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Overview

@ Goal: To introduce a class of computational methods for solving
free boundary problems

@ ldea: Convert the arising free-boundary problem into a sequence of
fixed boundary problems, which are easier to solve

@ Talk Outline:
@ American option pricing - optimal stopping

o Portfolio optimization with transaction costs - singular control,
higher dimensional

¢ (Cash management - impulse control)

o Overview of the theoretical guarantees established
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American Options

Asset price process S; follows a Geometric Brownian Motion.
Risk-free rate r and constant asset volatility o.

A put option: A contract that pays max(q — S, 0).
American put: The holder can choose any 7 € [0, T].

q: Strike price, T time to expiry.

Option price denoted by p(T, ). (z underlying asset price)

p(Tz)= sup E{e(q— 5%}
T€[0,T]



Optimal Exercise Policy

P =(g-x)"
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@ Optimal exercise policy is characterized by an exercise boundary ¢(T")
@ Exercise if z < ¢(T) else hold.



The Related Free-boundary PDE Problem

@ Standard dynamic programming arguments and the Ito’s formula
yield a free-boundary PDE: Hamilton Jacobi Bellman (HJB)
equation.

@ Find p(T,z), ¢(T') such that

ng:O If$>C(T),
op=(¢g—z)" if x < ¢(T) and
o max{Lp,(q—2z)" —p} =0 forall (z,T) € (0,00)%.

Here Lp = $0°2%pys + rap. — rp — pr

p=(g-x)"
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The Moving Boundary Method

el PUT.x)<(q—x)*

T : A min[ p(T,x)+x]

@ Guess a ” such that ¢® < ¢*: max{Lp, (¢ —z)* — p} = 0 would be
violated.

@ Any c! in the shaded region: Policy improvement (p! > p?), but
possibly ¢! > ¢*.

@ If ¢! is the contour of min(p® + z) along z, then ¢! < c* as well.



An Example

@ ¢=100,7 =8%,0 = 20%
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The Moving Boundary
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Portfolio optimization with transaction costs

@ Buying (selling) a unit of stock 7 costs : 1+ A; (—(1 — ;).

@ To maximize Long-term growth rate
(Taksar et.al. ('88), Akian et.al. ('01))

litrggle {@} .
@ Dynamics: Value of stock (.5;) and bank (Sp),
ds; ;S; dt + 0;5; dB;  +dL; — dU;
dSy 1S dt +Z (14 \)dL; + (1 — p;)dU;)



Portfolio optimization with transaction costs

@ With no transaction costs: optimal to stick to the Merton line
@ With transaction costs: too expensive to stay on the Merton line
@ Optimal policy is characterized by a No transaction region - A cone

S

Sy

State x; = S; /W, fraction of wealth in each stock.



Structure of optimal policy
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The Hamilton-Jacobi-Bellman Equation

@ Change of var. and dynamic prog. arguments switch the objective to
a cost minimization problem.

@ To find V(x) the differential cost function and d the long-term
asymptotic cost growth rate, such that,

mm{ ,CV, Bl‘/,...7BNV, SN‘/vaSNV}:O

LV (z) = % tr{DQV zoo” z} + VV. [z(oz —re— O'JTI)] + h(x) —d.

and the i-th component of the vectors BV (z) and SV (x) are
N N
Ai ijle%+%+Ai and i Z]-zll'ngVj—g;/;-ﬁ-,u/i.

@ State space is partitioned into 2N + 1 regions by the tight terms.



The HJB: Graphically

@ Two stock case: Looking for
@ a function V(z1,x2), a constant d
o and the optimal region of inaction 2 with 4 boundaries

such that
x2

B,V =0

0 x1
and min[ LV s BlV s Sﬂ/ y BQV 5 SQV] =0

@ N-assets: search for 2N hyper surfaces in IV dimension.



Boundary Update

@ Guess a large Q°, (i.e. assume Q* C Q°). Solve for Vo, do.

X2 Sell x2

Sell x4

o min[ LV, BiVo, Si1Vo, B2Vo, S2Vo | =0, would be violated.
@ Any Q! in grey area = d; < dy = Policy imp. Q* C Q7
e Ot guaranteed if new boundaries are defined by

min(A; 3, z; 5% —|— g;/ + A;) and min(u; Y- z; g;/j - g;:_ + i)




Results - Boundary iteration
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Increasing portfolio sizes

@ The dimensionality of the underlying problem increases with number
of stocks in the portfolio.

