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Research overview

Long-term objective is faster Monte Carlo simulation of path
dependent options to estimate prices and Greeks

Several ingredients, not yet all combined:

multilevel method

quasi-Monte Carlo

adjoint pathwise Greeks

parallel computing on NVIDIA GPUs

Emphasis in this presentation is on multilevel method
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Outline

multilevel approach

numerical analysis

Greeks

jump diffusion models

an SPDE application

research by others

future plans
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Approach

Given a scalar SDE driven by a Brownian diffusion

dS(t) = a(S, t) dt + b(S, t) dW (t),

to estimate E[P ] where the path-dependent payoff P can be
approximated by P̂l using 2l uniform timesteps, we use

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

E[P̂l−P̂l−1] is estimated using Nl simulations with same
W (t) for both P̂l and P̂l−1,

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Approach

Using independent samples for each level, the variance of
the combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡

{
V[P̂l−P̂l−1], l > 0

V[P̂0], l = 0

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.
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Approach

Since

E

[
(Ŷ −E[P ])2

]
= V[Ŷ ] +

(
E[P̂L] − E[P ]]

)2

can choose

constant of proportionality for Nl so that V[Ŷ ] ≈ 1
2ε2

finest level L so that
(
E[P̂L−P ]

)2
≈ 1

2ε2

to get Mean Square Error approximately equal to ε2
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MLMC Theorem

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = 2−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo
samples, with computational complexity (cost) Cl, and positive

constants α≥ 1
2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂l − P ]

∣∣∣ ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl ≤ c3 Nl h
−1
l
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤






c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Previous Work

First paper (Operations Research, 2006 – 2008) applied
idea to SDE path simulation using Euler-Maruyama
discretisation

Second paper (MCQMC 2006 – 2007) used Milstein
discretisation for scalar SDEs – improved strong
convergence gives improved multilevel variance
convergence

Multilevel method is a generalisation of two-level
control variate method of Kebaier (2005), and
similar to ideas of Speight (2009)

Also related to multilevel parametric integration by
Heinrich (2001)
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Numerical Analysis

If P is a Lipschitz function of S(T ), the value of the
underlying at maturity, the strong convergence property

(
E

[
(ŜN − S(T ))2

])1/2
= O(hγ)

implies that V[P̂l−P ] = O(h2γ
l ) and hence

Vl ≡ V[P̂l−P̂l−1] = O(h2γ
l ).

Therefore β=1 for Euler-Maruyama discretisation,
and β=2 for the Milstein discretisation.

However, in general, good strong convergence is neither
necessary nor sufficient for good convergence for Vl.
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Numerics and Analysis

Euler Milstein
option numerics analysis numerics analysis
Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vl convergence observed numerically (for GBM)
and proved analytically (for more general SDEs) for both
the Euler and Milstein discretisations. δ can be any strictly
positive constant.
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Numerical Analysis

Analysis for Euler discretisation:

lookback and barrier options: Giles, Higham & Mao
(Finance & Stochastics, 2009)

lookback analysis follows from strong convergence
barrier analysis shows dominant contribution comes
from paths which are near the barrier; uses
asymptotic analysis, first proving that “extreme”
paths have negligible contribution

similar analysis for digital options gives O(h1/2−δ)

bound instead of O(h1/2 log h)

digital options: Avikainen (Finance & Stochastics, 2009)
method of analysis is quite different
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Numerical Analysis

Analysis for Milstein discretisation for scalar SDEs:

work in progress by Giles, Debrabant & Rößler

uses boundedness of all moments to bound the
contribution to Vl from “extreme” paths
(e.g. for which max

n
|∆Wn| > h1/2−δ for some δ>0)

uses asymptotic analysis to bound the contribution
from paths which are not “extreme”
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Milstein Scheme

Brownian interpolation: within each timestep, model the
behaviour as simple Brownian motion (i.e. constant drift and
volatility) conditional on the two end-points

Ŝ(t) = Ŝn + λ(t)(Ŝn+1 − Ŝn)

+ bn

(
W (t) − Wn − λ(t)(Wn+1−Wn)

)
,

where λ(t) = (t−tn)/(tn+1−tn).

