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1.   Binomial Trees in Option Pricing – The Start   

 

Rubinstein/Sharpe (1975) conference in Ein Borek, Israel 
With nothing to do during the breaks (except to take a dip in the sea), ..., we won-
dered how it was that the then two-year-old Black-Scholes approach to valuing 
options could recreate a riskless payoff using only the option and its underlying asset. 
It was then that Sharpe said:  

"I wonder if it's really that there are only two states of the world, but three securities, 
so that any one of the securities can be replicated by the other two” 

⇒  

Birth of binomial trees !  



1.   Binomial Trees in Option Pricing – What is a binomial tree ? 
  

An n-period (one-dimensional) binomial tree is a model for a discrete time stock 
price process  with all possible prices  S 

(n)
(i), i=0,1,..., n,  being represented  by the 

following tree:  
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i.e. the price always increases by either a factor u (with prob. p) or d (with prob. (1-p))  



 

Option pricing in a binomial model: Risk-neutral valuation and replication 

Assume that in the binomial model we have r td e u, t : T / n.∆< < ∆ =  

a) Each final payment B in an n-period binomial model can be replicated by an 
investment strategy in stock and bond.   (Completeness property) 

b) The initial costs of this strategy determine the option price and both equal  

 ( )rT
B Qp E e B−=  

where the measure Q is the product measure of the Qi which are determined by  

 ( ) ( ) ( ) ( )( ) ( )exp
1 /n n

i
r t d

Q S i S i u q
u d

∆ −
+ = = =

−
 

and for which we have  

 ( ) ( ) ( ) ( ) ( )( ), 0n r j i T n
Q iS i E e S j F i j n− −= ≤ ≤ ≤ .   

  (Equivalent martingale measure property) 



Why should we consider binomial trees? 

• The binomial model is easy to understand 

• The binomial model contains the aspects of risk-neutrality and replication 

• The binomial model allows for easily calculatable option prices (see later) 
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But:  

• Is the binomial model in any way related to a continuous-time stock price 
model  (such as the geometric Brownian motion model, the Heston model, …) ?  

• Does it help us to calculate (an approximation for) the price of an option  

 ( )rT
QE e B−    in a continuous-time setting? 

⇒ 

• Look at the path behaviour of the corresponding two models 

• Find convergence criteria for  

                   “Binomial model → continuous-time model” 



Approximating binomial trees 
Which one is the binomial price process ? 
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How to find the correct relations between a (sufficiently fine) binomial tree and a 
geometric Browian motion ? 



Convergence of binomial trees towards Geometric Brownian Motion  
Donsker’s Theorem (special case) 

For given stock price parameters r (drift) and σσσσ (volatility) the price process of the 
binomial tree converges (in distribution) towards the price process in the Black 
Scholes model if the first two moments of the relative log-returns of both models 
coincide, i.e. if we have 
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Remark:  
Note that above we only have two (non-linear) equations for three unknowns  

 
( )21

2
r t− σ ∆

 
=  ( ) ( ) ( )ln ln 1u p d p⋅ + ⋅ − , 

 
( ) ( ) =∆σ+∆σ− ttr 2222

2
1 ( ) ( ) ( )2 2

ln ln 1u p d p⋅ + ⋅ −  

⇒ (Possibly) one degree of freedom. 



Popular choices for u, d, p: 

i) Rendleman and Bartter Tree (1979) 

  1
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( ) ttr

eu
∆σ+∆σ−=

2
2

1
 ,  

( ) ttr
ed

∆σ−∆σ−=
2

2
1

 

No arbitrage condition (not (!) necessary for approximation!):  

4

2σ⋅
>

T
n   

ii) Cox, Ross, Rubinstein Tree (1979) 

  d = 1/u  ⇒⇒⇒⇒   teu ∆σ= ,  ( )21 1
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1
1p r t
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Consequence:  

The expected discounted final payment E
(n)

(e
−rT

Bn) in the binomial model (with Bn the 
final payment in the binomial tree) is an approximation for EQ(e

−rT
B)   (+techn. cond) 



Next question:  How to compute E
(n)

(e
− rT

Bn) ?  (=> By backward induction) 
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ii) d = 1/u :  
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Modifications for American option pricing:  

Example: American put, 1
2

p =  : 

At each time in the calculation of the American put price compare the 

intrinsic value of the option  ( ) ( )( )nK S i
+

−  

with its continuation value  
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and obtain the (approximate) value of the American put in ( ) ( )n
S i  as 

 ( ) ( ) ( )( ), nn T
n

V i S i⋅  = max ( ) ( )( ){ ,nK S i
+

−  ( ) ( ) ( )( )}, nn T
n

V i S i⋅ɶ , 
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⇒⇒⇒⇒  ( ) ( )0,nV s  is an approximation for  ( )( )( )sup rE e K S
+− τ

τ
− τ , where τ runs 

   through are all possible stopping times with values in [0, T].   