@ Consider independent assets with a; = 0.14, o; = 0.3,
Ai = p; = 5% and r = 10%. Increasing N.

@ Finite element based implementation on Matlab.



Increasing portfolio sizes

@ The dimensionality of the underlying problem increases with number
of stocks in the portfolio.

@ Consider independent assets with a; = 0.14, o; = 0.3,
Xi = p; = 5% and r = 10%. Increasing N.

@ Finite element based implementation on Matlab.

# of stocks, N Runtime
1 34 sec
20 mins
45 hrs
777

7?7

7?7

777

N O U W N




[

©

¢ ©

Revisiting the Scheme

Guess QY. n = 0.

Qn Solve PDE Vn,dn Bd update Qn+1

S

Iterate (n=n+1)
Most of the computational time is spent in solving the PDE
Can use simulation instead of solving PDEs to estimate V. d.

Issues:

o Estimation errors

@ Monotonicity breaks

o Simplest discretization of Q: each axis by P points. PV points.
Fixes:

@ Use increasing sample paths

o With a procedure that allows backing out

@ Approximate policy space: Eg. Hyper polygonal regions require only
PN?3 points.



Runtime comparisons

# of stocks PDE based Simulation
1 34 sec 4 mins

2 20 mins 58 mins

3 45 hrs 3.4 hrs

4 77 8.6 hrs

5 77 18.7 hrs

6 77 36.6 hrs

7 77 62.3 hrs




Runtime (log scale)
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Impulse control: The Cash Management Problem

A firm with stochastic cash flows.
The cash level at time ¢ is Y (¢).

°

°

@ h(Y(t)) > 0 captures to opportunity costs and penalty costs.

@ Cash level can be controlled by buying/selling short-term securities.
°

Transaction costs have a fixed component, which justifies the use of
non-infinitesimal control application. Causing discontinuities in state
evolution (Constantinides and Richard (1978))

@ Applications also exist in Portfolio optimization , Foreign exchange
Rate models, Index tracking, Inventory management and Healthcare
services management



The Control Band Policy

@ In several cases including this model, optimal control policies take a
simple form: (d, D, U, u).

)

Figure: An lllustration of a (d, D, U, u) Policy



The HJB Equation

min{LV (z), MV (z), mV(z)} = 0.

where

o Mf(a) i=infyse { f() + K +k-(1-2)} - f(2)
o mf(w) = infyes { )+ L+1- (@ =m)} — ()

o Lf(x) = 50%f"(x) +p- f'(x) = B+ f(z) + h()



The Moving boundary iteration

@ We will start with an initial guess dy < Dy < Uy < ug, and solve the
fixed-boundary problem to get V().

inf {z € [dn, Dy) : V() +k <0}
sup {z € (Un,un]: —V,(z)+1<0}

dn+1

Un+1

dn dny1 Un+1l Un



Updating D and U

We solve the fi)ged boundary problem (dy41, Dy, Uy, unt1) to obtains its
value function V,,(z), and then update D,, and U,, using

9 Dyy1 =arg minme(dnJrhunJrl {V + K+ k- (JZ - dn+1)}

@ Upy1 = argminge(d, , , unsy) {V Y+ L+1- (upt1 — m)}

That is, whenever a control is exerted, we choose the most efficient
jump-to point (inner boundary).



An Example of Stochastic Cash Management

ViV, Vg and V*=Vy

38

36|

Parameters chosen: p = —0.2, 0 = 0.6, 5 =0.01, K =0.14, k = 0.85,
L=0.14,1=0.85, p=0.12, ¢ = 0.08. The optimal (d, D, U, u)
obtained is (—1.315,0.117,4.838,6.492).



Theoritical Guarantees for the Moving Boundary Approach

@ One dimensional problems:
@ Monotone convergence
o Optimality of the converged value function
o e-optimality: |(1+ c1)V(z) — f(z)] < cze.

@ Multiple dimensions

@ Almost entirely numerical evidence based

@ Recently: For American options under a stochastic volatility setting
- for the first time established convergence proofs
- works for all popular stochastic volatility models



Conclusion

@ If you are looking to solve a free-boundary problem, transforming
them to a sequence of fixed boundary problems is very likely possible

@ Very efficient compared to general solution techniques like
transformation to controlled Markov chains or boundary mapping
transformation procedures

@ By clubbing the procedure with simulation, it is possible to
approximately solve large dimensional problems



Questions, Comments?



