# Optimal Importance Sampling For Dynamic Portfolio Credit Risk

#### Kay Giesecke

Management Science & Engineering Stanford University giesecke@stanford.edu www.stanford.edu/~giesecke

Joint work with Alex Shkolnik, Stanford

## Corporate defaults cluster

Value-weighted default rate 1865-2008, US nonfinancial



#### Correlated default risk

#### Important applications

- Risk management of credit portfolios
  - Likelihood of large losses
  - Portfolio risk measures: VaR etc.
  - Capital allocation
  - Hedging
- Optimization of credit portfolios
- Risk analysis, valuation, and hedging of portfolio credit derivatives

## **Default timing**

- Consider a portfolio of *n* defaultable assets
  - Default stopping times  $\tau^i$  relative to  $(\Omega, \mathcal{F}, \mathbb{P})$  and  $\mathbb{F}$
  - Default indicators  $N_t^i = I(\tau^i \le t)$
  - Vector of default indicators  $N = (N^1, \dots, N^n)$
- The **portfolio default process**  $C = 1_n \cdot N$  counts defaults
  - At the center of many applications

## Bottom-up model of default timing

- Name i defaults at intensity  $\lambda^i$ 
  - $N^i-\int_0^{\cdot}(1-N^i_s)\lambda^i_sds$  is a martingale
  - $\lambda^i$  represents the conditional default rate: for small  $\Delta>0$

$$\lambda_t^i \Delta pprox \mathbb{P}(i \text{ defaults during } (t, t + \Delta) | \mathcal{F}_t)$$

- The vector process  $\lambda = (\lambda^1, \dots, \lambda^n)$  is the modeling primitive
  - Component processes are correlated: diffusion, common or correlated or feedback jumps
  - Large literature
  - We don't assume a specific model

## Model computation

- For fixed T>0 and  $C_T=1_n\cdot N_T$  we require
  - $\mathbb{P}(C_T \geq m)$  for large m and its constituent sensitivities
  - Quantiles of  $\mathbb{P}(C_T \geq m)$  and other risk measures
- Semi-analytical transform techniques
  - Limited to (one-) factor doubly-stochastic models of N
  - Numerical transform inversion can be challenging
- Monte Carlo simulation
  - Much wider scope
  - Rare-event problem

## Conventional importance sampling

ullet Change measure from  $\mathbb P$  to  $\mathbb Q$  and simulate N under  $\mathbb Q$ ; then

$$\mathbb{E}(f(N_T)) = \mathbb{E}_{\mathbb{Q}}(Z_T f(N_T))$$

• Radon-Nikodym density  $Z_T = d\mathbb{P}/d\mathbb{Q}$  is given by

$$Z_T = \prod_{i=1}^n \exp\left(\int_0^T \log\left(\frac{\lambda_{s-i}^i}{\nu_{s-i}^i}\right) dN_s^i - \int_0^{T \wedge \tau^i} (\lambda_s^i - \nu_s^i) ds\right)$$

where  $\nu = (\nu^1, \dots, \nu^n)$  is the  $\mathbb{Q}$ -intensity of N

- Challenges
  - Find  $\mathbb Q$  that minimizes  $\mathbb E_{\mathbb Q}((Z_Tf(N_T))^2)$ : depends on  $\lambda$
  - Evaluation of  $Z_T f(N_T)$ : discretization leads to bias
  - Computationally expensive for large n

## **Our IS strategy**

- Our approach addresses these challenges; it has two parts
  - 1. Construct a time-inhomogeneous, continuous-time Markov chain  $M \in \{0,1\}^n$  with the property that

$$M_t \stackrel{law}{=} N_t$$

2. Develop optimal  $\mathbb{Q}$  for M, exploiting

$$\mathbb{E}(f(N_T)) = \mathbb{E}(f(M_T)) = \mathbb{E}_{\mathbb{Q}}(Z_T f(M_T))$$

- Advantages
  - Optimal  $\mathbb Q$  does not depend on the specific structure of  $\lambda$
  - IS estimator  $Z_T f(M_T)$  can be evaluated exactly
  - Computationally inexpensive even for large n

