Moving boundary approaches for solving free-boundary problems

Kumar Muthuraman McCombs School of Business, University of Texas - Austin

Workshop on Computational Methods in Finance, Fields Institute

March 2010

Overview

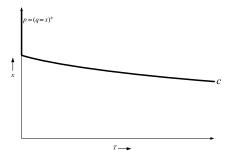
- Goal: To introduce a class of computational methods for solving free boundary problems
- **Idea**: Convert the arising free-boundary problem into a sequence of fixed boundary problems, which are easier to solve
- Talk Outline:
 - American option pricing optimal stopping
 - Portfolio optimization with transaction costs singular control, higher dimensional
 - (Cash management impulse control)
 - Overview of the theoretical guarantees established

American Options

- Asset price process S_t follows a Geometric Brownian Motion.
- ullet Risk-free rate r and constant asset volatility σ .
- A put option: A contract that pays $\max(q S_{\tau}, 0)$.
- American put: The holder can choose any $\tau \in [0, T]$.
- q: Strike price, T time to expiry.
- Option price denoted by p(T, x). (x underlying asset price)

$$p(T,x) = \sup_{\tau \in [0,T]} E\left\{e^{-r\tau}(q - S_{\tau})^{+}\right\}$$

Optimal Exercise Policy



- \bullet Optimal exercise policy is characterized by an exercise boundary c(T)
- Exercise if $x \le c(T)$ else hold.

The Related Free-boundary PDE Problem

- Standard dynamic programming arguments and the Ito's formula yield a free-boundary PDE: Hamilton Jacobi Bellman (HJB) equation.
- Find p(T,x), c(T) such that

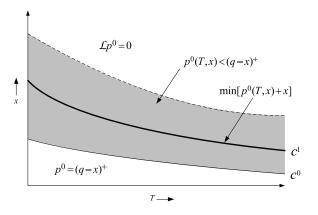
$$\mathcal{L}p = 0$$
 if $x > c(T)$,

$$\begin{array}{ll} \bullet \ \mathcal{L}p = 0 & \text{if } x > c(T), \\ \bullet \ p = (q-x)^+ & \text{if } x \leq c(T) \text{ and} \\ \bullet \ \max\{\mathcal{L}p, (q-x)^+ - p\} = 0 & \text{for all } (x,T) \in (0,\infty)^2. \end{array}$$

Here $\mathcal{L}p \equiv \frac{1}{2}\sigma^2x^2p_{xx} + rxp_x - rp - p_T$



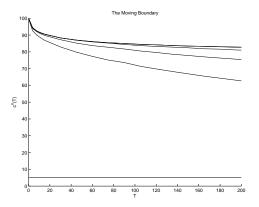
The Moving Boundary Method



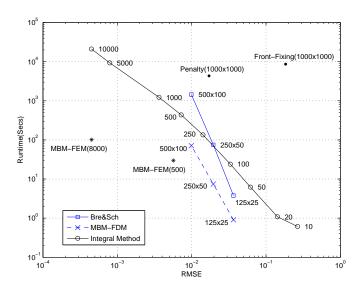
- Guess a c^0 such that $c^0 < c^*$: $\max\{\mathcal{L}p, (q-x)^+ p\} = 0$ would be violated.
- Any c^1 in the shaded region: Policy improvement $(\mathbf{p^1} > \mathbf{p^0})$, but possibly $c^1 > c^*$.
- If c^1 is the contour of $\min(p^0 + x)$ along x, then $\mathbf{c^1} < \mathbf{c^*}$ as well.

An Example

•
$$q = 100, r = 8\%, \sigma = 20\%$$



Runtime and Error comparisons



Portfolio optimization with transaction costs

- Buying (selling) a unit of stock i costs : $1 + \lambda_i \quad (-(1 \mu_i))$.
- To maximize Long-term growth rate (Taksar et.al. ('88), Akian et.al. ('01))

$$\liminf_{t \to \infty} E\left\{\frac{\log W(t)}{t}\right\}.$$

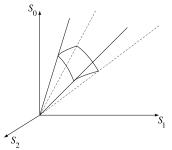
• Dynamics: Value of stock (S_i) and bank (S_0) ,

$$dS_i = \alpha_i S_i dt + \sigma_i S_i dB_i + dL_i - dU_i$$

$$dS_0 = rS_0 dt + \sum_i [-(1 + \lambda_i) dL_i + (1 - \mu_i) dU_i]$$

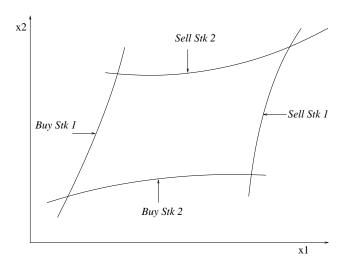
Portfolio optimization with transaction costs

- With no transaction costs: optimal to stick to the Merton line
- With transaction costs: too expensive to stay on the Merton line
- Optimal policy is characterized by a No transaction region A cone



State $x_i = S_i/W$, fraction of wealth in each stock.

