F(R \wedge t))$.

 We know by Jacobsen's theorem, that once a compensator is absolutely continuous, it still is in any smaller filtration • It is a priori possible that a stopping time R has a singular compensator in a filtration \mathbb{H} , but an absolutely continuous compensator in a smaller filtration

- It is a priori possible that a stopping time R has a singular compensator in a filtration \mathbb{H} , but an absolutely continuous compensator in a smaller filtration
- Conjecture: If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.

- It is a priori possible that a stopping time R has a singular compensator in a filtration \mathbb{H} , but an absolutely continuous compensator in a smaller filtration
- Conjecture: If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.
- This conjecture is false. A stopping time can be constructed with Brownian local time at zero as its compensator. In its minimal filtration, the compensator is absolutely continuous with respect to $t \mapsto E(L_t)$, which is absolutely continuous with respect to dt.

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P\mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P\mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

• Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z=\frac{dQ}{dP}$ and $Z_t=E\{\frac{dQ}{dP}|\mathcal{F}_t\}$

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P\mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$\mathit{M}_{t} = 1_{\{t \geq au\}} - \int_{0}^{t} \lambda_{s} \mathit{ds} = ext{ a martingale}$$

- Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z=\frac{dQ}{dP}$ and $Z_t=E\{\frac{dQ}{dP}|\mathcal{F}_t\}$
- ullet Then au has an absolutely continuous compensator, given by the relation

$$1_{\{t\geq au\}} - \int_0^t \lambda_s ds - \int_0^t rac{1}{Z_{s-}} d\langle Z, M
angle_s = ext{ a martingale}$$

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P\mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

- Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z=\frac{dQ}{dP}$ and $Z_t=E\{\frac{dQ}{dP}|\mathcal{F}_t\}$
- ullet Then au has an absolutely continuous compensator, given by the relation

$$1_{\{t\geq au\}} - \int_0^t \lambda_s ds - \int_0^t rac{1}{Z_{s-}} d\langle Z, M
angle_s = ext{ a martingale}$$

• Note: Since $[M,M]_t=1_{\{t\geq \tau\}}$ we have that $\langle M,M\rangle_t=\int_0^t \lambda_s ds$, and the result follows by the Kunita-Watanabe inequality.

• Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

• Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

• Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all t>0.

• Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

- Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all t > 0.
- Let $Q_t(\omega, dx)$ be the conditional distribution of L given \mathcal{F}_t , and suppose further that $Q_t(\omega, ds) \ll \eta(dx)$ and we write $Q_t(\omega, dx) = q_t^{\times} \eta_t(dx)$

• Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

- Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all t > 0.
- Let $Q_t(\omega, dx)$ be the conditional distribution of L given \mathcal{F}_t , and suppose further that $Q_t(\omega, ds) \ll \eta(dx)$ and we write $Q_t(\omega, dx) = q_t^x \eta_t(dx)$
- We write

$$\langle q^{\mathsf{x}}, M \rangle_t = \int_0^t k_{\mathsf{s}}^{\mathsf{x}} q_{\mathsf{s}-}^{\mathsf{x}} d\langle M, M \rangle_{\mathsf{s}}$$

• The compensator of τ under the enlarged filtration \mathbb{G} given by $\mathcal{G}_t = \mathcal{F}_t \wedge \sigma(t \wedge T)$ is

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds - \int_0^t k_s^L d\langle M, M \rangle_s$$

• The compensator of τ under the enlarged filtration \mathbb{G} given by $\mathcal{G}_t = \mathcal{F}_t \wedge \sigma(t \wedge T)$ is

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds - \int_0^t k_s^L d\langle M, M \rangle_s$$

• Again, note that $\langle M,M\rangle_t=\int_0^t\lambda_sds$, so that the compensator is absolutely continuous

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

• We asume L is a positive random variable, and that L avoids all $\mathbb F$ stopping times; that is, if T is an $\mathbb F$ stopping time, then P(L=T)=0

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

- We asume L is a positive random variable, and that L avoids all $\mathbb F$ stopping times; that is, if T is an $\mathbb F$ stopping time, then P(L=T)=0
- We enlarge the filtration F with L such that the new filtration,
 makes L a stopping time; the method of expansion is called progressive expansion. We call the enlarged filtration G

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq au\}} - \int_0^t \lambda_s ds = ext{ a martingale}$$

- We asume L is a positive random variable, and that L avoids all $\mathbb F$ stopping times; that is, if T is an $\mathbb F$ stopping time, then P(L=T)=0
- We enlarge the filtration F with L such that the new filtration,
 makes L a stopping time; the method of expansion is called progressive expansion. We call the enlarged filtration G
- \bullet Then τ has an absolutely continuous compensator in $\mathbb G$ as well.

• We will say that on a space $(\Omega, \mathcal{G}, P, \mathbb{G})$ that a probability Q has **Property AC** if under Q, all totally inaccessible stopping times have absolutely continuous compensators

- We will say that on a space $(\Omega, \mathcal{G}, P, \mathbb{G})$ that a probability Q has **Property AC** if under Q, all totally inaccessible stopping times have absolutely continuous compensators
- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous

- We will say that on a space $(\Omega, \mathcal{G}, P, \mathbb{G})$ that a probability Q has **Property AC** if under Q, all totally inaccessible stopping times have absolutely continuous compensators
- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous
- Theorem: Suppose that $(\Omega, \mathcal{G}, P, \mathbb{G}, X)$ is a given system, and that there exists a probability Q^* equivalent to P such that Q^* has Property AC. Then if \mathcal{Q} is the set of all probability measure equivalent to P, we have that Property AC holds under any $Q \in \mathcal{Q}$.

- We will say that on a space $(\Omega, \mathcal{G}, P, \mathbb{G})$ that a probability Q has **Property AC** if under Q, all totally inaccessible stopping times have absolutely continuous compensators
- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous
- Theorem: Suppose that $(\Omega, \mathcal{G}, P, \mathbb{G}, X)$ is a given system, and that there exists a probability Q^* equivalent to P such that Q^* has Property AC. Then if \mathcal{Q} is the set of all probability measure equivalent to P, we have that Property AC holds under any $Q \in \mathcal{Q}$.
- This last theorem is especially useful for applications in Finance

• **Theorem:** Under initial expansion, we have an analogous result. Expand \mathbb{G} by adding a random variable L initially to obtain \mathbb{H} . If there exists $Q^* \in \mathcal{Q}$ with Property AC under \mathbb{G} , then Q^* has Property AC in \mathbb{H} , and so all $Q \in \mathcal{Q}$.

- Theorem: Under initial expansion, we have an analogous result. Expand G by adding a random variable L initially to obtain H. If there exists Q* ∈ Q with Property AC under G, then Q* has Property AC in H, and so all Q ∈ Q.
- **Theorem:** Let L be a positive random variable and progressively expand $\mathbb G$ with L to get a filtration $\mathcal J$. If $Q^\star \in \mathcal Q$ has Property AC for $\mathbb G$, then it also does for $\mathcal J$. Moreover so does any $Q \in \mathcal Q$.

Thank you