
1

Optimal Importance Sampling
For Dynamic Portfolio Credit Risk

Kay Giesecke

Management Science & Engineering

Stanford University

giesecke@stanford.edu

www.stanford.edu/∼giesecke

Joint work with Alex Shkolnik, Stanford

Kay Giesecke



Optimal IS For Dynamic Portfolio Credit Risk 2

Corporate defaults cluster
Value-weighted default rate 1865–2008, US nonfinancial
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Correlated default risk

Important applications

• Risk management of credit portfolios

– Likelihood of large losses

– Portfolio risk measures: VaR etc.

– Capital allocation

– Hedging

• Optimization of credit portfolios

• Risk analysis, valuation, and hedging of portfolio credit derivatives

Kay Giesecke
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Default timing

• Consider a portfolio of n defaultable assets

– Default stopping times τ i relative to (Ω,F ,P) and F

– Default indicators N i
t = I(τ i ≤ t)

– Vector of default indicators N = (N1, . . . , Nn)

• The portfolio default process C = 1n ·N counts defaults

– At the center of many applications

Kay Giesecke
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Bottom-up model of default timing

• Name i defaults at intensity λi

– N i −
∫ ·
0
(1−N i

s)λ
i
sds is a martingale

– λi represents the conditional default rate: for small ∆ > 0

λit∆ ≈ P(i defaults during (t, t+ ∆] | Ft)

• The vector process λ = (λ1, . . . , λn) is the modeling primitive

– Component processes are correlated: diffusion, common or

correlated or feedback jumps

– Large literature

– We don’t assume a specific model

Kay Giesecke
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Model computation

• For fixed T > 0 and CT = 1n ·NT we require

– P(CT ≥ m) for large m and its constituent sensitivities

– Quantiles of P(CT ≥ m) and other risk measures

• Semi-analytical transform techniques

– Limited to (one-) factor doubly-stochastic models of N

– Numerical transform inversion can be challenging

• Monte Carlo simulation

– Much wider scope

– Rare-event problem

Kay Giesecke
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Conventional importance sampling

• Change measure from P to Q and simulate N under Q; then

E(f(NT )) = EQ(ZT f(NT ))

• Radon-Nikodym density ZT = dP/dQ is given by

ZT =
n∏
i=1

exp
(∫ T

0

log
(
λis−
νis−

)
dN i

s −
∫ T∧τ i

0

(λis − νis)ds
)

where ν = (ν1, . . . , νn) is the Q-intensity of N

• Challenges

– Find Q that minimizes EQ((ZT f(NT ))2): depends on λ

– Evaluation of ZT f(NT ): discretization leads to bias

– Computationally expensive for large n

Kay Giesecke
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Our IS strategy

• Our approach addresses these challenges; it has two parts

1. Construct a time-inhomogeneous, continuous-time Markov

chain M ∈ {0, 1}n with the property that

Mt
law= Nt

2. Develop optimal Q for M , exploiting

E(f(NT )) = E(f(MT )) = EQ(ZT f(MT ))

• Advantages

– Optimal Q does not depend on the specific structure of λ

– IS estimator ZT f(MT ) can be evaluated exactly

– Computationally inexpensive even for large n

Kay Giesecke
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Mimicking Markov chain

• Proposition (G-Kakavand-Mousavi-Takada, 2009)

Let M be a Markov chain that takes values in S = {0, 1}n, starts

at 0n, has no joint transitions in any of its components and whose

ith component has transition rate pin(·,M) where

pin(t, B) = E(λitI(N i
t = 0) |Nt = B)

for B ∈ S. Then

P(Mt = B) = P(Nt = B)

• Calculation of pin(t, B) feasible for many models λ in the literature

Kay Giesecke
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Rare-event regime

• For µ ∈ (0, 1), consider ξn = {JT ≥ µn}, where J = 1n ·M

• When is (ξn) rare, i.e., when P(ξn) = P(CT ≥ µn)→ 0 as n→∞
– Seek IS scheme that is provably effective at estimating P(ξn)

• Let G be the filtration generated by M ; J has G-intensity

pn(·,M), where pn(t, B) =
∑n
i=1 p

i
n(t, B)

• Let K be a G-Poisson process stopped at its nth jump with rate

βn = sup
t≤T,B∈S

pn(t, B)

• K dominates J in the sense that

P(JT ≥ µn) ≤ P(KT ≥ µn) = P(Sdµne ≤ T )

where (Sm)1≤m≤n is the increasing sequence of event times of K

Kay Giesecke
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Rare-event regime

• The CLT indicates that P(Sdµne ≤ T )→ 0 if βn < dµne/T

• Thus, (ξn) is rare if the rates pin(t, B) of the Markov chain M

mimicking N satisfy

pn(t, B) < dµne/T for all B ∈ S and t ∈ [0, T ]