Analytic results for the distribution of the min/max/average
over each timestep are used to construct multilevel
estimator for Asian, lookback and barrier options

Digital options use Brownian extrapolation from ŜN−1 and
take conditional expectation to effectively smooth the payoff
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Milstein Scheme

The Brownian interpolant is different from the standard
Kloeden-Platen interpolant defined as

ŜKP (t) = Ŝn + an (t−tn) + bn (W (t)−Wn)

+ 1
2 b′n bn

(
(W (t)−Wn)2 − (t−tn)

)
,

for which, under the usual conditions,

E

[
sup
[0,T ]

∣∣∣ŜKP (t) − S(t)
∣∣∣
m
]

= O(hm).

but can prove that

E

[
sup
[0,T ]

∣∣∣Ŝ(t) − ŜKP (t)
∣∣∣
m
]

= O((h log h)m)
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Barrier Options

For barrier options, split paths into 3 subsets:

extreme paths

paths with a minimum within O(h1/2−γ) of the barrier

rest

Assuming inf
[0,T ]

S(t) has bounded density (at least near the

barrier) the dominant contribution comes from the second
subset, for which the O(h) difference between Ŝf , Ŝc leads
to an O(h1/2) difference between P̂ f , P̂ c.

Hence, Vl = o(h3/2−δ), ∀δ > 0.
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Digital Options

For digital options, again split paths into 3 subsets:

extreme paths

paths with final S(T ) within O(h1/2−γ) of the strike

rest

Assuming S(T ) has bounded density near the strike, the
dominant contribution again comes from the second subset,
where the O(h) difference between Ŝf , Ŝc leads to an
O(h1/2) difference between P̂ f , P̂ c.

Hence, again, Vl = o(h3/2−δ), ∀δ > 0.
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Basket Options

The Euler discretisation, multilevel implementation and
numerical analysis all extend naturally to multi-dimensional
SDEs, but variance convergence is poor for exotic options

In some cases (e.g. multiple assets with uncoupled scalar
SDEs) can still use the Milstein discretisation.

The multilevel construction and numerical analysis extend
too for basket option based on an average of the underlying
assets

Key point: weighted average of Brownian interpolations is
another Brownian interpolation, so can use the same
multilevel construction as before
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Multivariate digitals

What if the payoff is more complicated (not based on a
simple average) but depends only on the values at a
discrete set of times?

For a Lipschitz payoff there’s no problem

If the payoff is discontinuous, may not have an analytic
value for the conditional expectation based on Brownian
extrapolation (and interpolation for earlier times)
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Multivariate digitals

First solution: use a change of measure (as in importance
sampling)

If Pc and Pf correspond to the conditional terminal
distributions for the coarse and fine paths, and Q is an
equivalent Gaussian distribution (with a larger variance),

P̂l − P̂l−1 = EPf
[f ] − EPc

[f ]

= EQ[(rf−rc)f ]

= EQ[(rf−rc)(f − f0)]

where rf , rc are the Radon-Nikodym derivatives, and f0 is
any fixed constant (e.g. at peak of Q).

Good asymptotic behaviour, but not wonderful in practice
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Multivariate digitals

Second solution: use splitting

If W and Z are independent random variables, then for any
function g(W,Z) the estimator

ŶM,N = N−1
N∑

n=1

(
M−1

M∑

m=1

g(W (n), Z(m,n))

)

with independent samples W (n) and Z(m,n) is an unbiased
estimator for EW,Z [g(W,Z)] ≡ EW

[
EZ [g(W,Z) |W ]

]
, and its

variance is

N−1 VW

[
EZ [g(W,Z) |W ]

]
+ (MN)−1 EW

[
VZ [g(W,Z) |W ]

]
.

Multilevel Monte Carlo – p. 21/35



Multivariate digitals

Here W is the driving Brownian path up to T−h and Z is the
increment for the final timestep.
Can argue that

VW

[
EZ [g(W,Z) |W ]

]
= O(h3/2)

EW

[
VZ [g(W,Z) |W ]

]
= O(h)

where g(W,Z) ≡ P̂l−P̂l−1. Hence, provided

h−1/2 ≪ M ≪ h−1

get same asymptotic variance as analytic expectation,
and at same asymptotic cost.

In limited testing, works better than change of measure
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Greeks

My preference is to compute Greeks using IPA / pathwise
sensitivities (L’Ecuyer, Broadie & Glasserman) because of
efficient adjoint implementation (Giles & Glasserman)

What’s the problem with multilevel implementation?

for Lipschitz payoffs, lose one order of smoothness,
so for first order Greeks the payoff sensitivity looks like
a digital option so use same tricks

compute sensitivity of conditional expectation one
timestep before maturity
use a change of measure
use splitting

for digital payoffs, can’t use pathwise sensitivity analysis
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Greeks

For both Lipschitz and digital options can use “vibrato”
sensitivity analysis:

can be viewed as a hybrid combination of pathwise
sensitivity analysis up to T−h, and then Likelihood
Ratio Method for the final timestep

can also be viewed as applying the change of measure
idea to a perturbed path, in the limit of infinitesimal
perturbation

either way it effectively smooths the payoff, but the
variance still suffers
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Greeks

