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Corporate defaults cluster
Value-weighted default rate 1865-2008, US nonfinancial
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Correlated default risk

Important applications

e Risk management of credit portfolios
— Likelihood of large losses
— Portfolio risk measures: VaR etc.
— Capital allocation
— Hedging

e Optimization of credit portfolios

e Risk analysis, valuation, and hedging of portfolio credit derivatives
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Default timing

e Consider a portfolio of n defaultable assets
— Default stopping times 7° relative to (2, F,P) and F
— Default indicators N} = I(7* < t)
— Vector of default indicators N = (N, ..., N™)

e The portfolio default process C' = 1,, - N counts defaults

— At the center of many applications
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Bottom-up model of default timing

e Name i defaults at intensity \*
— N*— [,(1 = NI)Alds is a martingale

— )\ represents the conditional default rate: for small A > 0
M A =~ P(i defaults during (t,t + A] | F)

e The vector process A = (A1, ..., A\") is the modeling primitive

— Component processes are correlated: diffusion, common or
correlated or feedback jumps

— Large literature

— We don't assume a specific model
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Model computation

e For fixed T'> 0 and Cr = 1,, - N7 we require
— P(Cr > m) for large m and its constituent sensitivities

— Quantiles of P(Cr > m) and other risk measures

e Semi-analytical transform techniques
— Limited to (one-) factor doubly-stochastic models of N

— Numerical transform inversion can be challenging

e Monte Carlo simulation
— Much wider scope

— Rare-event problem
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Conventional importance sampling

e Change measure from P to Q and simulate NV under Q; then

E(f(Nt)) = Eo(Z7f(N1))

e Radon-Nikodym density Zp = dP/dQ is given by

n T )\z ' TAT! . .
I = Hexp (/ log (Vf_> dN: — / (A, — V;)ds)

where v = (v1, ..., ™) is the Q-intensity of N

e Challenges
— Find Q that minimizes Eq((Z7f(Nr))?): depends on A
— Evaluation of Zp f(N7): discretization leads to bias

— Computationally expensive for large n

Kay Giesecke



Optimal IS For Dynamic Portfolio Credit Risk

Our IS strategy

e Our approach addresses these challenges; it has two parts

1. Construct a time-inhomogeneous, continuous-time Markov
chain M € {0,1}" with the property that

M, "2 N,
2. Develop optimal Q for M, exploiting
E(f(Nt)) = E(f(Mr)) = Eo(Z7 f(MT))

e Advantages
— Optimal @Q does not depend on the specific structure of A
— IS estimator Zp f(Mr) can be evaluated exactly

— Computationally inexpensive even for large n
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Mimicking Markov chain

e Proposition (G-Kakavand-Mousavi-Takada, 2009)
Let M be a Markov chain that takes values in S = {0, 1}", starts
at 0,,, has no joint transitions in any of its components and whose

ith component has transition rate p’ (-, M) where
pn(t, B) = E(\MI(N; = 0) | N, = B)
for B € S. Then

P(M; = B) = P(N, = B)

e Calculation of p! (¢, B) feasible for many models X in the literature
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Rare-event regime
e For € (0,1), consider &, = {Jr > un}, where J =1,,- M

e When is (§,) rare, i.e., when P(&,) =P(Cpr > pun) — 0 as n — oo
— Seek IS scheme that is provably effective at estimating P(&,,)

o Let G be the filtration generated by M; J has G-intensity
pn('v M)' where pn(t, B) — Z?:l pfz(ta B)

o Let K be a G-Poisson process stopped at its nth jump with rate

Bn — Sup pn(taB)
t<T,BEeS

e K dominates J in the sense that
P(Jr > pn) < P(Kp > pn) = P(Sfum < T)

where (Sy,)1<m<n is the increasing sequence of event times of K
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Rare-event regime
e The CLT indicates that P(Sf,,) <T) — 0if 8, < [un]/T

e Thus, (&,) is rare if the rates p’ (t, B) of the Markov chain M
mimicking N satisfy

pn(t,B) < [un]/T forall BeSandt e [0,T]

e A similar argument shows that (&,) is not rare if

pn(t,B) > [un]/T forall BeSandt e [0,T]

e We will show that the optimal measure QQ for estimating
P(Cr > [un]) shifts the rates of M so that the (G, Q)-intensity
of J is at the threshold [un]|/T

