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1. Binomial Trees in Option Pricing — The Start

Rubinstein/Sharpe (1975) conference in Ein Borek, Israel

With nothing to do during the breaks (except tcetakdip in the sea), ..., we won-
dered how it was that the then two-year-old Blackdbes approach to valuing
options could recreate a riskless payoff using ané/option and its underlying asset.
It was then that Sharpe said:

"I wonder if it's really that there are only twoasts of the world, but three securities,
so that any one of the securities can be replicatethe other two”

—

Birth of binomial trees!



1. Binomial Trees in Option Pricing — What is a bamial tree ?

An n-period (one-dimensionalpinomial treeis a model for a discrete time stock
price process with all possible pric@én)(i), 1=0,1,...,n, being represented by the
following tree:

prices s< >uds ___________

time 0 T/n ITIN oo T

l.e. the price always increases by either a fac(@vith prob.p) ord (with prob. (1p))



Option pricing in a binomial modelRisk-neutral valuation and replication
Assume that in the binomial model we hdved ™ < uAt=T/n

a) Each final payment B in an n-period binomial model d@nreplicated by an
iInvestment strategy in stock and bor{@ompleteness propeljty

b) The initial costof this strategy determine the option prared both equal

Dg = EQ(e—rT B)

where the measure Q is the product measure of {lnh(@h are determined by

Q (87 (i+1)1d7()= = o SATAU=C

and for which we have
S ()= (e U7 V() F, 0 ks e

(Equivalent martingale measure propgrty



Why should we consider binomial trees?
* The binomial model isasy to understand
* The binomial model contains the aspectsigf-neutrality and replication
* The binomial model allows for easily calculatabjgion prices (see later)
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* |sthebinomial model in any way related to a continuous-time stock price
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* Doesit help usto calculate (an approximation for) the price of an option

EQ(e'rT B) in a continuous-time setting?



Why should we consider binomial trees?
* The binomial model isasy to understand
* The binomial model contains the aspectsigf-neutrality and replication
* The binomial model allows for easily calculatabjgion prices (see later)

But:

* |sthebinomial model in any way related to a continuous-time stock price
model (such as the geometric Brownian motion model, tastbh model, ...?

* Doesit help usto calculate (an approximation for) the price of an option
Eq (e‘rT B) in a continuous-time setting?
—

* Look at thepath behaviour of the corresponding two models
* Find convergencecriteria for

“Binomial model> continuous-time modd|”




Approximating binomial trees
Which one is the binomial price process ?
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How to find the correct relations between a (suféatly fine) binomial tree and a
geometric Browian motion ?



Convergence of binomial treestowards Geometric Brownian M otion
Donsker’'s Theorem (special case)

Forgiven stock price parametersr (drift) ando (volatility) the price process of the
binomial tree converges (in distribution) towarks price process in the Black
Scholes model if the first two moments of the me&atog-returns of both models
coincide, I.e. if we have

(n) 2 (M) )2
SAY\\Z gl | S0 S(a9\* | ()| 1| ST
E(In(s(o) )j - In(s(”)(o)} | E('”(S(O))] : In(s(n)(g)}



Convergence of binomial treestowards Geometric Brownian M otion
Donsker’'s Theorem (special case)

Forgiven stock price parametersr (drift) ando (volatility) the price process of the
binomial tree converges (in distribution) towarks price process in the Black
Scholes model if the first two moments of the me&atog-returns of both models
coincide, I.e. if we have

(n) 2 (M’
M)): (n) 1| S0 (ﬂ) _ ) | s
E(In(s(o) E In(s(”)(o) , E|In 5(0) EVV In —s(”)(o)
Remark:
Note that above we only have two (non-linear) eiguatfor three unknowns

(r-1c?)at = In(u)p+In(d)cfa- p)

F - 20%f (at)? + 6%t =In(u)? Cp+In(d)? cfa- p)
— (Possibly) one degree of freedom.



