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Algorithmic trading of a large order is typically divided into three steps:

¢ Trade scheduling: splits parent order into ~ 5 min “slices”
relevant time-scale: minutes-hours
schedule follows user selected “strategy” (VWAP, POV, IS, ...)
reflects urgency, “alpha,” risk/return tradeoff
schedule updated during execution to reflect price/liquidity/...

e Optimal execution of a slice: further divides slice into child
orders
relevant time-scale: seconds—minutes
strategy optimizes pricing and placing of orders in the limit order book
execution adjusts to speed of LOB dynamics, price momentum, ...

¢ Order routing: decides where to send each child order
relevant time-scale: ~ 1-50 ms
optimizes fee/rebate tradeoff, liquidity/price, latency, etc.




The Limit Order Book
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LOB as Coupled Multi-Class Priority Queues
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Arrival rates into two sides of book are coupled

® Arrival rates for buy orders depend on lowest non-empty queue with sell
orders (ASK)

® Arrival rates for sell orders depend on highest non-empty queue with buy
orders (BID)

® More complicated dependencies could be considered (e.g., distance from best
bid/ask, queue length, time-of-day, etc.)
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Questions

e Stochastic analysis of multi-class priority queues
steady state characterization of coupled queues
characterization of dynamics of price process
fluid / diffusion approximations of queueing dynamics

e Optimal execution
how to optimize order placement in LOB
how to determine rate of trading
how to estimate queueing delays
design of market-making strategies that exploit LOB dynamics &
transient behavior

e Market impact modeling
microstructure-based model of market impact
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One-sided LOB Fluid Model: Summary

® ();(t) is the quantity of limit orders at price level p;

Limit orders arrive into queue 7 with rate A\; > 0

Market sell orders arrive to the system with rate 1,
dependent on the best bid queue b;

Market orders hit resting limit orders according to price/time priority

queue 1 > queue 2 > --- > queue N; FIFO within each queue

Orders individually cancelled at rate y




LOB Fluid Model Dynamics
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LOB Fluid Model Dynamics
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LOB Fluid Model Steady State
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Optimal Limit Order Placement

Problem:

e purchase (' total shares in time 7' for lowest possible average price

p*(C, T) 2 minimize  (average price)
subject to (total time) < T
(total quantity) = C

¢ purchase C total shares given a target average price p in minimum time

T*(C,p) = minimize (total time)
subject to (average price) < D
(total quantity) = C
Efficient frontier:

EL£{(C,T,p) : p=p"(C, T} 2{(C,T,p) : T="T"C,p)}
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Optimal Limit Order Placement

Problem:

e purchase C total shares given a target average price p in minimum time

T*(C,p) = minimize (total time)
subject to (average price) < p
(total quantity) = C
Controls:

L;(t) = cumulative # of orders placed in queue 7 in [0, ]
= RCLL process

Proposition. The optimal control places all orders at time ¢ = 0.

Intuition: place orders at ¢ = 0 to gain priority over future arriving limit
orders. Exploit time priority to place limit orders in lower priority queues
(better prices).
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Notation:
z; = initial # of investor orders in queue i
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# of orders from other investors
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Optimal Limit Order Placement

AN - AN
\ \ \ \

Problem:

minimize  7¢(2)

subjectto 1'z

PN D2 b
Lemma. If Q;(0) < \;/~, then 7%(2) is a concave in 2.
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Optimal Limit Order Placement
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Optimal Limit Order Placement

Problem:
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Optimal Limit Order Placement

Problem:
¢ purchase C total shares in time 7' for lowest possible average price
p*(C, T) 2 minimize  (average price)

subject to (total time) < T
(total quantity) = C

Optimal Policy: [Q(0) = 0] )
Recall ip & min {i : A; & di<iN = pi}. Define C; £ (p; — Aj—1)* T.
Then:

°* 0< C <Gy = 2 =0unless j =i

* (;<C<Cioy = =z =0Ounlessje {i—1,1i}

* C>C 2T = infeasible! (mustuse market orders)

Easy to compute recursively the C; thresholds starting from arbitrary Q(0)
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Efficient Frontier

Price grid is uniformly spaced p; = p; — (i — 1)§ (6 = tick size)

@’1 =T shares at p;
Co= (e —M)T shares at py

Cio = (fio — Njy—1)TT shares at p;,
Ai>0 = O >0C>--->C
Shape of Efficient Frontier:
e Determines price impact as a function of trading rate C'/ T
e\ =X=--=X;-1 = “linear” cost-per-share

e\ >Ny > o> )\y—1 = “sub-linear” cost-per-share




Numerical Example
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Numerical Example
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Implementation Issues

How to implement the fluid policy in the original, stochastic system?

e discrete review / model predictive control
® approximate dynamic programming

In our model, all orders are places at time ¢ = 0, this may pose problems:

¢ information leakage
® execution price not averaged over time horizon (adverse selection)

Optimal order placement suggests:

e Break up slice into n child orders to be executed “uniformly” over T
(roughly every T'/n time units)
® The price of each child order depends on:
(a) state of LOB
(b) speed of LOB
(c) size of the child order = C'/n
(d) duration = T/n

Precise formulations possible ...
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Model Shortcomings

Non-stationarity

Order placement influences arrival rates

Incorporate market orders and other side of LOB

® Not relevant for illiquid names

Incorporate multiple LOB’s / order routing
(= 5 LOB’s matter in practice)




Conclusion

Fluid models are a useful characterization of LOB dynamics

Optimal Execution:
e Tractable order placement problem
e Allow estimation of queueing delays

e Determine optimal rate of trading

Market Impact Modeling:
¢ A microstructure-based model of market impact
e Exponent directly estimated from rate of events in LOB

e Suggests different exponents for limit orders versus market orders?