## Mimicking Markov chain

• **Proposition** (G-Kakavand-Mousavi-Takada, 2009) Let M be a Markov chain that takes values in  $\mathbb{S} = \{0,1\}^n$ , starts at  $0_n$ , has no joint transitions in any of its components and whose ith component has transition rate  $p_n^i(\cdot,M)$  where

$$p_n^i(t,B) = \mathbb{E}(\lambda_t^i I(N_t^i = 0) \mid N_t = B)$$

for  $B \in \mathbb{S}$ . Then

$$\mathbb{P}(M_t = B) = \mathbb{P}(N_t = B)$$

 $\bullet$  Calculation of  $p_n^i(t,B)$  feasible for many models  $\lambda$  in the literature

#### Rare-event regime

- For  $\mu \in (0,1)$ , consider  $\xi_n = \{J_T \ge \mu n\}$ , where  $J = 1_n \cdot M$
- When is  $(\xi_n)$  rare, i.e., when  $\mathbb{P}(\xi_n) = \mathbb{P}(C_T \ge \mu n) \to 0$  as  $n \to \infty$ 
  - Seek IS scheme that is provably effective at estimating  $\mathbb{P}(\xi_n)$
- Let  $\mathbb G$  be the filtration generated by M; J has  $\mathbb G$ -intensity  $p_n(\cdot,M)$ , where  $p_n(t,B)=\sum_{i=1}^n p_n^i(t,B)$
- ullet Let K be a  $\mathbb{G}$ -Poisson process stopped at its nth jump with rate

$$\beta_n = \sup_{t \le T, B \in \mathbb{S}} p_n(t, B)$$

K dominates J in the sense that

$$\mathbb{P}(J_T \ge \mu n) \le \mathbb{P}(K_T \ge \mu n) = \mathbb{P}(S_{\lceil \mu n \rceil} \le T)$$

where  $(S_m)_{1 \leq m \leq n}$  is the increasing sequence of event times of K

#### Rare-event regime

- The CLT indicates that  $\mathbb{P}(S_{\lceil \mu n \rceil} \leq T) \to 0$  if  $\beta_n < \lceil \mu n \rceil / T$
- ullet Thus,  $(\xi_n)$  is rare if the rates  $p_n^i(t,B)$  of the Markov chain M mimicking N satisfy

$$p_n(t,B) < \lceil \mu n \rceil / T$$
 for all  $B \in \mathbb{S}$  and  $t \in [0,T]$ 

• A similar argument shows that  $(\xi_n)$  is not rare if

$$p_n(t,B) \ge \lceil \mu n \rceil / T$$
 for all  $B \in \mathbb{S}$  and  $t \in [0,T]$ 

• We will show that the optimal measure  $\mathbb{Q}$  for estimating  $\mathbb{P}(C_T \geq \lceil \mu n \rceil)$  shifts the rates of M so that the  $(\mathbb{G},\mathbb{Q})$ -intensity of J is at the threshold  $\lceil \mu n \rceil / T$ 

## Measure change for M

- We would like to choose  $\mathbb Q$  to minimize the second moment under  $\mathbb Q$  of the IS estimator  $Z_TI(J_T\geq m)$  of  $\mathbb P(C_T\geq m)$
- For  $\theta > 0$ , consider the family of  $\mathbb{Q}$ -rates of M given by

$$q_n^i(t,B) = \theta \, \frac{p_n^i(t,B)}{p_n(t,B)} \quad \left( \text{ so } \frac{q_n^i(t,B)}{\sum_{i=1}^n q_n^i(t,B)} = \frac{p_n^i(t,B)}{\sum_{i=1}^n p_n^i(t,B)} \right)$$

• The Radon-Nikodym derivative takes the form

$$Z_T(\theta) = \exp(\theta(T \wedge S_n) - J_T \log \theta + D_T)$$

where  $D_T$ , the  $\mathbb{P}$ -density of the  $(S_m)_{1 \leq m \leq J_T}$  over [0,T] wrt. Lebesgue measure, does not depend on  $\theta$ :

$$D_T = \int_0^T \log p_n(s-, M_{s-}) dJ_s - \int_0^T p_n(s, M_s) ds$$

## Measure change for M

• The second moment of the estimator  $Z_T(\theta)I(J_T \geq m)$  is

$$\mathbb{E}_{\mathbb{Q}}(Z_T^2(\theta)I(J_T \ge m)) = \mathbb{E}(Z_T(\theta)I(J_T \ge m))$$

$$\le \exp(\theta T - m\log\theta)\mathbb{E}(\exp(D_T)I(J_T \ge m))$$

where the inequality holds for all  $\theta \geq 1$ 

• Minimizing the second moment is difficult, but minimizing the bound over  $\theta \geq 1$  is easy: the minimizer  $\theta^*$  is given by

$$\theta^* = \theta_m^* = m/T$$

• This suggests the IS estimator  $Z_T(\lceil \mu n \rceil/T)I(J_T \geq \lceil \mu n \rceil)$  for  $\mathbb{P}(C_T \geq \lceil \mu n \rceil)$ 

