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Statement of the problem

Given a model for the evolution of the stock price, we would
like to find an optimal strategy for trading stock, the strategy
that minimizes some cost function over all permissible
strategies.

We will specialize to the case of stock liquidation where the
initial position x0 = X and the final position xT = 0.

A static strategy is one determined in advance of trading.

A dynamic strategy is one that depends on the state of the
market during execution of the order.

Delta-hedging is an example of a dynamic strategy. VWAP is
an example of a static strategy.

It will turn out, surprisingly, that in many models, a statically
optimal strategy is also dynamically optimal.
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The Euler-Lagrange equation

Suppose that the strategy xt minimizes the cost functional

C[x ] =

∫ T

0
L(t, xt , ẋt) dt

with boundary conditions x0 = X , xT = 0.

Then we have the Euler-Lagrange equation:

∂

∂t

(
∂L

∂ẋ

)
− ∂L

∂x
= 0
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Bellman’s principle of optimality

“An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first
decision.”

(See Bellman, 1957, Chap. III.3.)
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Stochastic optimal control

Consider a cost functional of the form

Jt = E
[∫ T

t
h(t, ys , vs) ds

]
where ys is a state vector, vs is a vector-valued control and the
evolution of the system is determined by a stochastic differential
equation (SDE):

dyt = f (t, yt , vt) dt + σ(t, yt , vt) dZt

Then J satisfies the HJB equation

∂J

∂t
+ min

v∈G
{Lv

t J + h(t, yt , v)} = 0

where Lv
t is the infinitesimal generator of the Itô diffusion:

Lv
t =

1

2
σ(t, y , v)2 ∂y ,y + f (t, y , v) ∂y
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Deterministic and stochastic optimal control

In deterministic optimal control, the evolution of the state
vector is deterministic.

In stochastic optimal control, the evolution of the state vector
is stochastic.
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Almgren and Chriss

Almgren and Chriss [2] model market impact and slippage as
follows. The stock price St evolves as

dSt = σ dZt

and the price S̃t at which we transact is given by

S̃t = St + η vt

where vt := −ẋt is the rate of trading.

The state vector is yt = {St , xt}. The components of the state
vector evolve as

dSt = σ dZt ; dxt = −vt dt;
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Cost of trading

The risk-unadjusted cost of trading (with no penalty for risk) is
given by

Ct =

∫ T

t
S̃s vs ds =

∫ T

t
(Ss + η vs) vs ds

The HJB equation becomes

∂C
∂t

+
1

2
σ2 CS,S + min

v∈G
{−Cx vt + (St + η vt) vt} = 0 (1)

and the optimal choice of vt (the first order condition) is

v∗t =
1

2 η
(Cx − St)
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Substituting back into (1) and defining C̃ := C − x S gives the
equation for the cost function:(

C̃x
)2

= 4 η C̃t (2)

with boundary conditions C̃(T , yT ) = C̃(T , {ST , 0}) = 0.
The solution of this equation is

C̃ =
η x2

T − t
(3)

The optimal control is then

v∗t =
∂x C̃
2 η

=
xt

T − t

It is optimal to liquidate stock at a constant rate v∗t independent
of the stock price St ; the static VWAP strategy is dynamically
optimal.
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Another argument due to Almgren

Consider some adaptive strategy u(t,St) = ū(t) + ε(t, St) with

ū(t) = E[u(t,St)]

Then E[ε(t,St)] = 0 and the expected cost of liquidation is given
by

η E
[∫ T

0
(ū(t) + ε(t,St))2 dt

]
≥ η

∫ T

0
ū(t)2 dt

Thus for any given dynamically adaptive strategy u(t, St), the
corresponding static strategy ū(t) typically costs less, and can
never cost more. This argument relies only on the cost function
being convex in the trading rate. We deduce that the optimal
static strategy must be dynamically optimal whenever the cost
function is convex.
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The statically optimal strategy

The statically optimal strategy vs is the one that minimizes the
cost function

Ct = E
[∫ T

t
S̃s vs ds

]
= E

[∫ T

t
(Ss + η vs) vs ds

]
= η

∫ T

t
v 2
s ds

again with vs = −ẋs .