11

Kay Giesecke



Optimal IS For Dynamic Portfolio Credit Risk

Measure change for M

e We would like to choose Q to minimize the second moment under
Q of the IS estimator ZpI1(Jp > m) of P(Cr > m)

e For 8 > 0, consider the family of Q-rates of M given by

) L p?r.z(th) SO q;ﬁ(taB) L p%<t7B>
w(tB) =0 4 By ( ST G0 B) z:;lpw,B))

e The Radon-Nikodym derivative takes the form

Zr(0) =exp(0(T AN Sy,) — Jrlogh + Dr)

where Dr, the P-density of the (S, )1<m<.J, over [0, T] wrt.
Lebesgue measure, does not depend on 6:

T T
Dt :/ log pp(s—, Ms_)dJ —/ (s, Ms)ds
0 0
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Measure change for M
e The second moment of the estimator Z(0)I(Jr > m) is
Eq(Z7(0)I(Jr = m)) = E(Zr(0)I(Jr = m))
< exp(0T — mlog 0)E(exp(Dr)I(Jr = m))
where the inequality holds for all § > 1

e Minimizing the second moment is difficult, but minimizing the
bound over 6 > 1 is easy: the minimizer 6* is given by

0" =0° =m/T

e This suggests the IS estimator Z¢([un|/T)I(Jr > [un]) for
P(Cr = |pun])
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Measure change for M

e The counting process J has (G, Q(#))-intensity

o (t, M) antMt PI(S, > t)

and is hence a Poisson process with rate 6 stopped at .5,

e For large n, the Q([un]/T)-mean of Jr is

Eo(Jr) = 12 Eo(T A $,) ~ ]

and so the event {Jp > [un]} is not rare under Q(|un]/T)

e The P-rates p! (t, B) of M are shifted to ¢’ (¢, B) so that the
Q-intensity ¢, (-, M) =37, ¢4 (-, M) of J is just at the
rare-event boundary [un|/T
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Asymptotic optimality

e Theorem. Suppose p,, (¢, B) < [un|/T, i.e. P(Cr > [un]) — 0.

If, for v, = infy<7 Bes pn(t, B) and 3, = Supth,BeSpn(ta B),

limsup — =1
n an

then the second moment of the IS estimator
Y, = Zr([pn]/T)I(Jr > [pn])
of the probability
Eq(Yn) = P(Cr = [un])

satisfies

lim sup log Eig(Yy)) =2
11— 0O log E@(Yn)

15
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Asymptotic optimality
Discussion

e The condition prevents the oscillations of the (G, P) intensity
pn(t, M) of J from becomming arbitrarily large as n grows

e There are other optimal measures
— Take Q to be the measure associated with the rates

1— B
n—1, - B

q,(t,B) =10

— The Q-intensity of J is ¢, (t, My) = 01(S,, > t), as above

— The estimator is asymptotically efficient, albeit under more
stringent hypotheses on the rate bounds

16
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Derivative estimators

e For some parameter 6 > 0, let Py be a probability measure
equivalent to P under which the default process
N = (N1,...,N™) has intensity \Y = (OA1, A2, ..., ")

e Under mild conditions,
OEo(f(Nt)) = Eo(f (M1)0s log ho)

— The chain M has Py-transition rate (6p.,p2,...,p")

— hg is the density of Py with respect to some probability
measure 1 on G independent of 6

1 T
Oy log hy = 7 (M% - 9/ P (s, Ms)ds>
0

which we recognize as 1/6 times the compensated
(G, Py)-jump martingale associated with M?!, evaluated at T

17

Kay Giesecke



Optimal IS For Dynamic Portfolio Credit Risk

Derivative estimators

e Theorem. Under the conditions of the previous Theorem, the IS
estimator

Y, = Zo([un)/T)I(Fr > [un]) (M% - [ o Ms>ds)
of the sensitivity

0oPe(C > [pn])|o=1

is asymptotically optimal in the sense that

log Eq (Y2
lim sup og Eq(Vy,)

=2
n—oo 10g |EQ(Yn)‘
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Extensions

e |t is straightforward to extend the analysis to include a random

loss at default
e The analysis can also be extended to risk measures such as value
at risk or expected shortfall

— Under technical conditions, variance reduction for the
probability leads to variance reduction for the risk measure

— Asymptotic optimality
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Numerical results