## Measure change for M

• The counting process J has  $(\mathbb{G},\mathbb{Q}(\theta))$ -intensity

$$q_n(t, M_t) = \sum_{i=1}^n q_n^i(t, M_t) = \theta I(S_n > t)$$

and is hence a Poisson process with rate  $\theta$  stopped at  $S_n$ 

ullet For large n, the  $\mathbb{Q}(\lceil \mu n \rceil/T)$ -mean of  $J_T$  is

$$\mathbb{E}_{\mathbb{Q}}(J_T) = \frac{\lceil \mu n \rceil}{T} \mathbb{E}_{\mathbb{Q}}(T \wedge S_n) \approx \lceil \mu n \rceil$$

and so the event  $\{J_T \geq \lceil \mu n \rceil\}$  is not rare under  $\mathbb{Q}(\lceil \mu n \rceil/T)$ 

• The  $\mathbb{P}$ -rates  $p_n^i(t,B)$  of M are shifted to  $q_n^i(t,B)$  so that the  $\mathbb{Q}$ -intensity  $q_n(\cdot,M)=\sum_{i=1}^n q_n^i(\cdot,M)$  of J is just at the rare-event boundary  $\lceil \mu n \rceil/T$ 

## **Asymptotic optimality**

• Theorem. Suppose  $p_n(t,B) < \lceil \mu n \rceil / T$ , i.e.  $\mathbb{P}(C_T \ge \lceil \mu n \rceil) \to 0$ . If, for  $\alpha_n = \inf_{t \le T, B \in \mathbb{S}} p_n(t,B)$  and  $\beta_n = \sup_{t < T, B \in \mathbb{S}} p_n(t,B)$ ,

$$\limsup_{n} \frac{\beta_n}{\alpha_n} = 1$$

then the second moment of the IS estimator

$$Y_n = Z_T(\lceil \mu n \rceil / T) I(J_T \ge \lceil \mu n \rceil)$$

of the probability

$$\mathbb{E}_{\mathbb{Q}}(Y_n) = \mathbb{P}(C_T \ge \lceil \mu n \rceil)$$

satisfies

$$\limsup_{n \to \infty} \frac{\log \mathbb{E}_{\mathbb{Q}}(Y_n^2)}{\log \mathbb{E}_{\mathbb{Q}}(Y_n)} = 2$$

## **Asymptotic optimality**

#### Discussion

- The condition prevents the oscillations of the  $(\mathbb{G}, \mathbb{P})$  intensity  $p_n(t, M)$  of J from becomming arbitrarily large as n grows
- There are other optimal measures Q
  - Take Q to be the measure associated with the rates

$$q_n^i(t,B) = \theta \frac{1 - B^i}{n - 1_n \cdot B}$$

- The  $\mathbb{Q}$ -intensity of J is  $q_n(t,M_t)=\theta I(S_n>t)$ , as above
- The estimator is asymptotically efficient, albeit under more stringent hypotheses on the rate bounds

#### **Derivative estimators**

- For some parameter  $\theta > 0$ , let  $\mathbb{P}_{\theta}$  be a probability measure equivalent to  $\mathbb{P}$  under which the default process  $N = (N^1, \dots, N^n)$  has intensity  $\lambda^{\theta} = (\theta \lambda^1, \lambda^2, \dots, \lambda^n)$
- Under mild conditions,

$$\partial_{\theta} \mathbb{E}_{\theta}(f(N_T)) = \mathbb{E}_{\theta}(f(M_T)\partial_{\theta} \log h_{\theta})$$

- The chain M has  $\mathbb{P}_{\theta}$ -transition rate  $(\theta p_n^1, p_n^2, \dots, p_n^n)$
- $h_{\theta}$  is the density of  $\mathbb{P}_{\theta}$  with respect to some probability measure  $\mu$  on  $\mathcal{G}_T$  independent of  $\theta$

$$\partial_{\theta} \log h_{\theta} = \frac{1}{\theta} \left( M_T^1 - \theta \int_0^T p_n^1(s, M_s) ds \right)$$

which we recognize as  $1/\theta$  times the compensated  $(\mathbb{G}, \mathbb{P}_{\theta})$ -jump martingale associated with  $M^1$ , evaluated at T