The Euler-Lagrange equation is then

∂svs = −∂s,sxs = 0

with boundary conditions x0 = X and xT = 0 and the solution is
obviously

vt =
X

T
; xt = X

(
1− t

T

)
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Remark

This example suggests that we should always see if the static
strategy is dynamically optimal rather than solve HJB directly.

Solving the Euler-Lagrange equation is much easier than
solving the HJB equation!
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Adding a risk term

In their paper [2], Almgren and Chriss added a risk term that
penalized the variance of the trading cost.

Var[C] = Var

[∫ T

0
xt dSt

]
= σ2

∫ T

0
x2
t dt

The expected risk-adjusted cost of trading was then given by

C = η

∫ T

0
ẋ2
t dt + λσ2

∫ T

0
x2
t dt

for some price of risk λ.

Note the analogies to physics and portfolio theory.
The first term looks like kinetic energy and the second term
like potential energy.
The expression looks like the objective in mean-variance
portfolio optimization.
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The Euler-Lagrange equation becomes

ẍ − κ2 x = 0

with

κ2 =
λσ2

η

The solution is a linear combination of terms of the form e±κt that
satisfies the boundary conditions x0 = X , xT = 0. The solution is
then

x(t) = X
sinhκ(T − t)

sinhκT

The argument of Almgren shows that once again, the statically
optimal solution is dynamically optimal.
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Is this solution dynamically optimal?

The argument of Almgren and Lorenz shows that yes, the statically
optimal solution is indeed dynamically optimal.

Consider again some adaptive strategy u(t,St) = ū(t) + ε(t,St)
with ū(t) = E[u(t,St)] and E[ε(t,St)] = 0, Also, we have

xt = X −
∫ t

0
ū(θ) dθ −

∫ t

0
ε(θ,Sθ) dθ = x̄(t) + z(t)

with E[z(t)] = 0. Thus the expected cost of liquidation is
proportional to

E
[∫ T

0
(ū(t) + ε(t, St))2 dt + κ2

∫ T

0
(x̄(t) + z(t))2 dt

]
≥

∫ T

0
ū(t)2 dt + κ2

∫ T

0
x̄(t)2 dt
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Brute force verification that the static solution is
dynamically optimal

The state vector is {St , xt}. Does the static solution satisfy the
HJB equation? HJB in the risk-adjusted case reads:

Ct +
1

2
σ2 CS ,S + λσ2 x2

t + min
v∈G
{−Cx vt + (St + η vt) vt} = 0 (4)

and the optimal choice of vt is again

v∗t =
1

2 η
(Cx − St)

Substituting back into (4) and defining C̃ := C − x S gives the
equation for the cost function:

C̃t =
1

4 η

(
C̃x

)2
− λσ2 x2

t (5)
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The cost

C = η

∫ T

t
ds
{

ẋ2
s + κ2 x2

s

}
associated with the statically optimal trajectory

xt = X
sinhκ (T − t)

sinhκT

is

C = η κ2 (T − t) x2
t

cosh 2κ (T − t)

sinh2 κ (T − t)

Then C is of the form

C = η κ x2
t g(κ (T − t))
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Substituting this form back into equation (5) gives

−g ′(κ (T − t)) = g(κ (T − t))2 − 1

It is easy to verify that

g(τ) =
cosh 2 τ

sinh2 τ

satisfies this equation so we conclude once again that the statically
optimal solution is dynamically optimal.
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Practical comments

It’s not clear what the price of risk should be.

More often that not, a trader wishes to complete an execution
before some final time and otherwise just wants to minimize
expected execution cost.

In Almgren-Chriss style models, the optimal strategy is just
VWAP (trading at constant rate).

From now on, we will drop the risk term.
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The Algmren 2005 model

In this model [1], the stock price St evolves as

dSt = γ dxt + σ dZt

and the price S̃t at which we transact is given by

S̃t = St + η v δt

where vt := −ẋt is the rate of trading.
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The expected cost of trading is then given by

C = E
[∫ T

0
S̃t vt dt

]
=

∫ T

0
(γ xt + η v δt ) vt dt

= γ (x2
T − x2

0 ) + η

∫ T

0
v 1+δ
t dt

where wlog, we have set S0 = 0.