Structure of optimal policy



The Hamilton-Jacobi-Bellman Equation

- Change of var. and dynamic prog. arguments switch the objective to a cost minimization problem.
- ullet To find V(x) the differential cost function and d the long-term asymptotic cost growth rate, such that,

$$\min \{ \mathcal{L}V, \mathcal{B}_1V, \dots, \mathcal{B}_NV, \mathcal{S}_NV, \dots, \mathcal{S}_NV \} = 0$$

Here

$$\mathcal{L}V(x) = \frac{1}{2}\operatorname{tr}\left\{D^2V\,z\sigma\sigma^T\,z\right\} + \,\nabla V\cdot\left[z(\alpha-re-\sigma\sigma^Tx)\right] + h(x) - d.$$

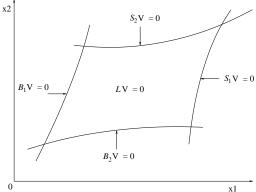
and the i-th component of the vectors $\mathcal{B}V(x)$ and $\mathcal{S}V(x)$ are $\lambda_i \ \textstyle \sum_{j=1}^N x_j \ \frac{\partial V}{\partial x_j} + \frac{\partial V}{\partial x_i} + \lambda_i \ \text{and} \qquad \mu_i \ \textstyle \sum_{j=1}^N x_j \ \frac{\partial V}{\partial x_j} - \frac{\partial V}{\partial x_i} + \mu_i.$

ullet State space is partitioned into 2N+1 regions by the tight terms.

The HJB: Graphically

- Two stock case: Looking for
 - a function $V(x_1, x_2)$, a constant d
 - ullet and the optimal region of inaction Ω with 4 boundaries

such that

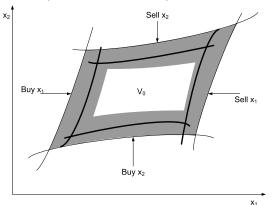


and
$$\min[~\mathcal{L}V~,~\mathcal{B}_1V~,~\mathcal{S}_1V~,~\mathcal{B}_2V~,~\mathcal{S}_2V~]=0$$

ullet N-assets: search for 2N hyper surfaces in N dimension.

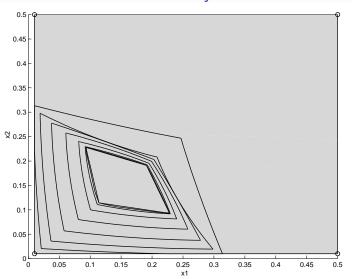
Boundary Update

• Guess a large Ω^0 , (i.e. assume $\Omega^* \subset \Omega^0$). Solve for V_0, d_0 .



- ullet min[$\mathcal{L}V_0$, \mathcal{B}_1V_0 , \mathcal{S}_1V_0 , \mathcal{B}_2V_0 , \mathcal{S}_2V_0] = 0, would be violated.
- Any Ω^1 in grey area $\Rightarrow d_1 < d_0 \Rightarrow$ Policy imp. $\Omega^* \subset \Omega^1$?
- $\Omega^* \subset \Omega^1$ guaranteed if new boundaries are defined by $\min(\lambda_i \sum_j x_j \frac{\partial V}{\partial x_i} + \frac{\partial V}{\partial x_i} + \lambda_i)$ and $\min(\mu_i \sum_j x_j \frac{\partial V}{\partial x_j} \frac{\partial V}{\partial x_i} + \mu_i)$

Results - Boundary iteration



$$\begin{array}{ll} \text{Parameters: } \sigma = [0.4 \quad 0.1; 0.1 \quad 0.4], \qquad r = 7\% \\ \alpha_1 = \alpha_2 = 15\%, \qquad \qquad \lambda_1 = \mu_1 = \lambda_2 = \mu_2 = 1\% \end{array}$$

Increasing portfolio sizes

- The dimensionality of the underlying problem increases with number of stocks in the portfolio.
- Consider independent assets with $\alpha_i=0.14,\ \sigma_i=0.3,\ \lambda_i=\mu_i=5\%$ and r=10%. Increasing N.
- Finite element based implementation on Matlab.

Increasing portfolio sizes

- The dimensionality of the underlying problem increases with number of stocks in the portfolio.
- Consider independent assets with $\alpha_i=0.14,\,\sigma_i=0.3,$ $\lambda_i=\mu_i=5\%$ and r=10%. Increasing N.
- Finite element based implementation on Matlab.