#### **Derivative estimators**

• **Theorem.** Under the conditions of the previous Theorem, the IS estimator

$$Y_n = Z_T(\lceil \mu n \rceil / T) I(J_T \ge \lceil \mu n \rceil) \left( M_T^1 - \int_0^T p_n^1(s, M_s) ds \right)$$

of the sensitivity

$$\partial_{\theta} \mathbb{P}_{\theta}(C_T \geq \lceil \mu n \rceil)|_{\theta=1}$$

is asymptotically optimal in the sense that

$$\limsup_{n \to \infty} \frac{\log \mathbb{E}_{\mathbb{Q}}(Y_n^2)}{\log |\mathbb{E}_{\mathbb{Q}}(Y_n)|} = 2$$

#### **Extensions**

- It is straightforward to extend the analysis to include a random loss at default
- The analysis can also be extended to risk measures such as value at risk or expected shortfall
  - Under technical conditions, variance reduction for the probability leads to variance reduction for the risk measure
  - Asymptotic optimality

#### **Numerical results**

Self-exciting intensity model for n = 100

- ullet Suppose the  ${\mathbb P}$ -intensities  $\lambda^i_t = X^i_t + c^i(t,N_t)$ 
  - Extends Jarrow & Yu (2001), Kusuoka (1999), Yu (2007)
  - Feedback specification  $c^i(t,B) = \sum_{j \neq i}^n \beta^{ij} B^j$  can be varied
  - Analytical solutions not known
- Suppose the idiosyncratic factor follows the P-Feller diffusion

$$dX_t^i = \kappa_i(\theta_i - X_t^i)dt + \sigma_i \sqrt{X_t^i}dW_t^i$$

where  $(W^1, \ldots, W^n)$  is a standard  $\mathbb{P}$ -Brownian motion

- Parameters selected randomly (high credit quality)
  - Practice: estimation from derivative prices or default history

#### **Numerical results**

ullet Proposition. The  ${\mathbb P}$ -rates of the mimicking chain M are

$$p_n^i(t,B) = \mathbb{E}(\lambda_t^i I(N_t^i = 0) \mid N_t = B)$$

$$= \frac{4X_0^i \gamma_i^2 \exp(\gamma_i t)}{(\gamma_i - \kappa_i + (\gamma_i + \kappa_i) \exp(\gamma_i t))^2}$$

$$- \frac{\theta_i \kappa_i}{\sigma_i^2} \frac{(\kappa_i^2 - \gamma_i^2)(\exp(\gamma_i t) - 1)}{\gamma_i - \kappa_i + (\gamma_i + \kappa_i) \exp(\gamma_i t)} + \sum_{j \neq i} \beta^{ij} B^j$$

for 
$$B^i=0$$
, where  $\gamma_i=\sqrt{\kappa_i^2+2\sigma_i^2}$ 

- Generalizations
  - Can add compound Poisson jumps without reducing tractability
  - General affine jump diffusion dynamics

#### **Numerical results**

 $\mathbb{P}(C_1 \ge \mu)$  for n = 100, plain MC (500K, red) vs. IS (10K each)



## Variance ratios for $\mathbb{P}(C_1 \geq \mu n)$ , n = 100

| $\mu n$ | $\mathbb{P}(C_1 \ge \mu n)$ | Var IS (10K) | Var Plain (500K) | Var Ratio |
|---------|-----------------------------|--------------|------------------|-----------|
| 3       | 0.4906572                   | 0.1862536    | 0.2499024        | 1.341732  |
| 4       | 0.2660202                   | 0.0828141    | 0.1962571        | 2.369851  |
| 5       | 0.1196635                   | 0.02467735   | 0.1080868        | 4.379999  |
| 6       | 0.04823202                  | 0.005089037  | 0.0459401        | 9.027268  |
| 7       | 0.01679726                  | 0.0007392553 | 0.01622778       | 21.95152  |
| 8       | 0.004851613                 | 7.61035e-05  | 0.004923527      | 64.69515  |
| 9       | 0.00132148                  | 6.290501e-06 | 0.001300307      | 206.7096  |
| 10      | 0.0003043514                | 3.951607e-07 | 0.0003099045     | 784.2493  |
| 11      | 6.616864e-05                | 2.031115e-08 | 8.199344e-05     | 4036.868  |
| 12      | 1.267209e-05                | 8.217485e-10 | 1.799971e-05     | 21904.16  |
| 13      | 2.199999e-06                | 2.737301e-11 | 3.999992e-06     | 146129.1  |
| 14      | 3.484863e-07                | 7.542041e-13 | 0                | 0         |
| 15      | 5.439357e-08                | 1.922568e-14 | 0                | 0         |