We see that the first term corresponding to permanent impact is
independent of the trading strategy, as it should be. The second
term is convex in the trading rate so the minimum cost strategy is
again VWAP.
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Obizhaeva and Wang 2005

Recall from [8] that in this model,

St = S0 + η

∫ t

0
us e−ρ (t−s) ds +

∫ t

0
σ dZs (6)

with ut = −ẋt .

Market impact decays exponentially and instantaneous market
impact is linear in the rate of trading.

The expected cost of trading becomes:

C = η

∫ T

0
ut dt

∫ t

0
us exp {−ρ (t − s)} ds
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Obizhaeva Wang order book process

Order density f(x)f(Dt) f(Dt+)

Et+ −Et

0 Dt Dt+

Et

Price level

When a trade of size ξ is placed at time t,

Et 7→ Et+ = Et + ξ

Dt = η Et 7→ Dt+ = η Et+ = η (Et + ξ)
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When the trading policy is statically optimal, the Euler-Lagrange
equation applies:

∂

∂t

δC
δut

= 0

where ut = ẋt . Functionally differentiating C with respect to ut

gives

δC
δut

=

∫ t

0
us e−ρ (t−s) ds +

∫ T

t
us e−ρ (s−t) ds = A (7)

for some constant A. Equation (7) may be rewritten as∫ T

0
us e−ρ |t−s| ds = A

which is a Fredholm integral equation of the first kind (see [7]).
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Now substitute
us = δ(s) + ρ+ δ(s − T )

into (7) to obtain

δC
δut

= e−ρ t +
(
1− e−ρ t

)
= 1

The optimal strategy consists of a block trade at time t = 0,
continuous trading at the rate ρ over the interval (0,T ) and
another block trade at time t = T .
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Consider the volume impact process Et . The initial block-trade
causes

0 = E0 7→ E0+ = 1

According to the assumptions of the model, the volume impact
process reverts exponentially so

Et = E0+ e−ρ t + ρ

∫ t

0
e−ρ (t−s) ds = 1

i.e. the volume impact process is constant when the trading
strategy is optimal.
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The model of Alfonsi, Fruth and Schied

Alfonsi, Fruth and Schied [3] consider the following (AS) model of
the order book:

There is a continuous (in general nonlinear) density of orders
f (x) above some martingale ask price At . The cumulative
density of orders up to price level x is given by

F (x) :=

∫ x

0
f (y) dy

Executions eat into the order book (i.e. executions are with
market orders).

A purchase of ξ shares at time t causes the ask price to
increase from At + Dt to At + Dt+ with

ξ =

∫ Dt+

Dt

f (x) dx = F (Dt+)− F (Dt)
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Schematic of the model

Order density f(x)

f(Dt)

f(Dt+)

Et+ −Et

0 Dt Dt+

Et

Price level

When a trade of size ξ is placed at time t,

Et 7→ Et+ = Et + ξ

Dt = F−1(Et) 7→ Dt+ = F−1(Et+) = F−1(Et + ξ)
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Optimal liquidation strategy in the AS model

The cost of trade execution in the AS model is given by:

C =

∫ T

0
vt F−1(Et) dt +

∑
t≤T

[H(Et+)− H(Et)] (8)

where

Et =

∫ t

0
us e−ρ (t−s) ds

is the volume impact process and

H(x) =

∫ x

0
F−1(x) dx

gives the cost of executing an instantaneous block trade of size x .
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Consider the ansatz ut = ξ0 δ(t) + ξ0 ρ+ ξT δ(T − t). For
t ∈ (0,T ), we have Et = E0 = ξ0, a constant. With this choice of
ut , we would have

C(X ) = F−1(ξ0)

∫ T

0
vt dt + [H(E0+)− H(E0)] + [H(ET )− H(ET−)]

= F−1(ξ0) ξ0 ρT + H(ξ0) + [H(ξ0 + ξT )− H(ξ0)]

= F−1(ξ0) ξ0 ρT + H(X − ρ ξ0 T )

Differentiating this last expression gives us the condition satisfied
by the optimal choice of ξ0:

F−1(X − ρ ξ0 T ) = F−1(ξ0) + F−1′(ξ0) ξ0

or equivalently

F−1(ξ0 + ξT ) = F−1(ξ0) + F−1′(ξ0) ξ0
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Functionally differentiating C with respect to ut gives

δC
δut

= F−1(Et) +

∫ T

t
us F−1′ (Es)

δEs

δut
ds

= F−1(Et) +

∫ T

t
us F−1′ (Es) e−ρ (s−t) ds (9)

The first term in (9) represents the marginal cost of new quantity
at time t and the second term represents the marginal extra cost
of future trading.

