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Motivation

Majority of problems in economics and finance are dynamic in nature

Portfolio problems have a long and rich tradition in finance

Most portfolio choice problems do not admit closed-form solutions

Frictions: taxes, transaction costs

Market incompleteness: return predictability, stochastic volatility

Theoretical approximations have been developed, i.e., log-linear
approximations

Numerical methods still a necessity, especially for realistic problems
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Brief overview of numerical methods

Numerical solution of PDE [Brennan, Schwartz and Lagnado (1997)]

Log-linearization of FOC/budget constr. [Campbell and Viceira (1999)]

Perturbation of closed-form solutions [Kogan and Uppal (2001)]

State-space discretization and linear interpolation of value function
(Quadrature integration [Balduzzi and Lynch (1999)]; Simulations

[Barberis (2000)]; Binomial discretization [Dammon, Spatt, and Zhang

(2001)]; Non-parametric regression [Brandt (1999)])

Malliavin calculus based methods [Detemple et. al (2003)]

Policy function iteration and simulation-based methods for computing
expectations [Brandt, Goyal, Santa-Clara, and Stroud (2005), BGSS]
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The State Variable Decomposition (SVD) method:
A simple illustration

Static one-period, one-asset problem with power utility

Utility: u(W ) = W 1−γ

1−γ , W = W0(Rf + ωR)

Asset return decomposition: R = µR + εR
where µR = E [R] and E [εR ] = 0

Wealth decomposition: W (ω) = µW (ω) + εW (ω)
where µW (ω) = W0(Rf + ωµR), εW (ω) = W0 ω εR

Taylor approximation of u(W ):

W (ω)1−γ = (µW (ω) + εW (ω))1−γ

≈
M∑

m=0

1

m!
(1− γ)m µW (ω)1−γ−m εW (ω)m
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Approximate optimization problem:

max
ω

E [u(W )] ≈ max
ω

W 1−γ
0

1− γ
M∑

m=0

1

m!
(1− γ)m (Rf + ωµR)1−γ−m ωmE [εmR ]

Choice variable ω is separated from zero-mean shock εR

Return shock moments E [εmR ] need to be computed only once

For standard distributions (i.e., normal and lognormal) E [εmR ]
available in closed-form; alternatively, simulation can be used

Easy to generalize to multiple assets (multinomial formula)
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Choice of center of expansion for Taylor series

In a static problem, SVD coincides with BGSS with one exception:

SVD: expand future wealth W1 around µW = W0(Rf + ω′µR)

BGSS: expand future wealth W1 around W0Rf .

Choice can be crucial in multi-asset problems.
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Example: CE Losses from choice of expansion point

Two-asset static CRRA problem, annual data:
µ1 = 7%, µ2 = 12%, σ1 = 14%, σ2 = 18%, annual Rf = 1.05, γ = 10

CE losses in annualized bps w.r.t. quadrature

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

 

 

SVD−S 1st quartile
SVD−S 3rd quartile
BGSS 1st quartile
BGSS 3rd quartile

Correlation

Garlappi & Skoulakis SVD approach to portfolio problems March 22, 2010 7 / 1



General SVD methodology

General recursive structure of a dynamic problem

Jt(st) = max
xt∈Xt

{H (u(F (st , xt)),Et [Jt+1(st+1)])},

where st+1 = Γ(st , xt , δt+1): law of motion of state variables st ,

Jt(·) = value function

xt = choice variables

δt+1 = innovations to state variables st

H(·, ·) = “aggregator” of immediate and continuation utility

Special cases

H(u, v) = u + βv , β ∈ (0, 1) ⇒ Time-separable utility

H(u, v) =
[
(1− β)u

1
θ + βv

1
θ

]θ
, θ 6= 0 =⇒ Recursive utility
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Algorithm
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…

0
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General SVD method

Preliminary step: Use a suitable transformation Vt+1 of the value
function Jt+1 (e.g., certainty equivalent).