Popular choicesfor u, d, p:
1) Rendleman and Bartter Tree (1979)

u :e(r—%oz)At+G\/E d :e(r—%oz)At—o\/E

~1
P=5 =

No arbitrage condition (not (!) necessary for appration!): n > 1

i) Cox, Ross, Rubinstein Tree (1979)

d=1t = u=e®%  p :%£1+(r —%02)%\/5] (only approx. solution)

N

Tlg

357

Necessary condition fdd< p<1: n=>

Conseguence:

The expected discounted final paymEﬁ)[(e B,) in the blnomlal model (witlB, the
final payment in the binomial tree) is an approxioma for EQ(e B) (+techn. cond)



Next question: How to comput& (e ''B.) ? (=>By backward induction)
) p=3:
VO (1,97 ()= o $( )
Fori=n-1, ..., O:
V(”)(ig'_n,s( )(, ):% v[(i




Next questlon' How to comput& (e ''B.) ? (=>By backward induction)
) p=3:

(T gn) (r)). f{ $7( )

Fori= n—1,

i) d=11:
VO (1,97 ()= { $7( )
Fori=n-1,...,0




M odifications for American option pricing:

Example: American put,p ==
At each time in the calculation of the American pute compare the

intrinsic value of the option (K gl ( i))+
with its continuation value
ik )(|g; gn )()) [V
and obtain the (approximatedlue of the American put sl (i) as
vOic, s () = max{(K -l i))+, V(i s i))],
v (T, S ,.)): ¢ (S(n)( n))

= Vv({"(0,s) is an approximation fOIsupE( e (K- 1)) ) wheret runs

(i+9)Tus" () + VI ((i+ T 08" ()ﬂmen

through are all possible stopping times withuealin [O,T].



2. Binomial Trees in Option Pricing — Where are the gslems ?
Problem 1. Multi-asset generalizationsGomplications by Correlations
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Problem 2. Convergence patternsi-he sawtooth effect
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Convergence pattern for a down-and-out digital aption (Boyle and Lau (1994))



3. Advanced Single-Asset Trees and the Optimal Drifétidod
A mor e convenient representation of the binomial tree

S (k1) = & ( § @aepBEV (k1) G ()=

with B> 0, a(n) bounded im andz(™ (k) i.i.d. distributed as
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3. Advanced Single-Asset Trees and the Optimal Drifétidod

A more convenient representation of the binomial tree
S (ke1) = &0 () BB (k1) G () -

with B> 0, a(n) bounded im andz(™ (k) i.i.d. distributed as

20 (k) _{ Lwith prob. p( n

| -1with prob.1- p( n

Moment conditionsrevisited
Donsker’s theorem is valid >0, a(n) , p( n) satisfy the approx. moment cond.:

(n)
(M1) p(n) :-AitEpn(ln(S (1)5(“)(0)D 08T, r-10

(n)
(M2) o°(n) ;ﬁVarpn(ln[S (1)8(”)(0)D Ot o?
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Consequences:
a) Cox, Ross, Rubinstein: a(n)=08=a,p(n) :%+%(r_%oj\/ft, i.e.

S (1cr1) = &7 BB 6 (o)

b) Theorem (Mduller (2009))Drift-invariance
With the choice of the risk-neutral probability

erAt - d
RNP =
(RNP) p(n)==——

and u = X (NAtHBYAL d= G(MABYAL o moment conditions of Donsker's theorbm
are automatically (approximately) satisfied if aordy if we choose

(*) p=o.

Note:
This is a key observation as it leaves usftiee choice of the drift process o (n).



How to use the freedom of choosing thedrift ?



How to use the freedom of choosing thedrift ?
= Second key ingredient:

Theorem (Mdller (2009))Asymptotic approximation of the martingale distriban
Let Q be the unique equivalent martingale measutied Black-Scholes model, let

B=0 and

(PC)  p(n)=5+4(r-a(n)-40®)JBt+(n(a ) *+ d N'?)
wherec(n) is a bounded function af(n).