With our ansatz, and a careful limiting argument, we obtain

δC
δut

= F−1(ξ0) + ξ0 F−1′ (ξ0)
[
1− e−ρ (T−t)

]
+e−ρ (T−t)

[
F−1(ξT + ξ0)− F−1(ξ0)

]
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Imposing our earlier condition on ξT gives

δC
δut

= F−1(ξ0) + ξ0 F−1′ (ξ0)
[
1− e−ρ (T−t)

]
+e−ρ (T−t) ξ0 F−1′ (ξ0)

= F−1(ξ0) + ξ0 F−1′ (ξ0)

which is constant, demonstrating (static) optimality.

Example

With F−1(x) =
√

x ,√
ξ0 + ξT = F−1(ξ0+ξT ) = F−1(ξ0)+F−1′(ξ0) ξ0 =

√
ξ0+

1

2

√
ξ0

which has the solution ξT = 5
4 ξ0.
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Generalization

Alexander Weiss [10] and then Predoiu, Shaikhet and Shreve [9]
have shown that the bucket-shaped strategy is optimal under more
general conditions than exponential resiliency. Specifically, if
resiliency is a function of Et (or equivalently Dt) only, the optimal
strategy has a block trades at inception and completion and
continuous trading at a constant rate in-between.
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An observation from [9]

Suppose the cost associated with a strategy depends on the stock
price only through the term∫ T

0
St dxt .

with St a martingale. Integration by parts gives

E
[∫ T

0
St dxt

]
= E

[
ST xT − S0 x0 −

∫ T

0
xt dSt

]
= −S0 X

which is independent of the trading strategy and we may proceed
as if St = 0.

Quote from [9]

“...there is no longer a source of randomness in the problem.
Consequently, without loss of generality we may restrict the search
for an optimal strategy to nonrandom functions of time”.
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Optimality and price manipulation

For all of the models considered so far, there was an optimal
strategy.

The optimal strategy always involved trades of the same sign.
So no sells in a buy program, no buys in a sell program.

It turns out (see [6]) that we can write down models for which
price manipulation is possible.

In such cases, a round-trip trade can generate cash on
average.

You would want to repeat such a trade over and over.
There would be no optimal strategy.
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Linear transient market impact

The price process assumed in [6] is

St = S0 +

∫ t

0
h(vs) G (t − s) ds + noise

In [6], this model is on the one hand extended to explicitly include
discrete optimal strategies and on the other hand restricted to the
case of linear market impact. When the admissible strategy X is
used, the price St is given by

St = S0
t +

∫
{s<t}

G (t − s) dXs , (10)

and the expected cost of liquidation is given by

C(X ) :=
1

2

∫ ∫
G (|t − s|) dXs dXt . (11)
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Condition for no price manipulation

Definition (Huberman and Stanzl)

A round trip is an admissible strategy with X0 = 0. A price
manipulation strategy is a round trip with strictly negative
expected costs.

Proposition (Bochner)

C(X ) ≥ 0 for all admissible strategies X if and only if G (| · |) can
be represented as the Fourier transform of a positive finite Borel
measure µ on R, i.e.,

G (|x |) =

∫
e ixz µ(dz).
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First order condition

Theorem

Suppose that G is positive definite. Then X ∗ minimizes C(·) if and
only if there is a constant λ such that X ∗ solves the generalized
Fredholm integral equation∫

G (|t − s|) dX ∗s = λ for all t ∈ T. (12)

In this case, C(X ∗) = 1
2 λ x. In particular, λ must be nonzero as

soon as G is strictly positive definite and x 6= 0.
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Transaction-triggered price manipulation

Definition (Alfonsi, Schied, Slynko (2009))

A market impact model admits transaction-triggered price
manipulation if the expected costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.