Backward recursion: Suppose Vt+1 is known on a grid of st+1:

Step A. Projection step.
Project Vt+1 over the entire state space

Step B. SVD step. Obtain Vt on a grid of st :

B-1. Decomposition of state variables;

B-2. Separation of choice variables from shocks;

B-3. Computation of conditional expectations.

=⇒ obtain Vt on a grid of st =⇒ step A

=⇒ stop when t = 0.
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Step A: Projection Step

Monotonic transformation Vt(st) instead of the value function Jt(st)

Jt(st) = U(Vt(st))

Transformed general recursion

U(Vt(st)) = max
xt∈Xt

{H (u(F (st , xt)),Et [U(Vt+1(st+1))])},

where st+1 = Γ(st , xt , δt+1).

Example: if U(·) = u(·), Vt(st) is the certainty equivalent of Jt(st)

Usually Vt(st) easier to approximate over the state space for st

(e.g., polynomials, radial basis functions).
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Example: Value function vs. Certainty equivalent

CRRA utility, index return predictable by dividend yield.

State variable s is the predictor z .

Value Function Jt Certainty Equivalent Vt

Figure 1: Value Function and Certainty Equivalent

This figure presents the value function Ψ0(z) and the certainty equivalent function V0(z) (see equations
(10) and (11)) for three choices of the investment horizon T = 20, 30, 40. The preferences are CRRA
and the returns predictable by the log dividend yield z. The data generating process and the parameters
used are described in equations (12) and (26), respectively. The annualized risk-free rate is set equal to
6% and the coefficient of relative risk aversion is set equal to γ = 15. The solution is based on backward
induction on the certainty equivalent. The expectations in the Bellman equation are computed using
Gauss-Hermite quadrature with 6 nodes.

−4.2 −4 −3.8 −3.6 −3.4 −3.2
−1.5

−1

−0.5

0
x 10

−3

 T
=

2
0

 Value Function

−4.2 −4 −3.8 −3.6 −3.4 −3.2

1.4

1.6

1.8
 Certainty Equivalent

−4.2 −4 −3.8 −3.6 −3.4 −3.2
−2

−1.5

−1

−0.5

0
x 10

−4

 T
=

3
0

−4.2 −4 −3.8 −3.6 −3.4 −3.2
1.4

1.6

1.8

2

2.2

−4.2 −4 −3.8 −3.6 −3.4 −3.2
−2

−1.5

−1

−0.5

0
x 10

−5

 Predictor z

 T
=

4
0

−4.2 −4 −3.8 −3.6 −3.4 −3.2
1.5

2

2.5

3

 Predictor z

13Garlappi & Skoulakis SVD approach to portfolio problems March 22, 2010 12 / 1



Step B: SVD Step

At time t (a projection of) Vt+1 is known over the entire state space.

Goal: solve for Vt(st) on a grid for st .

Three substeps:

B-1. Decomposition of state variables;

B-2. Separation of choice variables from shocks;

B-3. Computation of conditional expectations.
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SVD step B.1: Decomposition of state variables

B-1. Decomposition of (innovations to) state variables

δt+1 = cδ,t(st) + εδ,t+1

where

cδ,t(st) = “center” of expansion (known at time t)

εδ,t+1 = stochastic deviation

Law of motion:
st+1 = Γ (st , xt , cδ,t + εδ,t+1) .
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SVD step B.2: Separation of choice variables from shocks

Taylor expansions of U(Vt+1(Γ (st , xt , cδ,t + εδ,t+1)︸ ︷︷ ︸
≡st+1

)), centered at cδ,t .

