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Algorithmic Trading

Algorithmic trading of a large order is typically divided into three steps:

Trade scheduling: splits parent order into ∼ 5 min “slices”
relevant time-scale: minutes-hours
schedule follows user selected “strategy” (VWAP, POV, IS, …)
reflects urgency, “alpha,” risk/return tradeoff
schedule updated during execution to reflect price/liquidity/…

Optimal execution of a slice: further divides slice into child
orders
relevant time-scale: seconds–minutes
strategy optimizes pricing and placing of orders in the limit order book
execution adjusts to speed of LOB dynamics, price momentum, ...

Order routing: decides where to send each child order
relevant time-scale: ∼ 1–50 ms
optimizes fee/rebate tradeoff, liquidity/price, latency, etc.
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The Limit Order Book

price

ASK

BID

buy limit order arrivals

sell limit order arrivals

market sell orders

market buy orders

cancellations

cancellations
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LOB as Coupled Multi-Class Priority Queues

µ

market
sell

orders

λ1, γ1
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λ3, γ3

...
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limit buy orders

µ

market
buy

orders

λ1, γ1

λ2, γ2

λ3, γ3

...

λN , γN

limit sell orders

Arrival rates into two sides of book are coupled

Arrival rates for buy orders depend on lowest non-empty queue with sell
orders (ASK)
Arrival rates for sell orders depend on highest non-empty queue with buy
orders (BID)
More complicated dependencies could be considered (e.g., distance from best
bid/ask, queue length, time-of-day, etc.)
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Questions

Stochastic analysis of multi-class priority queues
steady state characterization of coupled queues
characterization of dynamics of price process
fluid / diffusion approximations of queueing dynamics

Optimal execution
how to optimize order placement in LOB
how to determine rate of trading
how to estimate queueing delays
design of market-making strategies that exploit LOB dynamics &
transient behavior

Market impact modeling
microstructure-based model of market impact
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One-sided LOB Fluid Model

Fluid model: continuous & deterministic arrivals and cancellations
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γ

cancellation rate
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One-sided LOB Fluid Model: Summary

Qi(t) is the quantity of limit orders at price level pi

pN ≤ · · · ≤ p2 ≤ p1

Limit orders arrive into queue i with rate λi > 0

Market sell orders arrive to the system with rate µbt ,
dependent on the best bid queue bt

µN ≤ · · · ≤ µ2 ≤ µ1

Market orders hit resting limit orders according to price/time priority

queue 1 > queue 2 > · · · > queue N ; FIFO within each queue

Orders individually cancelled at rate γ
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LOB Fluid Model Dynamics

pricep1

λ1

p2

λ2

· · ·

· · ·

pN

λN limit order arrival rates

µ1 market order rate

best bid price

γ

cancellation rate

For 0 ≤ t ≤ T1:

Q̇1(t) = λ1 − µ1 − γQ1(t), Q̇i(t) = λi − γQi(t), i ≥ 2

Until time T1 = 1
γ log

(
1 + γ

µ1−λ1
Q1(0)

)
, when Q1(T1) = 0
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LOB Fluid Model Dynamics

pricep1

λ1

p2

λ2

· · ·

· · ·

pN

λN limit order arrival rates

µ2 market order rate

best bid price

γ

cancellation rate

For T1 ≤ t ≤ T2:

Q1(t) = 0, Q̇2(t) = λ2−(µ2−λ1)−γQ2(t), Q̇i(t) = λi−γQi(t), i ≥ 3

Until time T2 when Q2(T2) = 0

…
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LOB Fluid Model Steady State

pricep1

λ1

· · ·

· · ·

pi0

λi0

· · ·

· · · limit order arrival rates

µi0 market order rate

γ

cancellation rate

i0 = min
{

i : Λi ,
∑

j≤i λj ≥ µi
}

Q(t)→ q∗ as t →∞, where q∗i =


0 for 1 ≤ i < i0
Λi0−µi0

γ for i = i0
λi
γ for i0 < i ≤ N
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Optimal Limit Order Placement
Problem:

purchase C total shares in time T for lowest possible average price

p∗(C ,T ) ,minimize (average price)
subject to (total time) ≤ T

(total quantity) = C

purchase C total shares given a target average price p̄ in minimum time

T ∗(C , p̄) ,minimize (total time)
subject to (average price) ≤ p̄

(total quantity) = C

Efficient frontier:

E ,
{
(C ,T , p) : p = p∗(C ,T )

}
,
{
(C ,T , p) : T = T ∗(C , p)

}
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Optimal Limit Order Placement

Problem:

purchase C total shares given a target average price p̄ in minimum time

T ∗(C , p̄) ,minimize (total time)
subject to (average price) ≤ p̄

(total quantity) = C

Controls:

Li(t) = cumulative # of orders placed in queue i in [0, t]
= RCLL process

Proposition. The optimal control places all orders at time t = 0.

Intuition: place orders at t = 0 to gain priority over future arriving limit
orders. Exploit time priority to place limit orders in lower priority queues
(better prices).
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Optimal Limit Order Placement
Notation:

zi = initial # of investor orders in queue i
Zi(t) = remaining # of unexecuted investor orders in queue i
Qi(t) = # of orders from other investors

τ `(z) , inf {t ≥ 0 : Qi−1(t) = 0, Zi(t) = 0, i ≤ `}
τ∗(z) , τ `(z)(z), `(z) , max {i : zi > 0}

p1

λ1

Q1(t)

Z1(t)

p2

λ2

· · ·

· · ·

pN

λN

µ1

γ

Problem:

minimize τ∗(z)
subject to 1>z = C

1>p ≤ p̄C
z ≥ 0
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Optimal Limit Order Placement
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z ≥ 0

[fixed `]

Lemma. If Qi(0) ≤ λi/γ, then τ `(z) is a concave in z .

Theorem. ‖z(`)‖0 ≤ 2, i.e., optimal to place orders in at most two queues
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Optimal Limit Order Placement

Problem:

purchase C total shares in time T for lowest possible average price

p∗(C ,T ) ,minimize (average price)
subject to (total time) ≤ T

(total quantity) = C

Optimal Policy: [Q(0) = 0]
Recall i0 , min

{
i : Λi ,

∑
j≤i λj ≥ µi

}
. Define C̄i , (µi − Λi−1)+T .

Then:

0 ≤ C ≤ C̄i0 =⇒ z∗j = 0 unless j = i0
C̄i ≤ C ≤ C̄i−1 =⇒ z∗j = 0 unless j ∈ {i − 1, i}
C > C̄1 , µ1T =⇒ infeasible! (must use market orders)

Easy to compute recursively the C̄i thresholds starting from arbitrary Q(0)

17



Optimal Limit Order Placement

Problem:

purchase C total shares in time T for lowest possible average price

p∗(C ,T ) ,minimize (average price)
subject to (total time) ≤ T

(total quantity) = C

Optimal Policy: [Q(0) = 0]
Recall i0 , min

{
i : Λi ,

∑
j≤i λj ≥ µi

}
. Define C̄i , (µi − Λi−1)+T .

Then:

0 ≤ C ≤ C̄i0 =⇒ z∗j = 0 unless j = i0

C̄i ≤ C ≤ C̄i−1 =⇒ z∗j = 0 unless j ∈ {i − 1, i}
C > C̄1 , µ1T =⇒ infeasible! (must use market orders)

Easy to compute recursively the C̄i thresholds starting from arbitrary Q(0)

17



Optimal Limit Order Placement

Problem:

purchase C total shares in time T for lowest possible average price

p∗(C ,T ) ,minimize (average price)
subject to (total time) ≤ T

(total quantity) = C

Optimal Policy: [Q(0) = 0]
Recall i0 , min

{
i : Λi ,

∑
j≤i λj ≥ µi

}
. Define C̄i , (µi − Λi−1)+T .