As discussed in [4], transaction-triggered price manipulation can be
regarded as an additional model irregularity that should be
excluded. Transaction-triggered price manipulation can exist in
models that do not admit standard price manipulation in the sense
of Huberman and Stanzl definition.
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Condition for no transaction-triggered price manipulation

Theorem

Suppose that the decay kernel G (·) is convex, satisfies∫ 1
0 G (t) dt <∞ and that the set of admissible strategies is

nonempty. Then there exists a unique admissible optimal strategy
X ∗. Moreover, X ∗t is a monotone function of t, and so there is no
transaction-triggered price manipulation.

Remark

If G is not convex in a neighborhood of zero, there is
transaction-triggered price manipulation.
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An instructive example

We solve a discretized version of the Fredholm equation (with 512
time points) for two similar decay kernels:

G1(τ) =
1

(1 + t)2
; G2(τ) =

1

1 + t2

G1(·) is convex, but G2(·) is concave near τ = 0 so there should be
a unique optimal strategy with G1(·) as a choice of kernel but
there should be transaction-triggered price manipulation with G2(·)
as the choice of decay kernel.
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Schematic of numerical solutions of Fredholm equation

G1(τ) = 1
(1+t)2 G2(τ) = 1

1+t2

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0

-6 ´ 107

-4 ´ 107

-2 ´ 107

2 ´ 107

In the left hand figure, we observe block trades at t = 0 and t = 1
with continuous (nonconstant) trading in (0, 1). In the right hand
figure, we see numerical evidence that the optimal strategy does
not exist.
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Now we give some examples of the optimal strategy with choices
of kernel that preclude transaction-triggered price manipulation.
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Example I: Linear market impact with exponential decay

G (τ) = e−ρ τ and the optimal strategy u(s) solves∫ T

0
u(s)e−ρ |t−s| ds = const.

We already derived the solution which is

u(s) = A {δ(t) + ρ+ δ(T − t)}

The normalizing factor A is given by∫ T

0
u(t) dt = X = A (2 + ρT )

The optimal strategy consists of block trades at t = 0 and t = T
and continuous trading at the constant rate ρ between these two
times.
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Schematic of optimal strategy

The optimal strategy with ρ = 0.1 and T = 1

0.0 0.2 0.4 0.6 0.8 1.0

Time s

u(
s)
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Example II: Linear market impact with power-law decay

G (τ) = τ−γ and the optimal strategy u(s) solves∫ T

0

u(s)

|t − s|γ
ds = const.

The solution is

u(s) =
A

[s (T − s)](1−γ)/2

The normalizing factor A is given by

∫ T

0
u(t) dt = X = A

√
π

(
T

2

)γ Γ
(

1+γ
2

)
Γ
(
1 + γ

2

)
The optimal strategy is absolutely continuous with no block trades.
However, it is singular at t = 0 and t = T .
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Schematic of optimal strategy

The red line is a plot of the optimal strategy with T = 1 and
γ = 1/2.

0.0 0.2 0.4 0.6 0.8 1.0

s

u(
s)
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Example III: Linear market impact with linear decay

G (τ) = (1− ρ τ)+ and the optimal strategy u(s) solves∫ T

0
u(s) (1− ρ |t − s|)+ ds = const.

Let N := bρT c, the largest integer less than or equal to ρT . Then

u(s) = A
N∑

i=0

(
1− i

N + 1

) {
δ

(
s − i

ρ

)
+ δ

(
T − s − i

ρ

)}
The normalizing factor A is given by∫ T

0
u(t) dt = X = A

N∑
i=0

2

(
1− i

N + 1

)
= A (2 + N)

The optimal strategy consists only of block trades with no trading
between blocks.
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Schematic of optimal strategy

Positions and relative sizes of the block trades in the optimal
strategy with ρ = 1 and T = 5.2 (so N = bρT c = 5).
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Summary

The optimal trading strategy depends on the model.

For Almgren-Chriss style models, if the price of risk is zero, the
minimal cost strategy is VWAP.
In Alfonsi-Schied style models with resiliency that depends only
on the current spread, the minimal cost strategy is to trade a
block at inception, a block at completion and at a constant
rate in between.
We exhibited other models for which the optimal strategy is
more interesting.

In some models, price manipulation is possible and there is no
optimal strategy.

We presented example of models for which price manipulation
is possible.
In the case of linear transient impact, we provided conditions
under which transaction-triggered price manipulation is
precluded.
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