B-2. Separation of choice variables xt from shocks εδ,t+1

U(Vt+1(st+1)) ≈
M∑

m=1

At+1,m(st , xt)︸ ︷︷ ︸
Independent of εδ

·Bt+1,m(εδ,t+1)︸ ︷︷ ︸
Independent of xt

,

where

At+1,m(st , xt) = partial derivatives of U(V ) w.r.t. εδ,t+1

Bt+1,m(εδ,t+1) = products of powers of εδ,t+1
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SVD step B.3: Computation of conditional expectations

B-3. Computation of conditional expectations

Need to compute

Et [U(Vt+1(st+1))] ≈
M∑

m=1

At+1,m(st , xt) · Et [Bt+1,m(εδ,t+1)].

Et [Bt+1,m(εδ,t+1)] needs to be computed only once(!) for each grid
point

If shocks are homoschedastic Et [Bt+1,m(εδ,t+1)] can be computed
only once and for all(!)

Computationally very efficient (compared to, e.g., quadrature).
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Applications

1 CRRA utility and stochastic investment opportunity set

2 CARA utility and constant investment opportunity set

3 Recursive utility stochastic investment opportunity set

Requirements for SVD Applicability:

Smooth utility function [need to take derivatives]

Compact support of shocks [convergence of Taylor series]
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CRRA utility and predictable returns

Maximize expected utility of terminal wealth

J0(W0, s0) = max
{xt}T−1

t=0

E0[u(WT )],

where

u(WT ) =
W 1−γ

T

1− γ
Wt+1 = Wt(Rf + x′tRt+1) [endogenous s.v. (N assets)]

st+1 = Γ(st , δt+1) [ K exogenous s.v.]

Bellman Equation

Jt(Wt , st) = max
xt

Et [Jt+1(Wt(Rf + x′tRt+1), st+1)].
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Step A: Projection step

Certainty equivalent: Jt(Wt , st) = u(Vt(Wt , st)).

Homotheticity of CRRA ⇒ Vt(Wt , st) = W 1−γ
t

Vt(st)
1−γ

Reduced Bellman Equation

Vt(st)1−γ

1− γ = max
xt

Et

[
Rp,t+1(xt)1−γ Vt+1(st+1)1−γ

1− γ

]
, VT (sT ) = 1

Rp,t+1(xt) ≡ Rf + x′tRt+1

Solve backwards from T

At time t + 1 obtain a projection of Vt+1(st+1) on the state space;
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Step B: SVD step

The goal is to solve for Vt(st), given a known projection of Vt+1(st+1)

B-1. Decompose (innovations to) state variables

Rt+1 = cR,t + εR,t+1 =⇒ Rp,t+1(xt) = cp,t(xt) + εp,t+1(xt)

δt+1 = cδ,t + εδ,t+1 =⇒ st+1 = Γ(st , cδ,t + εδ,t+1)

where εp,t+1(xt) = x′tεR,t+1
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Step B: SVD step (cont.)

B-2. Separate choice variables xt from shocks ε·,t+1

Taylor expansion of Rp,t+1(xt)1−γV(st+1)1−γ around (cR,t , cδ,t)

Separation

Rp,t+1(xt)1−γV(st+1)1−γ ≈
∑

|n|+|k|≤M

1

n!

1

k!
fn(xt)gk

N∏
i=1

εni

Ri ,t+1

K∏
j=1

ε
kj

δj ,t+1

where n = (n1, . . . , nN), k = (k1, . . . , kK ),

fn(xt) =
∂|n|Rp,t+1(xt)1−γ

∂εn1

R1
· · · ∂εnN

RN

∣∣∣∣∣
εR=0N

, gk =
∂|k|V(st+1)1−γ

∂εk1

δ1
· · · ∂εkK

δK

∣∣∣∣∣
εδ=0K

.

Use Savits (2006) generalization of Faà di Bruno formula (1855) for

efficient computation of derivatives of composite functions.
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Step B: SVD step (cont.)

B-3. Compute conditional expectations

Et

 N∏
i=1

εni
Ri ,t+1

K∏
j=1

ε
kj

δj ,t+1


Does not depend on choice variable xt .