# of stocks, N	Runtime	
1	34 sec	
2	20 mins	
3	45 hrs	
4	???	
5	???	
6	???	
7	???	

Revisiting the Scheme

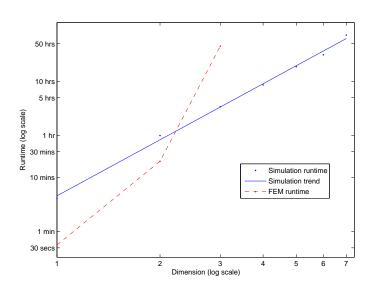
• Guess Ω^0 . n=0. $\Omega^n \xrightarrow{\text{Solve PDE}} V_n.d_n \xrightarrow{\text{Bd update}} \Omega^{n+1}$

- Most of the computational time is spent in solving the PDE
- ullet Can use simulation instead of solving PDEs to estimate V,d.
- Issues:
 - Estimation errors
 - Monotonicity breaks
 - Simplest discretization of Ω : each axis by P points. P^N points.
- Fixes:
 - Use increasing sample paths
 - With a procedure that allows backing out
 - \bullet Approximate policy space: Eg. Hyper polygonal regions require only PN^3 points.

Runtime comparisons

# of stocks	PDE based	Simulation
1	34 sec	4 mins
2	20 mins	58 mins
3	45 hrs	3.4 hrs
4	???	8.6 hrs
5	???	18.7 hrs
6	???	36.6 hrs
7	???	62.3 hrs

Runtime comparisons



Impulse control: The Cash Management Problem

- A firm with stochastic cash flows.
- The cash level at time t is Y(t).
- \bullet h(Y(t)) > 0 captures to opportunity costs and penalty costs.
- Cash level can be controlled by buying/selling short-term securities.
- Transaction costs have a fixed component, which justifies the use of non-infinitesimal control application. Causing discontinuities in state evolution (Constantinides and Richard (1978))
- Applications also exist in Portfolio optimization, Foreign exchange Rate models, Index tracking, Inventory management and Healthcare services management

The Control Band Policy

• In several cases including this model, optimal control policies take a simple form: (d,D,U,u).

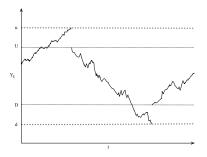


Figure: An Illustration of a (d, D, U, u) Policy

The HJB Equation

$$\min\{\mathcal{L}V(x), \ \mathcal{M}V(x), \ mV(x)\} = 0.$$

where

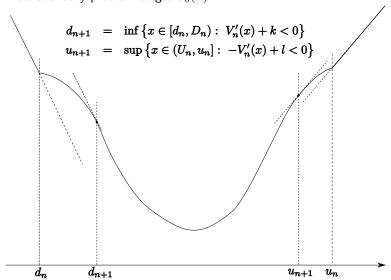
•
$$\mathcal{M}f(x) := \inf_{\eta > x} \left\{ f(\eta) + K + k \cdot (\eta - x) \right\} - f(x)$$

•
$$mf(x) = \inf_{\eta < x} \{ f(\eta) + L + l \cdot (x - \eta) \} - f(x).$$

•
$$\mathcal{L}f(x) := \frac{1}{2}\sigma^2 f''(x) + \mu \cdot f'(x) - \beta \cdot f(x) + h(x)$$

The Moving boundary iteration

• We will start with an initial guess $d_0 < D_0 \le U_0 < u_0$, and solve the fixed-boundary problem to get $V_0(x)$.



Updating D and U

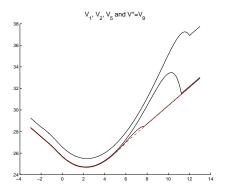
We solve the fixed boundary problem $(d_{n+1},D_n,U_n,u_{n+1})$ to obtains its value function $\hat{V}_n(x)$, and then update D_n and U_n using

•
$$D_{n+1} = \arg\min_{x \in (d_{n+1}, u_{n+1})} \{\hat{V}_n(x) + K + k \cdot (x - d_{n+1})\}$$

•
$$U_{n+1} = \arg\min_{x \in (d_{n+1}, u_{n+1})} \{\hat{V}_n(x) + L + l \cdot (u_{n+1} - x)\}$$

That is, whenever a control is exerted, we choose the most efficient jump-to point (inner boundary).

An Example of Stochastic Cash Management



Parameters chosen: $\mu=-0.2$, $\sigma=0.6$, $\beta=0.01$, K=0.14, k=0.85, L=0.14, l=0.85, p=0.12, q=0.08. The optimal (d,D,U,u) obtained is (-1.315,0.117,4.838,6.492).

Theoritical Guarantees for the Moving Boundary Approach

- One dimensional problems:
 - Monotone convergence
 - Optimality of the converged value function
 - ϵ -optimality: $|(1+c_1)V(x)-f(x)| \leq c_2\epsilon$.

- Multiple dimensions
 - Almost entirely numerical evidence based
 - Recently: For American options under a stochastic volatility setting
 - for the first time established convergence proofs
 - works for all popular stochastic volatility models

Conclusion

- If you are looking to solve a free-boundary problem, transforming them to a sequence of fixed boundary problems is very likely possible
- Very efficient compared to general solution techniques like transformation to controlled Markov chains or boundary mapping transformation procedures
- By clubbing the procedure with simulation, it is possible to approximately solve large dimensional problems

Questions, Comments?