• A similar argument shows that (ξn) is not rare if

pn(t, B) ≥ dµne/T for all B ∈ S and t ∈ [0, T ]

• We will show that the optimal measure Q for estimating

P(CT ≥ dµne) shifts the rates of M so that the (G,Q)-intensity

of J is at the threshold dµne/T

Kay Giesecke
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Measure change for M

• We would like to choose Q to minimize the second moment under

Q of the IS estimator ZT I(JT ≥ m) of P(CT ≥ m)

• For θ > 0, consider the family of Q-rates of M given by

qin(t, B) = θ
pin(t, B)
pn(t, B)

(
so

qin(t, B)∑n
i=1 q

i
n(t, B)

=
pin(t, B)∑n
i=1 p

i
n(t, B)

)
• The Radon-Nikodym derivative takes the form

ZT (θ) = exp(θ(T ∧ Sn)− JT log θ +DT )

where DT , the P-density of the (Sm)1≤m≤JT
over [0, T ] wrt.

Lebesgue measure, does not depend on θ:

DT =
∫ T

0

log pn(s−,Ms−)dJs −
∫ T

0

pn(s,Ms)ds

Kay Giesecke
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Measure change for M

• The second moment of the estimator ZT (θ)I(JT ≥ m) is

EQ(Z2
T (θ)I(JT ≥ m)) = E(ZT (θ)I(JT ≥ m))

≤ exp(θT −m log θ)E(exp(DT )I(JT ≥ m))

where the inequality holds for all θ ≥ 1

• Minimizing the second moment is difficult, but minimizing the

bound over θ ≥ 1 is easy: the minimizer θ∗ is given by

θ∗ = θ∗m = m/T

• This suggests the IS estimator ZT (dµne/T )I(JT ≥ dµne) for

P(CT ≥ dµne)

Kay Giesecke
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Measure change for M

• The counting process J has (G,Q(θ))-intensity

qn(t,Mt) =
n∑
i=1

qin(t,Mt) = θI(Sn > t)

and is hence a Poisson process with rate θ stopped at Sn

• For large n, the Q(dµne/T )-mean of JT is

EQ(JT ) =
dµne
T

EQ(T ∧ Sn) ≈ dµne

and so the event {JT ≥ dµne} is not rare under Q(dµne/T )

• The P-rates pin(t, B) of M are shifted to qin(t, B) so that the

Q-intensity qn(·,M) =
∑n
i=1 q

i
n(·,M) of J is just at the

rare-event boundary dµne/T

Kay Giesecke
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Asymptotic optimality

• Theorem. Suppose pn(t, B) < dµne/T , i.e. P(CT ≥ dµne)→ 0.

If, for αn = inft≤T,B∈S pn(t, B) and βn = supt≤T,B∈S pn(t, B),

lim sup
n

βn
αn

= 1

then the second moment of the IS estimator

Yn = ZT (dµne/T )I(JT ≥ dµne)

of the probability

EQ(Yn) = P(CT ≥ dµne)

satisfies

lim sup
n→∞

log EQ(Y 2
n )

log EQ(Yn)
= 2

Kay Giesecke
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Asymptotic optimality

Discussion

• The condition prevents the oscillations of the (G,P) intensity

pn(t,M) of J from becomming arbitrarily large as n grows

• There are other optimal measures Q

– Take Q to be the measure associated with the rates

qin(t, B) = θ
1−Bi

n− 1n ·B

– The Q-intensity of J is qn(t,Mt) = θI(Sn > t), as above

– The estimator is asymptotically efficient, albeit under more

stringent hypotheses on the rate bounds

Kay Giesecke
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Derivative estimators

• For some parameter θ > 0, let Pθ be a probability measure

equivalent to P under which the default process

N = (N1, . . . , Nn) has intensity λθ = (θλ1, λ2, . . . , λn)

• Under mild conditions,

∂θEθ(f(NT )) = Eθ(f(MT )∂θ log hθ)

– The chain M has Pθ-transition rate (θp1
n, p

2
n, . . . , p

n
n)

– hθ is the density of Pθ with respect to some probability

measure µ on GT independent of θ

∂θ log hθ =
1
θ

(
M1
T − θ

∫ T

0

p1
n(s,Ms)ds

)
which we recognize as 1/θ times the compensated

(G,Pθ)-jump martingale associated with M1, evaluated at T

Kay Giesecke
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Derivative estimators

• Theorem. Under the conditions of the previous Theorem, the IS

estimator

Yn = ZT (dµne/T )I(JT ≥ dµne)
(
M1
T −

∫ T

0

p1
n(s,Ms)ds

)
of the sensitivity

∂θPθ(CT ≥ dµne)|θ=1

is asymptotically optimal in the sense that

lim sup
n→∞

log EQ(Y 2
n )

log |EQ(Yn)|
= 2

Kay Giesecke
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Extensions

• It is straightforward to extend the analysis to include a random

loss at default

• The analysis can also be extended to risk measures such as value

at risk or expected shortfall

– Under technical conditions, variance reduction for the

probability leads to variance reduction for the risk measure

– Asymptotic optimality

Kay Giesecke
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Numerical results