Need to be computed only once at each point in the state space

Expectations can be computed (i) analytically, when possible, (ii) by
quadrature [Judd (1998)] or (iii) by simulation-based parameterized
expectations [Longstaff-Schwartz (2001), BGSS (2005)]

Once optimal xt is found, Vt(st) can be computed on a grid of st and
then projected (back to step A.)
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Numerical implementation

Example from VanBinsbergen and Brandt (2007)

One risky and one risk-free asset

One state variable: dividend yield (predictor)

(log) risky asset return and (log) dividend yield follow a VAR(1)
process

Projection of certainty equivalent function Vt(st): polynomial of
degree 12 in st

Gauss-Hermite quadrature: 6 nodes in each dimension.
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Comparison with discretized state space using quadrature

Certainty Equivalent (annualized % points)
γ = 5 γ = 15

z10 z30 z50 z70 z90 z10 z30 z50 z70 z90

T = 30

DSS-Q 6.65 7.34 8.26 9.57 11.91 6.25 6.57 7.01 7.70 9.17

SVD M = 4 6.65 7.34 8.26 9.57 11.92 6.26 6.56 7.02 7.69 9.18
M = 6 6.65 7.34 8.26 9.57 11.91 6.26 6.56 7.01 7.70 9.17
M = 8 6.65 7.34 8.26 9.57 11.91 6.26 6.57 7.01 7.71 9.18

T = 40

DSS-Q 6.95 7.67 8.53 9.69 11.67 6.40 6.78 7.26 7.98 9.43

SVD M = 4 6.95 7.67 8.53 9.69 11.67 6.41 6.78 7.26 7.99 9.45
M = 6 6.95 7.67 8.53 9.69 11.67 6.41 6.78 7.27 7.99 9.41
M = 8 6.95 7.67 8.53 9.69 11.67 6.40 6.78 7.25 7.98 9.43

Red: CE differ by more than than 2 bps.
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CARA utility and IID normal returns

Objective: max E0 [u(WT )], u(WT ) = − exp(−αWT )

Bellman equation:

Jt(Wt) = max
ωt

Et [Jt+1 (Wt(Rf + ω′tRt+1)], JT (WT ) = − exp(−αWT )

Rf : risk-free rate, Rt ∼ N(µ,Σ): excess risky asset return.

Closed-form solution

Jt(Wt) = − exp

(
−αWtR

T−t
f − T − t

2
µ′Σ−1µ

)
, t = 0, . . . ,T

ωt =
1

αWtR
(T−1)−t
f

Σ−1µ, t = 0, . . . ,T − 1
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Applying the SVD approach

Prelim step. Use the certainty equivalent Vt of Jt : Jt(W ) = u(Vt(W ))

Step A. Projection step.

Modified Bellman equation:

−e−αVt(Wt) = max
ωt

Et

[
−e−αVt+1(Wt+1)

]
, VT (WT ) = WT

Approximate V (W ) as a polynomial of order K in wealth W :

V (W ) ≈ VK (W ) =
K∑

k=0

ckW k
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Applying the SVD approach (con’t)

Step B. SVD step

B-1. Decompose Wt+1 into µW + εW , µW = Wt(Rf + ω′µR), εW = Wt(ω′εR).

U(Vt(Wt)) = −e−αV (Wt+1) ≈ −e−α
PK

k=0 ck (µW +εW )k ≡ gK (εW )

B-2. Separate choice variables from shocks
Taylor approximate gK (εW ) around εW = 0

gK (εW ) ≈
∑M

m=0

1

m!
g

(m)
K (0)εmW

Use binomial formula to compute εmW .