2. Binomial Trees in Option Pricing – Where are the problems ? 
Problem 1: Multi-asset generalizations – Complications by Correlations 
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How  to approximate the multi-asset process by a (correlated) multi-dimensional tree?  



2. Binomial Trees in Option Pricing – Where are the problems ? 
Problem 1: Multi-asset generalizations – Complications by Correlations 

  ( ) ( )( ) , , , , 1,...,ji

i j

dSdS
i i i i ijS S

dS t S t rdt dW Corr dt i j m = + σ = ρ = 
 

 

How  to approximate the multi-asset process by a (correlated) multi-dimensional tree?  

Problem 2: Convergence patterns – The sawtooth effect  

      
Convergence pattern for a down-and-out digital call option (Boyle and Lau (1994)) 



3. Advanced Single-Asset Trees and the Optimal Drift Method 

A more convenient representation of the binomial tree 
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Moment conditions revisited 
Donsker’s theorem is valid if ( ) ( )0, n , p nβ > α  satisfy the approx. moment cond.: 
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Consequences: 

a) Cox, Ross, Rubinstein :   ( ) ( )
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b)  Theorem (Müller (2009)) Drift-invariance  
With the choice of the risk-neutral probability 

(RNP) ( )
r te d

p n
u d

∆ −=
−

 

and ( ) ( )n t t n t tu e , d eα ∆ +β ∆ α ∆ −β ∆= =  the moment conditions of Donsker’s theorem 
are automatically (approximately) satisfied if and only if we choose 

(*)  .β = σ  

Note:  
This is a key observation as it leaves us the free choice of the drift process ( )nα . 



How to use the freedom of choosing the drift ?  



How to use the freedom of choosing the drift ?  
⇒⇒⇒⇒ Second key ingredient: 

Theorem (Müller (2009)) Asymptotic approximation of the martingale distribution 
Let Q be the unique equivalent martingale measure in the Black-Scholes model, let  
β = σ  and  

(PC) ( ) ( )( ) ( )( ) ( )3 22 3 21 1 1
2 2 2
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σ= + − α − σ ∆ + ∆ +  

where ( )c n  is a bounded function of ( )nα .  
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for some function b(.) with ( ) 1b x ≤ . Further, with k = # up-moves, we have 
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= −   for   ( ) ( ) ( ) ( )1n nS n;k x S n;k− < ≤ . 
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b)  Chang-Palmer (2007): 

 b(n) = 0  (i.e. increase the order of convergence !) via suitably choosing ( )nα  . 

⇒ Faster (but not montone) convergence ! 
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Idea: 
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parameter α, i.e. choose an additional drift parameter α(n) to obtain b(n) = 0.   
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 as one can show   ( ) ( )1n oα = α +  

2. Realize that ( )g α  is a quadratic function.  

⇒ If a zero αɶ of ( )g α  exists then choose it as the “original α “ and obtain an  

 order of convergence of ( )1
no .  

⇒ Else choose the minimizing/maximizing α as “original α “ and obtain the 
same order of convergence as Chang-Palmer, but with an optimal constant.  

  



 
Convergence behaviour for a European digital call with  
s = 95, r = 0.1, σ = 0.25, T = 1, K = x =100:  Optimal drift-case 

 



Convergence behaviour for a European digital call with  

s = 95, r = 0.1, σ = 0.25, T = 1, K = x =100:  The numbers 

 



 

More on the optimal drift method: 

• Results carry over to puts/calls and to American puts/calls (optimal drift method 
outperforms Leisen-Reimer (1996) algorithm) 

• Optimal drift model makes full use of the free parameters to obtain a better order 
of convergence 

• Theoretical results on superior performance 

• Interesting to test it on more advanced options (such as barriers) 

 



4. Standard multi-dimensional trees 
Define an m-dimensional N-period tree via  

 ( ) ( ) ( ) ( )( ) ,1 , 1,..., , 1,...,i i k it tZN N
i iS k t S k t e k N i m

α ∆ +β ∆∆ = − ∆ = =  

with ( ) { }, 1,1k iZ ω ∈ − . 