Self-exciting intensity model for n = 100

• Suppose the P-intensities λit = Xi
t + ci(t,Nt)

– Extends Jarrow & Yu (2001), Kusuoka (1999), Yu (2007)

– Feedback specification ci(t, B) =
∑n
j 6=i β

ijBj can be varied

– Analytical solutions not known

• Suppose the idiosyncratic factor follows the P-Feller diffusion

dXi
t = κi(θi −Xi

t)dt+ σi

√
Xi
tdW

i
t

where (W 1, . . . ,Wn) is a standard P-Brownian motion

• Parameters selected randomly (high credit quality)

– Practice: estimation from derivative prices or default history

Kay Giesecke
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Numerical results

• Proposition. The P-rates of the mimicking chain M are

pin(t, B) = E(λitI(N i
t = 0) |Nt = B)

=
4Xi

0γ
2
i exp(γit)

(γi − κi + (γi + κi) exp(γit))2

− θiκi
σ2
i

(κ2
i − γ2

i )(exp(γit)− 1)
γi − κi + (γi + κi) exp(γit)

+
∑
j 6=i

βijBj

for Bi = 0, where γi =
√
κ2
i + 2σ2

i

• Generalizations

– Can add compound Poisson jumps without reducing tractability

– General affine jump diffusion dynamics

Kay Giesecke
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Numerical results
P(C1 ≥ µ) for n = 100, plain MC (500K, red) vs. IS (10K each)
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Variance ratios for P(C1 ≥ µn), n = 100

µn P(C1 ≥ µn) Var IS (10K) Var Plain (500K) Var Ratio

3 0.4906572 0.1862536 0.2499024 1.341732

4 0.2660202 0.0828141 0.1962571 2.369851

5 0.1196635 0.02467735 0.1080868 4.379999

6 0.04823202 0.005089037 0.0459401 9.027268

7 0.01679726 0.0007392553 0.01622778 21.95152

8 0.004851613 7.61035e-05 0.004923527 64.69515

9 0.00132148 6.290501e-06 0.001300307 206.7096

10 0.0003043514 3.951607e-07 0.0003099045 784.2493

11 6.616864e-05 2.031115e-08 8.199344e-05 4036.868

12 1.267209e-05 8.217485e-10 1.799971e-05 21904.16

13 2.199999e-06 2.737301e-11 3.999992e-06 146129.1

14 3.484863e-07 7.542041e-13 0 0

15 5.439357e-08 1.922568e-14 0 0

Kay Giesecke
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Variance ratios for ∂θPθ(C1 ≥ µn)|θ=1, n = 100

µn ∂θPθ(C1 ≥ µn)|θ=1 Var IS (10K) Var Plain (500K) Var Ratio

3 0.006661911 0.01548746 0.01839772 1.187911

4 0.005118402 0.006294804 0.01210119 1.92241

5 0.00311368 0.001831398 0.006499334 3.548838

6 0.00178735 0.000434359 0.002888021 6.648926

7 0.0006891087 6.235889e-05 0.00109927 17.62812

8 0.0002516899 7.208854e-06 0.0003520437 48.83490

9 8.134683e-05 6.290217e-07 0.0001003328 159.5061

10 2.350587e-05 4.752067e-08 2.949409e-05 620.6581

11 6.302068e-06 2.934012e-09 1.173715e-05 4000.376

12 1.118905e-06 1.08919e-10 3.933792e-06 36116.67

13 2.478318e-07 4.301901e-12 2.618956e-09 60879.04

14 4.080089e-08 1.185663e-13 0 0

15 6.813895e-09 3.233037e-15 0 0

Kay Giesecke
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Conclusions

• Exact and asymptotically optimal IS scheme for intensity-based

models of portfolio credit risk

– Probability of large losses

– Constituent sensitivities

– Risk measures

• Broadly applicable since largely model-independent

– Multi-factor doubly-stochastic models

– Multi-factor frailty models

– Self-exciting models

Kay Giesecke
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Conclusions

• We address the rare-event simulation problem for intensity-based

models of portfolio credit risk

– Bassamboo & Jain (2006): biased IS estimators for standard

doubly-stochastic model

– Giesecke, Kakavand, Mousavi & Takada (2009): unbiased

selection/mutation estimators for a wide range of models but

no optimality certificate

• Our results complement the IS schemes developed for

copula-based models of portfolio credit risk

– Bassamboo, Juneja & Zeevi (2008)

– Chen & Glasserman (2008)

– Glasserman & Li (2005)

Kay Giesecke
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