Approximate Maximization Problem (2-asset example)

−e−αV (Wt) = max
ωt

M∑
m=0

W m
t g

(m)
K (0)

∑
m1+m2=m

1

m1!m2!
[ωm1

1 ωm2
2 ]E

[
εm1

R,1ε
m2

R,2

]
Faà di Bruno (1885) formula for efficient computation of g

(m)
K (0)
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Applying the SVD approach (con’t)

B-3. Compute cross-moments E
[
εm1
R,1 · · · ε

mN
R,N

]
Independent of allocations ω,

Computed only once.

Step B =⇒ optimal portfolio ωt =⇒ Vt on a grid for Wt =⇒ Step A.

Numerical example:

Projection of Vt : Polynomial of degree K = 2

Taylor expansions with order M = 4.
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Comparing SVD and exact solution

Data: 3 MSCI-Barra international indexes (annualized), Rf = 1.05

Certainty Equivalent (annualized % points)

W0 = 1 W0 = 1.25 W0 = 1.5 W0 = 1.75 W0 = 2
Exact

α = 2 T = 10 8.078 7.523 7.138 6.856 6.639
T = 20 6.825 6.504 6.280 6.114 5.987
T = 30 6.130 5.931 5.791 5.688 5.609

α = 4 T = 10 6.639 6.329 6.118 5.964 5.848
T = 20 5.987 5.803 5.677 5.585 5.515
T = 30 5.609 5.495 5.417 5.360 5.317

α = 6 T = 10 6.118 5.902 5.757 5.652 5.572
T = 20 5.677 5.548 5.460 5.397 5.349
T = 30 5.417 5.337 5.283 5.244 5.215

SVD (CE obtained via Monte Carlo simulation)
α = 2 T = 10 8.080 7.510 7.140 6.853 6.642

T = 20 6.827 6.507 6.279 6.123 5.988
T = 30 6.135 5.938 5.793 5.696 5.605

α = 4 T = 10 6.638 6.334 6.118 5.964 5.850
T = 20 5.981 5.800 5.677 5.583 5.513
T = 30 5.614 5.497 5.421 5.361 5.321

α = 6 T = 10 6.116 5.905 5.756 5.653 5.572
T = 20 5.679 5.547 5.461 5.397 5.350
T = 30 5.420 5.332 5.283 5.245 5.215

Red: CE difference > 1/2 bp.
Garlappi & Skoulakis SVD approach to portfolio problems March 22, 2010 29 / 1



SVD vs. Brandt et al. (2005, BGSS)

Choice of centers of expansion for Taylor approximation

BGSS: µW = WRf ⇒ Expansion is w.r.t. a non-zero-mean random
shock

SVD: µW = W (Rf + ωµR) ⇒ Expansion is w.r.t. a zero-mean
random shock

Solution technique

BGSS: Policy Function Iteration + Taylor expansion

Cannot handle dependence of future allocation on current wealth

SVD: Value Function Iteration + Taylor expansion

Can handle dependence of future allocation on current wealth

BGSS is OK only if preferences are homothetic.
BGSS center of expansion still an issue even in the homothetic case.
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Comparing SVD and BGSS

Two-asset, two-period problem

Four different methods considered

Dependence of ω1 on W0

Center of expansion
No Yes

µW = W0Rf BGSS M2

µW = W0(Rf + ω0µR) M1 SVD
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Certainty Equivalent Loss (annualized bp)

Parameters: Rf = 1.05, µ1 = 3%, µ2 = 9%, σ1 = 15%, σ2 = 18%, α = 4

Correlation −0.4 −0.2 0.0 0.2 0.4
BGSS

M = 6 95.4 23.3 9.87 5.97 5.0
M = 8 32.8 11.3 5.8 3.9 3.3
M = 10 27.5 10.5 5.6 3.8 3.3

M1 (ω1 independent of W0)
M = 6 48.1 17.6 9.0 5.9 5.1
M = 8 53.7 18.9 9.5 6.2 5.3
M = 10 54.1 18.9 9.5 6.2 5.3