Asymptotic variance for the multilevel correction using the
Milstein discretisation and vibrato sensitivity analysis

first order Greeks second order Greeks
Lipschitz O(h3/2) O(h1/2)

digital O(h1/2) O(h−1/2)

Asymptotic computational cost to achieve O(ε) RMS
accuracy, assuming first order weak convergence

first order Greeks second order Greeks
Lipschitz O(ε−2) O(ε−5/2)

digital O(ε−5/2) O(ε−7/2)
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Jump Diffusion

For finite activity jump diffusion models like Merton’s,
the multilevel treatment is relatively straightforward if
the Poisson jump rate is constant

use jump-adapted discretisation, adding jump times to
standard uniform timestep discretisation times

Milstein approximation of pure diffusion model between
jumps, with Brownian interpolation within each timestep

jump intervals are exponential random variables; the
same values are used for coarse and fine paths

again get ‖Ŝf−Ŝc‖ ≈ O(h)
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Jump Diffusion

Trickier when the jump rate is path-dependent

can lead to coarse and fine paths jumping at slightly
different times, producing big differences in payoff
if one jumps before maturity and the other after

similar to problems with digital option

also causes difficulty for computing pathwise
sensitivities

This last point holds generally – discontinuous behaviour
is bad for both pathwise sensitivities (invalid) and the
multilevel method (poor convergence) and the same “fix”
usually works for both
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Jump Diffusion

One approach to path-dependent jump rates uses a
constant rate to generate candidate jump times, then uses
“thinning” to select a subset (Glasserman & Merener)

if the same uniform random variables are used for
thinning coarse and fine paths then in most cases the
paths will use the same jump times, but in a few they
won’t – same problem

can use a change of measure to map to a thinning
process with 50/50 acceptance/rejection – then using
the same r.v. means the coarse and fine paths always
jump at the same time

initial numerical results look good
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Jump Diffusion

Another approach defines the jump interval by a discrete
approximation to

∫ τ

0
λ(S, t) dt = − log U

where U is a unit interval uniform r.v.

The coarse path can be required to jump at the same time
as the fine path through a change of measure with
Radon-Nikodym derivative

exp

(∫ T

0
(λf−λc) dt

)
NT∏

n=1

λc
n

λf
n

Not tested yet – currently being implemented
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SPDE Application

Currently working with Christoph Reisinger on an
SPDE application which arises in CDO modelling
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ

∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x, t) is probability density function

dW term corresponds to systemic risk

∂2p/∂x2 comes from idiosyncratic risk
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SPDE Application

numerical discretisation combines Milstein
time-marching with central difference approximations

coarsest level of approximation uses 1 timestep per
quarter, and 10 spatial points

each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to
numerical stability constraints

mean-square stability theory, with and without
absorbing boundary

computational cost Cl ∝ 8l

numerical results suggest variance Vl ∝ 8−l

can prove Vl ∝ 16−l when no absorbing boundary
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Other Research

Rainer Avikainen – numerical analysis of multilevel
method with Euler discretisation

Raul Tempone, Anders Szepessy – multilevel method
combined with adaptive time-stepping

adaptive time-stepping can be very effective in some
circumstances
might be great for difficulties with Heston model

Steffen Dereich, F. Heidenreich – multilevel method for
Lévy processes

large jumps simulated individually
small jumps approximate by Brownian diffusion
small/large distinction dependent on timestep h,
so changes between coarse and fine paths
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Future Work

Milstein scheme for multi-dimensional SDEs generally
requires Lévy areas:

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk − (Wk(t)−Wk(tn)) dWj .

O(h1/2) strong convergence in general if omitted

Can still get good convergence for Lipschitz payoffs by
using W c(t) = 1

2(W f1(t)+W f2(t)) with two fine paths
created by antithetic Brownian Bridge construction

For digital options, need to simulate Lévy areas –
tradeoff between cost and accuracy, optimum may
require O(h3/2) sub-sampling of Brownian paths, giving
O(h3/4) strong convergence
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Future Work

American options – the next big challenge

instead of Longstaff-Schwartz approach, view it as
a global exercise boundary optimisation problem?

parametric representation of exercise boundary

use multilevel method (combined with adjoints?)
to compute parametric sensitivities

feed into classical gradient based optimisation

start by optimising coarse approximations to give
starting point for finer approximations (FMG in multigrid
literature, multilayer optimisation – Sachs & Käbe)
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Conclusions

multilevel method being adapted to increasingly more
challenging applications

numerical analysis now supports some of the
experimental findings

many of the challenges are closely related to those
faced when computing pathwise sensitivities

haven’t discussed use of QMC, but this helps greatly as
most computational effort is expended on coarse levels

Papers are available from:
www.maths.ox.ac.uk/∼gilesm/finance.html
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