Then we obtain

n n e dz(x)
(9 (2 = @ § 2 el ppke boal o (B)n(Jh+ (H
for some functiorb(.) with |b(x)| < 1. Further, withk = # up-moves, we have

In(S(n)(n'k) /xj
( (n;K) /é n; lelj

for S(”)(n;k—1)< X< é”)( n;§.

b(n)=1—2




How to usetheseresults ?

For agiven x (such as the strike of a calljbtain a good (?) value for b(n) by
choosing an appropriate drift process o (n).
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How to usetheseresults ?

For agiven x (such as the strike of a calljbtain a good (?) value for b(n) by
choosing an appropriate drift process o (n).

Suggestions for good values of b(n):
By starting with the CRR-tree (i.e.(n)=0) obtain

a) Tian (1994).
b(n) =1 (i.e. monotone convergence to leading ojdea! suitably choosing (n) :

— No sawtooth effect and convergence can be spagubyg extrapolation !

b) Chang-Palmer (2007):
b(n) =0 (i.e. increase the order of convergencea suitably choosing (n) :

— Faster (but not montone) convergence !



Convergence behaviour for a European digital call with
s=95r=0.1,0=0.23T=1,K=x=100: CRR-case
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Convergence behaviour for a European digital call with

s=95r=0.1,0=0.25T=1,K=x=100: Tian-case
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Convergence behaviour for a European digital call with

s=95r=0.10=0.25T =1,K=x=100: Chang-Palmer-case
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| dea:
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Can we do even better ?

Look at the approximation theorem: Can we chcm)@e) such thah(,.,.,.) vanishes
or that it is — at least — as small as possible ?

| dea:

1. Apply the Chang-Palmer idea to a binomial tré an arbitrary (non-zero) drift
parameten, i.e. choose an additional drift parametém) to obtainb(n) = 0.

3N P(”>(s(”)(@z %: d gz k )i+ @)
as one can showa (n) = a +0(1)

2. Realize thag(a) is a quadratic function.

= Ifazerodof g(a) exists then choose it as the “original and obtain an

order of convergence @i %,).

=  Else choose the minimizing/maximiziagas “originala “ and obtain the
same order of convergence as Chang-Palmer, butawitptimal constant




Conver gence behaviour for a European digital call with
s=95r=0.,0=0.25T=1,K=x=100: Optimal drift-case
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Convergence behaviour for a European digital call with
s=95r=0.,0=0.25T=1,K=x=100: Thenumbers

N CRR RB Tian E};:Sm_ CP oD
200 || 47.5257 | 47.7912 | 50.3228 | 47.6013 | 47.7708 | 47.7506
400 || 46.1524 | 47.0456 | 405701 | 47.7520 | 47.7717 | 47.7607
1000 || 47.1805 | 48.6610 | 48.0022 | 47.7555 | 47.7644 | 47.7608
2000 || 47.0034 | 476615 | 485660 | 47.7574 | 47.7623 | 47.760355
3000 || 47.0178 | 472180 | 484187 | 47.7506 | 47.7617 | 47.760428
5000 || 47.5104 |47.7022 | 482702 | 47.7504 | 47.7612 | 47.760384
10000 || 47.5860 | 47.7666 | 48.1208 | 47.7601 | 47.7608 | 47.760427
15000 || 47.7084 | 47.8021 | 48.0546 | 47.7602 | 47.7607 | 47.760418
BS || 47.760425




More on the optimal drift method:

* Results carry over to puts/calls and to Americats/palls (optimal drift method
outperforms Leisen-Reimer (1996) algorithm)

e Optimal drift model makes full use of the free paeders to obtain a better order
of convergence

* Theoretical results on superior performance

* Interesting to test it on more advanced optionsh{as barriers)



4. Standard multi-dimensional trees
Define anm-dimensionaN-period tree via

s (kag= $V((ken)a) VR er | NE L
with Z,.; (o) O{-1,3.
We choose the constards, 3 and the up-down probabilities such that we obtain:

* (Zg1Zim) k=1,...N are iid. for fixed N

* the first two moments of the continuous-time lotyras coincide (at least)
asymptotically with those in the tree, in particul@e covariances satisfy

Disadvantages:
o very tedious

« does not always lead to well-defined probabilities



Examples:
1. The BEG Tree (Boyle, Evnine, Gibbs (1989), generalized CRR Tree)

= éN)(( k1) A } GVMZKi ey ONE L.