Self-exciting intensity model for n = 100

e Suppose the P-intensities \! = X} + c'(t, Ny)
— Extends Jarrow & Yu (2001), Kusuoka (1999), Yu (2007)
— Feedback specification ¢'(t, B) = >_7,; 3/ B? can be varied

— Analytical solutions not known

e Suppose the idiosyncratic factor follows the P-Feller diffusion
dX! = r;i(0; — X1)dt + 044/ XidW)

where (W1, ..., W™") is a standard P-Brownian motion

e Parameters selected randomly (high credit quality)

— Practice: estimation from derivative prices or default history

20

Kay Giesecke



Optimal IS For Dynamic Portfolio Credit Risk

Numerical results

e Proposition. The P-rates of the mimicking chain M are
P (t, B) = ENI(N] = 0) | N; = B)
4X7; exp(vit)
(Vi — ki + (i + K4) eX]D(%:’f))2
2 2
B Oiri (K7 —; )(exp(% + Z 3" BI

0-@‘2 Yi — _|_ (7’0 + l{,@ eXp /Yz i

for B® = 0, where v; = \/k? + 2072

e Generalizations
— Can add compound Poisson jumps without reducing tractability

— General affine jump diffusion dynamics

21
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Numerical results
P(Cy > p) for n = 100, plain MC (500K, red) vs. IS (10K each)
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Variance ratios for P(C; > un), n = 100

un | P(C1 > un) Var IS (10K) | Var Plain (500K) | Var Ratio
3 0.4906572 0.1862536 0.2499024 1.341732
4 0.2660202 0.0828141 0.1962571 2.369851
5 0.1196635 0.02467735 0.1080868 4.379999
6 0.04823202 0.005089037 0.0459401 9.027268
7 0.01679726 0.0007392553 0.01622778 21.95152
38 0.004851613 7.61035e-05 0.004923527 64.69515
9 0.00132148 6.290501e-06 0.001300307 206.7096
10 | 0.0003043514 | 3.951607e-07 0.0003099045 784.2493
11 | 6.616864e-05 | 2.031115e-08 8.199344e-05 4036.868
12 1.267209e-05 8.217485e-10 1.799971e-05 21904.16
13 2.199999e-06 2.737301e-11 3.999992e-06 146129.1
14 | 3.484863e-07 | 7.542041e-13 0 0

15 | 5.439357e-08 1.922568e-14 0 0
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Variance ratios for 0yPPy(C; > un)lg=1, n = 100

un | 0gPy(C1 > un)|g=1 | Var IS (10K) | Var Plain (500K) | Var Ratio
3 0.006661911 0.01548746 0.01839772 1.187911
4 0.005118402 0.006294804 0.01210119 1.92241
5 0.00311368 0.001831398 0.006499334 3.548838
6 0.00178735 0.000434359 0.002888021 6.648926
7 0.0006891087 6.235889e-05 0.00109927 17.62812
38 0.0002516899 7.208854e-06 0.0003520437 48.83490
9 8.134683e-05 6.290217e-07 0.0001003328 159.5061
10 2.350587e-05 4.752067e-08 2.949409e-05 620.6581
11 6.302068e-06 2.934012e-09 1.173715e-05 4000.376
12 1.118905e-06 1.08919e-10 3.933792e-06 36116.67
13 2.478318e-07 4.301901e-12 2.618956e-09 60879.04
14 4.080089e-083 1.185663e-13 0 0

15 6.813895e-09 3.233037e-15 0 0
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Conclusions
e Exact and asymptotically optimal IS scheme for intensity-based
models of portfolio credit risk
— Probability of large losses
— Constituent sensitivities

— Risk measures

e Broadly applicable since largely model-independent
— Multi-factor doubly-stochastic models
— Multi-factor frailty models

— Self-exciting models

25

Kay Giesecke



Optimal IS For Dynamic Portfolio Credit Risk

Conclusions

e \We address the rare-event simulation problem for intensity-based

models of portfolio credit risk

— Bassamboo & Jain (2006): biased IS estimators for standard

doubly-stochastic model

— Giesecke, Kakavand, Mousavi & Takada (2009): unbiased
selection/mutation estimators for a wide range of models but

no optimality certificate

e Our results complement the IS schemes developed for
copula-based models of portfolio credit risk
— Bassamboo, Juneja & Zeevi (2008)
— Chen & Glasserman (2008)

— Glasserman & Li (2005)

26
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