We choose the constants ,i iα β  and the up-down probabilities such that we obtain: 

• ( ),1 ,,..., , 1,...,k k mZ Z k N=  are i.i.d. for fixed N 

• the first two moments of the continuous-time log returns coincide (at least) 
asymptotically with those in the tree, in particular the covariances satisfy                          

Disadvantages:  

• very tedious 

• does not always lead to well-defined probabilities ! 
 

 



Examples: 
1. The BEG Tree (Boyle, Evnine, Gibbs (1989), generalized CRR Tree) 
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Note:  

• log-prices in the BEG Tree are symmetric 

• probabilities depend in a complicated way from the drift and covariance structure 

• probabilities are not automatically non-negative ! 

 



 
BEG probabilities are not always well-defined: 

 



 
2. The n-dim. Rendleman-Barrter Tree (Amin (1991), K., Müller (2009)) 
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Note:  

• log-prices in the RB Tree are non-symmetric 

• probabilities depend only on the covariance structure, not on the fineness of the 
discretization  

 
 
 
 
 

 



An example for multi-asset binomial convergence:  

( ) ( )( ) ( ) [ ] ( ) [ ]{ }1 0 0 21 2 25 0, , 15 0,, 100 1S t for some t T S t t TB g S T S T ≥ ∈ ≥ ∀ ∈= = ⋅  

( ) ( )1 2 1 20 20, 0 30, 0.2, 0.3, 0.5, 1, 0.1S S T r= = σ = σ = ρ = = =  

 

Cash-or-nothing option with up-in-barrier on stock 1 and down-out-barrier on stock 2 
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A general decoupling rule (K. and Müller (2009)) 
• Decompose the variance/covariance matrix of the log-returns 
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A general decoupling rule (K. and Müller (2009)) 
• Decompose the variance/covariance matrix of the log-returns 

 (1) TGDGΣ =  

• Set up a new log-return process 

 (2) ( ) ( )( ) ( )( )( )1
1: ln ,..., ln

T
mY t G S t S t−=  

Consequence: 
• The components of ( )Y t  are independent and have the dynamics  

(3) ( ) ( ) ( ) ( )1 2 2 2 21
12, 1 , ,...,

T

j j jj j mdY t dt d dW t G r−= µ + µ = − σ σ = σ σ  

• Moment matching can be done component wise !!!! (only 1D problems !) 
• Always well-defined probabilities 
• Combination of different 1D-trees possible ! 



Our special choice: 
• Use 1D-Rendleman-Barrter Trees (=> all paths are equally likely !) 
• Use the spectral decomposition for decoupling 
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We then transform each node back to obtain the “valuation tree”: 
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We then transform each node back to obtain the “valuation tree”: 

•  Define  (5)     ( ) ( )1: ,..., ,mG xG x
ih x e e G row i of G= =       

•  Set  (6) ( ) ( )( ):
N N

k kS h Y=  

Finally: Calculate the option price via backward induction 



 

Algorithm: Decoupled Tree Option Pricing 

Input: payoff function g, model parameters (in part. var.-cov. matrix Σ), N 

1. Decompose the variance-covariance matrix TGDGΣ = . 

2. Transform the stock price S into ( ) ( )( ) ( )( )( )1
1: ln ,..., ln

T
mY t G S t S t−= which is 

component wise a Brownian motion with drift as in (3). 

3. Set up an m-dimensional Rendleman-Barrter tree with independent components 
using the discrete process Y(N) as defined in (4). 

4. Apply the transformation (5) to each node of the tree as in (6). 

5. Evaluate the payoff functional along the transformed nodes using backward 
induction. Exploit the fact that all scenarios are equally likely. 



 
An extra gain: No sawtooth effect ! 
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An extra gain: No sawtooth effect ! 

       
• How to explain this ?  

• Is it really a gain ? 
 



Explanation:  

Origin of the sawtooth effect 
Two discretizations (N=17, N=18) for a Rendleman-Barrter Tree for a cash-or-
nothing barrier-option 

  



Explanation II:  
Discretizations (N=17) for a Rendleman-Barrter orthogonal Tree for a cash-or-
nothing barrier-option  

    



Speeding up convergence:   
As convergence is approx. monotone we apply Richardson extrapolation 
 

    



In numbers: 
 

 
 



 
Conclusion on decoupled trees 

• Decoupled trees are easy to implement 

• Decoupled trees are not restricted in their application by parameter settings 

• Decoupled trees avoid the sawtooth effect by a non-linear transformation 

• Decoupled trees allow for an efficient implementation (Richardson extrapola-
tion, component-adapted discretization, model reduction…) 

• Decoupled trees need a higher computing time for path-dependent options 

• Decoupled trees are not universally best methods, but can be used universally 
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Thanks for your attention ! 