Pl (@) = (1&’2_16”( w)p -+an( w)! °5°']

=1i=1
3 (w) = 1if o ="up” & (w) = LiE & =,
| -1if « ="down"" -1if o % w,
Note:

 log-prices in the BEG Tree asgmmetric
» probabilities depend in a complicated way fromdhé& and covariance structure
» probabilities are not automatically non-negative !



BEG probabilities are not always well-defined.:

Let 531, 55, 53 with p1o = —0.8, po3 = —0.6 and p13 = 0.2.
Then for the tree suggested by Boyle, Evnine and Gibbs (1989),

2

[l
?

F—=

LS =Y

=

e

= g
(0.2 — VALY
i=1

] et

which is negative for all At > 0 if (r — 1/202) > 0 for all assets /.

Here the problem cannot be fixed by choosing a sufficiently large
number of periods!



2. The n-dim. Rendleman-Barrter Tree (Amin (1991), K., Muller (2009))

S (1= §(le)a ) BT

PV (@) = {1&’2_16.,( W) j

=1i=1

, k1., N¥1..,1

Note:
* log-prices in the RB Tree ar®n-symmetric

» probabilities depend only on the covariance stmegtnot on the fineness of the
discretization



An example for multi-asset binomial convergence:

B = g(%( -D 5( -l)) :1OOEI{le(rO)225 for someg0, T, § )e151 0 0,
S(0)=20,5(0=300,= 0.20,= 0.3= 0.5T= L= (

3&‘ 3 1 H 1] 38
By ‘ ; . 38¢
A
h !’ ‘ 43 4 il 31 ‘i *4 ;‘q *’1 A )’4 a'}iA X’}Lﬂ ’/V 1‘/ q
£ I“iiiif;{g;g‘{f;?iﬁy /¥ / 8 J M
5 24t Q Mé{ fi* [ - £ a4} Tl
c |
Rl o Is
a [=%
o o
azfl 3:24
30r ~—2D CRR (=BEG) 30
‘ . ——BS value ) . )
0 200 400 &00 800 1C00 c 2C0 4C0 8C0
time steps time steps

Cash-or-nothing optiowith up-in-barrier on stock 1 and down-out-baroearstock :
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» Transform the log-stock pricésfor e setting up the approximating tree
o Similar idea for m=2: Hull and White (1990), Clewm and Strickland (1998)
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5. A simple universal tree obtained by decoupling

Basic idea: Get rid of the correlation structure !
» Transform the log-stock pricésfor e setting up the approximating tree
o Similar idea for m=2: Hull and White (1990), Clewm and Strickland (1998)

A general decoupling rule (K. and Miller (2009))
« Decompose the variance/covariance matrix of thadbgrns

(1) > =GDG'
e Set up a new log-return process

) Y(1):= G (in(§(}),uin( $( )

Conseguence:
 The components c}f(t) areindependent and have the dynamics

T
(3) dY; (1) =y dt+ [d dW(}, p= Gl( - %o )g _(of,...orﬁ)
« Moment matchlng can be donemponent wise!!!! (only 1D problems!)