## Variance ratios for $\partial_{\theta} \mathbb{P}_{\theta}(C_1 \geq \mu n)|_{\theta=1}$ , n=100

| n  | $\partial_{\theta} \mathbb{P}_{\theta}(C_1 \ge \mu n) _{\theta=1}$ | Var IS (10K) | Var Plain (500K) | Var Ratio |
|----|--------------------------------------------------------------------|--------------|------------------|-----------|
| 3  | 0.006661911                                                        | 0.01548746   | 0.01839772       | 1.187911  |
| 4  | 0.005118402                                                        | 0.006294804  | 0.01210119       | 1.92241   |
| 5  | 0.00311368                                                         | 0.001831398  | 0.006499334      | 3.548838  |
| 6  | 0.00178735                                                         | 0.000434359  | 0.002888021      | 6.648926  |
| 7  | 0.0006891087                                                       | 6.235889e-05 | 0.00109927       | 17.62812  |
| 8  | 0.0002516899                                                       | 7.208854e-06 | 0.0003520437     | 48.83490  |
| 9  | 8.134683e-05                                                       | 6.290217e-07 | 0.0001003328     | 159.5061  |
| 10 | 2.350587e-05                                                       | 4.752067e-08 | 2.949409e-05     | 620.6581  |
| 11 | 6.302068e-06                                                       | 2.934012e-09 | 1.173715e-05     | 4000.376  |
| 12 | 1.118905e-06                                                       | 1.08919e-10  | 3.933792e-06     | 36116.67  |
| 13 | 2.478318e-07                                                       | 4.301901e-12 | 2.618956e-09     | 60879.04  |
| 14 | 4.080089e-08                                                       | 1.185663e-13 | 0                | 0         |
| 15 | 6.813895e-09                                                       | 3.233037e-15 | 0                | 0         |

#### **Conclusions**

- Exact and asymptotically optimal IS scheme for intensity-based models of portfolio credit risk
  - Probability of large losses
  - Constituent sensitivities
  - Risk measures
- Broadly applicable since largely model-independent
  - Multi-factor doubly-stochastic models
  - Multi-factor frailty models
  - Self-exciting models

#### **Conclusions**

- We address the rare-event simulation problem for intensity-based models of portfolio credit risk
  - Bassamboo & Jain (2006): biased IS estimators for standard doubly-stochastic model
  - Giesecke, Kakavand, Mousavi & Takada (2009): unbiased selection/mutation estimators for a wide range of models but no optimality certificate
- Our results complement the IS schemes developed for copula-based models of portfolio credit risk
  - Bassamboo, Juneja & Zeevi (2008)
  - Chen & Glasserman (2008)
  - Glasserman & Li (2005)

#### References

- Bassamboo, Achal & Sachin Jain (2006), Efficient importance sampling for reduced form models in credit risk, *in* L. F.Perrone, F. P.Wieland, J.Liu, B. G.Lawson, D. M.Nicol & R. M.Fujimoto, eds, 'Proceedings of the 2006 Winter Simulation Conference', IEEE Press, pp. 741–748.
- Bassamboo, Achal, Sandeep Juneja & Assaf Zeevi (2008), 'Portfolio credit risk with extremal dependence: Asymptotic analysis and efficient simulation', *Operations Research* **56**(3), 593–606.
- Chen, Zhiyong & Paul Glasserman (2008), 'Fast pricing of basket default swaps', *Operations Research* **56**(2), 286–303.
- Giesecke, Kay, Hossein Kakavand, Mohammad Mousavi & Hideyuki Takada (2009), Exact and efficient simulation of correlated defaults. Working Paper, Stanford University.

- Glasserman, Paul & Jingyi Li (2005), 'Importance sampling for portfolio credit risk', *Management Science* **51**(11), 1643–1656.
- Jarrow, Robert A. & Fan Yu (2001), 'Counterparty risk and the pricing of defaultable securities', *Journal of Finance* **56**(5), 555–576.
- Kusuoka, Shigeo (1999), 'A remark on default risk models', *Advances in Mathematical Economics* **1**, 69–82.
- Yu, Fan (2007), 'Correlated defaults in intensity based models', *Mathematical Finance* **17**, 155–173.