M2 (ω1 depends on W0)
M = 6 13.9 1.8 0.4 0.2 0.1
M = 8 0.1 0.0 0.0 0.0 0.0
M = 10 0.0 0.0 0.0 0.0 0.0

SVD
M = 6 0.1 0.0 0.0 0.0 0.0
M = 8 0.0 0.0 0.0 0.0 0.0
M = 10 0.0 0.0 0.0 0.0 0.0
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Recursive utility and predictable returns

Life-time portfolio and consumption choice problem
[Campbell, Chan and Viceira (2003, CCV)]

3 Assets: nominal T-bills, nominal T-bonds, stocks

6 State variables: lagged asset returns plus 90-day nominal T-bill
yield, dividend-price ratio, spread b/w 5-year bond yield and the T-bill
rate.

State variables follow a VAR dynamics

Recursive Preferences (Epstein-Zin). Bellman equation:

Vt(Wt , yt) = max
Ct ,ωt


(1− β)Cρ

t + β
“
Et

“
V 1−γ

t+1 (Wt+1, yt+1)
”” ρ

1−γ

ff1/ρ
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Comparison with CCV

Differences from CCV

Finite-horizon [CCV solves infinite horizon]

Short-selling constraints [CCV consider only unconstrained policies]

SVD instead of log-linearization of budget constraint [CCV]

EIS parameter ρ unrestricted [CCV works for EIS ≈ 1]

CCV and BGSS methodology cannot solve this problem:

CCV cannot handle constraints

BGSS cannot handle recursive preferences
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Using SVD to solve CCV problem

Modified Bellman equation

Vt(yt) =

8<:1 +

"
β

„
min
ωt

Et

h
(Rp,t+1(ωt))

1−γ Vt+1(yt+1)
1−γ

i« ρ
1−γ

# 1
1−ρ

9=;
1−ρ

ρ

VT (yT ) = 1, consumption-to-wealth ratio ct = Vt(yt)−
ρ

1−ρ

A. Project Vt+1(yt+1) over the state space for yt+1 by using radial basis
function with 500 Gaussian kernels.

B-1. Decompose yi,t+1 = µi,t + εi,t+1

B-2. Separate. Taylor expansions of Rp,t+1(ωt)1−γVt+1(yt+1)1−γ around µi,t

(We use M = 4 in Taylor expansions)

B-3. Analytically compute Et

[∏3
i=1 ε

ni

i,t+1

∏6
j=1 ε

kj

j,t+1

]
Execution time for 30-year problem: 3.46 hours vs. 5.3 days for quadrature!
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Comparing SVD to Quadrature

Data from Campbell et al (2003), T = 30, γ = 5, EIS = 0.5, β = 0.92.

Q SVD Q SVD Q SVD
p25 p50 p75

Short term nominal interest rate (z1)

Bond 46.48 46.92 46.93 47.21 47.44 47.54
Stock 53.52 53.08 53.07 52.79 52.56 52.46
Cons. 6.70 6.69 6.93 6.92 7.20 7.18

Dividend yield (z2)

Bond 65.90 66.10 46.93 47.21 28.06 28.38
Stock 34.10 33.90 53.07 52.79 71.94 71.62
Cons. 6.83 6.82 6.93 6.92 7.11 7.10

Yield spread (z3)

Bond 0.00 0.00 46.93 47.21 53.92 54.11
Stock 52.32 51.98 53.07 52.79 46.08 45.89
Cons. 6.88 6.88 6.93 6.92 7.01 7.00

Red: Allocation/consumption differ by more than 0.3%.
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Conclusion

Develop a new approximation methodology for portfolio based on

Decomposition of state variables

Taylor approximations

Separation between shocks to state variables and choice variables

Reduce the problem of computing conditional expectation of
value function to the problem of computing conditional moments
of shocks to state variables.

Shift focus from integrals to derivatives

Conceptually simple, computationally efficient, and accurate

Broad applicability to dynamic problems in economics and finance.
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