Then:

0 ≤ C ≤ C̄i0 =⇒ z∗j = 0 unless j = i0
C̄i ≤ C ≤ C̄i−1 =⇒ z∗j = 0 unless j ∈ {i − 1, i}

C > C̄1 , µ1T =⇒ infeasible! (must use market orders)

Easy to compute recursively the C̄i thresholds starting from arbitrary Q(0)

17



Optimal Limit Order Placement

Problem:

purchase C total shares in time T for lowest possible average price

p∗(C ,T ) ,minimize (average price)
subject to (total time) ≤ T

(total quantity) = C

Optimal Policy: [Q(0) = 0]
Recall i0 , min

{
i : Λi ,

∑
j≤i λj ≥ µi

}
. Define C̄i , (µi − Λi−1)+T .

Then:

0 ≤ C ≤ C̄i0 =⇒ z∗j = 0 unless j = i0
C̄i ≤ C ≤ C̄i−1 =⇒ z∗j = 0 unless j ∈ {i − 1, i}
C > C̄1 , µ1T =⇒ infeasible! (must use market orders)

Easy to compute recursively the C̄i thresholds starting from arbitrary Q(0)

17



Optimal Limit Order Placement

Problem:

purchase C total shares in time T for lowest possible average price

p∗(C ,T ) ,minimize (average price)
subject to (total time) ≤ T

(total quantity) = C

Optimal Policy: [Q(0) = 0]
Recall i0 , min

{
i : Λi ,

∑
j≤i λj ≥ µi

}
. Define C̄i , (µi − Λi−1)+T .

Then:

0 ≤ C ≤ C̄i0 =⇒ z∗j = 0 unless j = i0
C̄i ≤ C ≤ C̄i−1 =⇒ z∗j = 0 unless j ∈ {i − 1, i}
C > C̄1 , µ1T =⇒ infeasible! (must use market orders)

Easy to compute recursively the C̄i thresholds starting from arbitrary Q(0)

17



Efficient Frontier

Price grid is uniformly spaced pi , p1 − (i − 1)δ (δ = tick size)

C̄1 = µ1T shares at p1
C̄2 = (µ2 − Λ1)T shares at p2

...
C̄i0 = (µi0 − Λi0−1)+T shares at pi0

λi > 0 =⇒ C̄1 > C̄2 > · · · > C̄i0

Shape of Efficient Frontier:

Determines price impact as a function of trading rate C/T
λ1 = λ2 = · · · = λi0−1 =⇒ “linear” cost-per-share

λ1 > λ2 > · · · > λi0−1 =⇒ “sub-linear” cost-per-share
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Numerical Example
First Solar, Inc. (ticker: FSLR.Q) 3/22/2010

close price = $109.36 average volume = 2,699,000 shares
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Implementation Issues
How to implement the fluid policy in the original, stochastic system?

discrete review / model predictive control
approximate dynamic programming

In our model, all orders are places at time t = 0, this may pose problems:

information leakage
execution price not averaged over time horizon (adverse selection)

Optimal order placement suggests:

Break up slice into n child orders to be executed “uniformly” over T
(roughly every T/n time units)
The price of each child order depends on:

(a) state of LOB
(b) speed of LOB
(c) size of the child order = C/n
(d) duration = T/n

Precise formulations possible ...
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Model Shortcomings

Non-stationarity

Order placement influences arrival rates

Incorporate market orders and other side of LOB

Not relevant for illiquid names

Incorporate multiple LOB’s / order routing
(≈ 5 LOB’s matter in practice)
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Conclusion

Fluid models are a useful characterization of LOB dynamics

Optimal Execution:

Tractable order placement problem

Allow estimation of queueing delays

Determine optimal rate of trading

Market Impact Modeling:

A microstructure-based model of market impact

Exponent directly estimated from rate of events in LOB

Suggests different exponents for limit orders versus market orders?
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