» Always well-defined probabilities
e Combination of different 1D-trees possible !
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» Use 1D-Rendleman-Barrter Trees (=> all paths auvalgglikely !)
» Use the spectral decomposition for decoupling



Our special choice:
» Use 1D-Rendleman-Barrter Trees (=> all paths auvalgglikely !)
» Use the spectral decomposition for decoupling

This leads to

WM <y,
) - Yk(,T) AL 'Zk+1,1 dyVAt
Yk+l -
YN 4 A+ Zi g /D €

k,m



Our special choice:
» Use 1D-Rendleman-Barrter Trees (=> all paths auvalgglikely !)
» Use the spectral decomposition for decoupling

This leads to
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@ g | At 2B
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N
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» Define (5) h(x) ::(eGﬁ(,..., é;ml‘) , G= rowi of (

. set  (6) SVi= h(\éN))



Our special choice:
» Use 1D-Rendleman-Barrter Trees (=> all paths auvalgglikely !)
» Use the spectral decomposition for decoupling

This leads to

Yo(N) =Y
@ g | At 2B
Yk-ll-\ll = :

N
Yk(, m) tU At 2y, ml\/ dmm\/At

We then transform each node back to obtain theuatadn tree™:
» Define (5) h(x) ::(eGﬁ(,..., é;ml‘) , G= rowi of (

. set  (6) SVi= h(\éN))

Finally: Calculate the option price via backward induction



Algorithm: Decoupled Tree Option Pricing
Input: payoff functiong, model parameters (in part. var.-cov. mak)xN

1. Decompose the variance-covariance ma&rxGDG' .
_ T
2. Transform the stock price S intdt) = G 1(In(g( ))s-in( i ( ))) which is
component wise a Brownian motion with drift as3). (

3. Set up an m-dimensional Rendleman-Barrter tideimdependent components
using the discrete proces§%as defined in (4).

4. Apply the transformation (5) to each node ofttiee as in (6).

5. Evaluate the payoff functional along the transied nodes using backward
induction. Exploit the fact that all scenarios ageially likely.




An extra gain: No sawtooth effect !
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An extra gain: No sawtooth effect !
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Explanation:

Origin of the sawtooth effect
Two discretizations (N=17, N=18) for a Rendlemanfta Tree for a cash-or-

nothing barrier-option

40T 7l 40
b 35
30 3
| &5

) an! 50
'-.l-_I Z ::; 20
15] 15
107 10
L 1 1 1 L 1 1 5

c ﬁ e n
a 5 ks 1 o 25 A0 A 5 1 = a8 T

= Q 5 + 5
=1 .
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Explanation I1:
Discretizations (N=17) for a Rendleman-Barrter ogithnal Tree for a cash-or-
nothing barrier-option




Speeding up conver gence:
As convergence is approx. monotone we appbhardson extrapolation

38
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|n numbers:

N || BEG 2D RB Decoupling Decoupling

extrapolation
100 || 3240 | 33.71 83 % | 3328 250 % | 3526 283 %
250 || 34.88 | 3455 73% | 3412 227 % | 35.65 253 %
500 || 35.65 | 34.60 88 % | 3450 302 % | 35.71 316 %
750 || 35.04 | 35.08 89 % | 3479 203% | 3573 311 %
1000 || 34.70 | 35.15 88 % | 34.02 200 % | 35.72 325 %
1250 || 35.00 | 35.18 86 % | 35.01 287 % | 35.74 324 %
1500 || 34.88 | 3527 86 % | 35.07 286 % | 35.73 321 %
1750 || 35.41 | 3520 88% | 35.12 205% | 3574 330 %
2000 || 35.67 | 35.23 88% | 3516 2090% | 3575 335 %
2750 || 35.34 | 3538 88 % | 3525 200 % | 35.75 335 %
BS || 35.76




Conclusion on decoupled trees

Decoupled trees aeasy to implement
Decoupled trees areot restricted in their application by parameter settings

Decoupled treeavoid the sawtooth effect by a non-linear transformation

Decoupled trees allow for agificient implementation (Richardson extrapola-
tion, component-adapted discretization, model rednc.)

Decoupled trees neechagher computing time for path-dependent options

Decoupled trees aret universally best methods, but can be used universally
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Thanksfor your attention !



